Advertisement

Robot Systems

  • Arthur Browne
  • Leonard Norton-Wayne

Abstract

The combination of vision and other sensory systems with robots is increasing, enabling robots to perform tasks that would not be possible for robots equipped with no more than rudimentary sensing devices, such as microswitches. For example, an assembly robot may determine the positions and orientations of the components and their suitability for assembly, guide the assembly process, and check the resulting assembly for correctness. It may also check on failure during assembly, i. e., the inability to insert a component, and avoid or recover components which have been dropped. It is, therefore, appropriate to have some knowledge of the structure of robots and of their operation before considering complete sensor-assisted robotic systems.

Keywords

Position Sensor Step Motor Robot System Industrial Robot Pneumatic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Lhote, J-M. Kauffman, P. Andre, and J-P. Taillard, Robot Technology, Vol. 4, Robot Components, Kogan Page, London (1983).CrossRefGoogle Scholar
  2. 2.
    H. Makino and N. Furuya, SCARA robot and its family, Proc. 3th Intl. Conf. on Assembly Automation, 433-444, Boeblingen (May 1982).Google Scholar
  3. 3.
    Anon., Gadfly—the answer to electronic component assembly, Assembly Automation 3 (1), 20-22 (Feb. 1983).Google Scholar
  4. 4.
    Members’ Handbook, British Robot Association, Kempston, Bedford MK42 7BT, U.K.Google Scholar
  5. 5.
    The Specifications and Applications of Robots in Japan, 1984, Japanese Industrial Robot Association, Tokyo (1984).Google Scholar
  6. 6.
    J. W. Clasper, Robotics information, Database (USA), 7(4), 39–42 (Dec. 1984).Google Scholar
  7. 7.
    A. M. Stanescu, G. V. Banu, V. I. Vlad, Th. Borangiu, and L. D. Serbanati, Architecture, control and software of a modular robot system with pneumatic stepping motors and vision, Proc. 12tb Intl. Symp. on Industrial Robots and 6tb Intl. Conf. on Industrial Robot Technology, 143-154, Paris (June 1982).Google Scholar
  8. 8.
    N. Barber, Coming to terms with brushless servo drives, Electric Drives and Controls 1(10), 25–29 (April/May 1985).Google Scholar
  9. 9.
    N. Wavre, Developments in electric motors for modern robotics, Bulletin de l’Association Suisse des Electriciens 75(12), 673–675 (June 1984).Google Scholar
  10. 10.
    M. Katayama, S. Nara, and K. Yamaguchi, Newly developed ac servomotor RA series, Powerconversion Int. (USA), 10(5), 12–30 (May 1984).Google Scholar
  11. 11.
    P. P. Acarnley, Stepping motors: A guide to modem theory and practice, in: IEE Control Engineering Series No. 19, Peter Peregrinus, London (1984).Google Scholar
  12. 12.
    Philips Data Handbook, Components and Materials, Book C17, Stepping motors and associated electronics.Google Scholar
  13. 13.
    B. H. A. Goddijn, New hybrid stepper motor design, Electronic Components and Applications 3(1), 31–37 (Nov. 1980).Google Scholar
  14. 14.
    R. Cassinis, L. Schnickel, and M. Tomaini, An economical and powerful microcomputer based stepping motor driver, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 89-100, Milan (March 1980).Google Scholar
  15. 15.
    P. Lawrenson, Switched reluctance drives—a fast growing technology, Electric Drives and Controls 1(10), 18–23 (April/May 1985).Google Scholar
  16. 16.
    Harmonic Drive Gears, data sheets from Harmonic Drive Ltd, Billingshurst, West Sussex, U.K.Google Scholar
  17. 17.
    P. Grunewald, Car body painting with the Spine spray system, Proc. 14th Intl. Symp. on Industrial Robots and 7th Intl. Conf. on Industrial Robot Technology, 633-641, Gothenburg (Oct. 1984).Google Scholar
  18. 18.
    A. Rovetta, I. Franchetti, and P. Vicentini, On a general prehension multipurpose system, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf on Industrial Robot Technology, 191-201, Milan (March 1980).Google Scholar
  19. 19.
    F. Y. Chen, Force analysis and design considerations of grippers, The Industrial Robot 9, 243–249 (Dec. 1982).CrossRefGoogle Scholar
  20. 20.
    G. Bancon and B. Huber, Depression and dual grippers with their possible applications, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 321-329, Paris (June 1982).Google Scholar
  21. 21.
    R-C. Luo, Automatic quick-change gripper finger for assembly automation, Proc. 5th Intl. Conf on Assembly Automation, 215-224, Paris (May 1984).Google Scholar
  22. 22.
    J. P. Bourrieres, P. Jeannier, and F. Lhote, Intrinsic compliance of position-controlled robots—applications in assembly, Proc. 5th Intl. Conf. on Assembly Automation, 133-142, Paris (May 1984).Google Scholar
  23. 23.
    M. S. Ohwovoriole, J. W. Hill, and B. Roth, On the theory of single and multiple insertions in industrial assemblies, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 545-558, Milan (March 1980).Google Scholar
  24. 24.
    T. L. De Fazio, Displacement-state monitoring for the remote centre compliance (RCC)—realisations and applications, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf on Industrial Robot Technology, 559-569, Milan (March 1980).Google Scholar
  25. 25.
