Scanning Systems

  • Arthur Browne
  • Leonard Norton-Wayne


The means by which information about a scene is transferred to a processing unit involves, in general, three factors. These are the illumination of the scene, the conversion of the optical pattern into electrical form, and the transfer of the electrical information to the processor. The conversion of the pattern is performed by sampling the brightness or reflectance of individual points in the scene and usually will involve a scanning action either within the optoelectronic converter or before it. In some cases the illumination of the scene is incorporated into the scanning system. In many systems an optical unit, e. g., lenses, will be required to form an image of the scene within the optoelectronic converter. Optical systems may also be required in the illumination of the scene.


Dark Current Deflection Angle Scan System Shift Register Output Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A special issue on cameras, RCA Review, 36(3), 383-651, Sept. (1975).Google Scholar
  2. 2.
    L.M. Biberman, S. Nudelman, eds., Photo Electronic Imaging Devices (2 volumes), Plenum Press, New York (1971).Google Scholar
  3. 3.
    R.E. Flory, Image acquisition technology, Proc. IEEE, 73(4), 613–637, April (1985).CrossRefGoogle Scholar
  4. 4.
    E.L. Dereniak and D.G. Crowe, Optical Radiation Detectors, John Wiley, New York (1984).Google Scholar
  5. 5.
    Resolution in camera tubes, Technical publication M80-0027, Mullard Ltd., London (1980).Google Scholar
  6. 6.
    Mullard Technical Handbook, Book 2, Part 2a, Camera tubes and image inten-sifiers, Mullard Ltd., London.Google Scholar
  7. 7.
    Philips Data Handbook, Electron Tubes, Book T10, Camera tubes and image intensifies.Google Scholar
  8. 8.
    J.H.T. Roosmalen, A new concept for television camera tubes, Philips Tech. Rev. 39(8), 201–210 (1980).Google Scholar
  9. 9.
    Plumbicon camera tubes—recent developments, Technical publication M80-0028, Mullard Ltd, London (1980).Google Scholar
  10. 10.
    CCIR XIIIth Plenary Assembly 1974 XI (Report 624), Characteristics of television systems, International Telecommunication Union, Geneva (1975).Google Scholar
  11. 11.
    B. Grob, Basic Television and Video Systems, McGraw-Hill, New York (1984).Google Scholar
  12. 12.
    A.A.J. Franken, 2/3 inch Plumbicon tube with enhanced performance, Electronic Components and Applications 1(2), 71–76 (Feb. 1979).Google Scholar
  13. 13.
    R. G. Neuhauser, The Saticon photoconduaor, RCA Engineer 27(3), 81–85, (May/June 1982).Google Scholar
  14. 14.
    Y. Talmi, ed. Multichannel Image Detectors, Vol. 2, American Chemical Soc, Washington, D.C. (1983).Google Scholar
  15. 15.
    L. Levi, Applied Optics, Vol. 2, John Wiley, New York (1980).Google Scholar
  16. 16.
    J. Mays, Precision image isocon TV camera, Proc. SPIE 182, Imaging Applications for Automatic Industrial Inspection and Assembly, 83-93 (April 1979).Google Scholar
  17. 17.
    K.N. Prettyjohns, ed, Proc. SPIE 501, State-of-the-Art Imaging Arrays and their Application, San Diego (Aug. 1984).Google Scholar
  18. 18.
    W.F. Kosonocky, Visible and infra-red solid-state sensors, IEEE Conf. Proc. Intl. Electron Devices Meeting, 1-7, Washington (Dec. 1983).Google Scholar
  19. 19.
    B. Kazen (ed.), Advances in Image Pickup and Display, Volumes2–6, Academic Press, New York (1975-1985).Google Scholar
  20. 20.
    W.C. Dash and R. Newman, Intrinsic optical absorption in single-crystal germanium and silicon at 77°K and 300°K, Physical Rev. 99(4), 1151–1155 (Aug. 1955).CrossRefGoogle Scholar
  21. 21.
    D. Lake, Solid state cameras, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 75-83, London (Oct. 1984).Google Scholar
  22. 22.
    F.O. Huck, C.L. Fales, S.K. Park, D.E. Speray, and M.O. Self, Application of information theory to the design of line-scan and sensor-array imaging systems, Optics and Laser Technology 15(1), 21–34 (Feb. 1983).CrossRefGoogle Scholar