    F. Caillot and M. Kerlidou, Air stream compliance, Proc. 5th Intl. Conf. on Assembly Automation, 225-233, Paris (May J984).Google Scholar
  26. 26.
    A. Fakri, A. Jutard, and G. Liegeois, Passive compliant wrist with two rotation centres for assembly robot (DCR-LAI device), Proc. 5th Intl. Conf. on Assembly Automation, 235-241, Paris (May 1984).Google Scholar
  27. 27.
    H. J. Warnecke, M. Schweizer, and D. Haaf, An adaptable programmable assembly system using compliance and visual feedback, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 481-490, Milan (March 1980).Google Scholar
  28. 28.
    T. L. DeFazio, D. S. Seltzer, and D. E. Whitney, The instrumented remote centre compliance, The Industrial Robot 11, 238–242 (Dec. 1984).Google Scholar
  29. 29.
    M. R. Cutkosky and P. K. Wright, Position sensing wrists for industrial manipulators, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 427-438, Paris (June 1982).Google Scholar
  30. 30.
    M. Parent, Robot Technology, Vol. 5, Robotic Languages and Programming Methods, Kogan Page, London (1983).Google Scholar
  31. 31.
    R. L. Tarvin, Considerations for off-line programming a heavy duty industrial robot, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 109-117, Milan (March 1980).Google Scholar
  32. 32.
    J. Anderson, The benefits of using CAD as a base for manufacturing, Proc. 2nd European Conf on Automated Manufacturing, 67-72, Birmingham (May 1983).Google Scholar
  33. 33.
    J. J. Craig, Anatomy of an off-line programming system, Robotics Today 7(1), 45–47 (Feb. 1985).Google Scholar
  34. 34.
    R. N. Stauffer, Robot system simulation, Robotics Today 6(3), 81–90 (June 1984).Google Scholar
  35. 35.
    A. Liegeois, Robot Technology, Vol. 7, Robot Performance Evaluation and Computer-Aided Design, Kogan Page, London (1983).Google Scholar
  36. 36.
    S. J. Kretch, Advanced off-line programming for robots, Proc. 2nd European Conf on Automated Manufacturing, 55-58, Birmingham (May 1983).Google Scholar
  37. 37.
    T. Fohanno, Assessment of the mechanical performance of industrial robots, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 349-358, Paris (June 1982).Google Scholar
  38. 38.
    L. Vecchio, S. Nicosia, F. Nicolo, and D. Lentini, Automatic generation of dynamical models of manipulators, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 293-301, Milan (March 1980).Google Scholar
  39. 39.
    J. H. Gilby and G. A. Parker, Laser tracking system to measure robot arm performance, Sensor Review 2(4), 180–184 (Oct. 1982).Google Scholar
  40. 40.
    A. Zalucky and D. E. Hardt, Active control of robot structure deflections, Jnl. of Dynamic Systems, Measurement and Control 106(1), 63–69 (Mar. 1984).CrossRefGoogle Scholar
  41. 41.
    B. Scheffer, Geometric control and calibration method of an industrial robot, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf on Industrial Robot Technology, 331-339, Paris (June 1982).Google Scholar
  42. 42.
    P. G. Ranky, Test method and software for robot qualification, The Industrial Robot 11, 111–115 (June 1984).CrossRefGoogle Scholar
  43. 43.
    C. Morgan, The rationalisation of robot testing, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf. on Industrial Robot Technology, 399-406, Milan (March 1980).Google Scholar
  44. 44.
    Anon., Robot calibration and error detection, National Engineering Laboratory Newsletter, (13), 3 (Jan. 1985).Google Scholar
  45. 45.
    R. J. Barrett, Practical robot safety measures within a legal framework, Proc. 6th British Robot Association Annual Conf., 33-39, Birmingham (May 1983).Google Scholar
  46. 46.
    R. R. Schreiber, Robot safety: a shared responsibility, Robotics Today 5(5), 61–65 (Oct. 1983).Google Scholar
  47. 47.
    M. Linger, How to design safety systems for human protection in robot applications, Proc. 14th Intl. Symp. on Industrial Robots and 7th Intl. Conf. on Industrial Robot Technology, 119-129, Gothenburg (Oct. 1984).Google Scholar
  48. 48.
    V. Weatherby and S. A. R. Pike, The safety implications of a new technology, The Industrial Robot 10, 185–188 (Sept. 1983).CrossRefGoogle Scholar
  49. 49.
    Y. Hasegawa and N. Sugimoto, Industrial safety and robots, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf. on Industrial Robot Technology, 9-20, Paris Cune 1982).Google Scholar
  50. 50.
    IBM Robot System /1: AML Concepts and User’s Guide, 1st ed., IBM Corporation, Boca Raton, FL (Sept. 1981).Google Scholar
  51. 51.
    User’s Guide to VAL—A Robot Programming and Control System, Version 12, Unimation Inc. (June 1980).Google Scholar
  52. 52.
    A. P. Ambler, R. J. Popplestone, and K. G. Kempf, An experiment in the off-line programming of robots, Proc. 12th Intl. Symp. on Industrial Robots and 6th Intl. Conf. on Industrial Robot Technology, 491-504, Paris (June 1982).Google Scholar
  53. 53.
    P. Saraga, B. M. Jones, and D. J. Burnett, ROBOS—Towards a robot operating system, Philips Research Laboratories Annual Review 1983, 85-87.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Arthur Browne
    • 1
  • Leonard Norton-Wayne
    • 2
  1. 1.Philips Research LaboratoriesRedhill, SurreyEngland
  2. 2.Leicester PolytechnicLeicesterEngland

Personalised recommendations