  23. 23.
    J.D.E. Benyon and D.R. Lamb, Charge Coupled Devices and Their Application, McGraw-Hill, New York (1980).Google Scholar
  24. 24.
    H-F. Tseng, G.P. Weckler and S. S. Li, Charge transfer and blooming suppression of a charge transfer photodiode area array, IEEE Jnl. Solid-State Circuits SC-15(2), 206–213 (Apr. 1980).CrossRefGoogle Scholar
  25. 25.
    R. Melen and D. Buss, Charge-Coupled Devices: Technology and Applications, IEEE Press, New York (1977).Google Scholar
  26. 26.
    D.F. Barbe, ed., Topics in Applied Physics, Volume 38, Charge-Coupled Devices, Springer-Verlag, Berlin (1980).Google Scholar
  27. 27.
    N. Kadekodi, A. Claproth, T. Vo., A. Anyiwo, L. Sheu, and A. Ibrahim, A 5732-element 1.2″ linear CCD imager, IEEE Intl. Solid-State Circuits Conf., 36-37 (Feb. 1984).Google Scholar
  28. 28.
    G. Boucharlat, J. Chabbal, and J. Chautemps, 256×256 pixel CCD solid state image sensor, Proc. 4th Intl. Conf. on Robot Vision and Sensory Controls, 85-90, London (Oct. 1984).Google Scholar
  29. 29.
    U. Feddern and S. Zur Verth, The frame-transfer sensor, Electronic Components and Applications, 6(4), 223–229 (1984).Google Scholar
  30. 30.
    E. Oda, I. Akiyama, T. Kamata, Y. Ishihara, A. Kohno, K. Arai, and T. Kitagawa, A CCD image sensor with 768×490 pixels, IEEE Intl. Solid-State Circuits Conf., 264-265 (Feb. 1983).Google Scholar
  31. 31.
    H. Heyns and J.G. van Santen, The resistive gate CCD area-image sensor, IEEE Jnl. of Solid State Circuits SC-13(1), 61–65 (Feb. 1978).CrossRefGoogle Scholar
  32. 32.
    D.M. Brown, M. Ghezzo, and P.L. Sargent, High density CID imagers, IEEE Trans. Electron Devices ED25(2), 79–84 (Feb. 1978).CrossRefGoogle Scholar
  33. 33.
    W. Donnelly, Low cost imaging system uses DRAM as photosensor, Electronics Industry 9(11), 9–11 (Nov. 1983).Google Scholar
  34. 34.
    D.G. Whitehead, I. Mitchell, and P.V. Mellor, A low-resolution vision sensor, Jnl. Physics E (GB) 17(8), 653–656 (Aug. 1984).CrossRefGoogle Scholar
  35. 35.
    Proc. SPIE Conf, Laser Scanning and Recording, 498, San Diego (Aug. 1984).Google Scholar
  36. 36.
    J.D. Zook, Light beam deflector performance: a comparative analysis, Applied Optics 13(4), 875–887 (April 1974).CrossRefGoogle Scholar
  37. 37.
    K. Pelsue, Precision, post-objective, two-axis, galvanometer scanning, Proc. SPIE Conf, High Speed Read/Write Techniques for Advanced Printing and Data Handling, 390, 70–78, Los Angeles (Jan. 1983).CrossRefGoogle Scholar
  38. 38.
    W. Reimels, Low wobble resonant scanners, Proc. SPIE Conf, High Speed Read/Write Techniques for Advanced Printing and Data Handling, 390, 58–63, Los Angeles (Jan. 1983).CrossRefGoogle Scholar
  39. 39.
    T.S. Fisli, Multifunction document processor, Proc. SPIE Conf, Advances in Laser Scanning and Recording, 396, 20–27, Geneva (April 1983).CrossRefGoogle Scholar
  40. 40.
    R.N. West, Three laser scanning instruments for automatic surface inspection, Proc. SPIE Conf, Advances in Laser Scanning and Recording, 396, 102–110, Geneva (April 1983).CrossRefGoogle Scholar
  41. 41.
    L.M. Hubby, Optical system design for a laser printing system, Proc. SPIE Conf., High Speed Read/Write Techniques for Advanced Printing and Data Handling, 390, 79–84, Los Angeles (Jan. 1983).CrossRefGoogle Scholar
  42. 42.
    J.C. Urbach, T.S. Fisli, and G.K. Starkweather, Laser scanning for electronic printing, Proc. IEEE 70(6), 597–618 (June 1982).CrossRefGoogle Scholar
  43. 43.
    Proc. SPIE Conf., Advances in Laser Scanning and Recording, 396, Geneva (April 1983).Google Scholar
  44. 44.
    A. Korpel, R Adler, P. Desmares, and W. Watson, A television display using acoustic deflection and modulation of coherent light, Proc. IEEE 54(10), 1429–1437 (Oct. 1966).CrossRefGoogle Scholar
  45. 45.
    H.G. Aas and R.K. Erf, Application of ultrasonic standing waves to the generation of optical-beam scanning, J. Acoust. Soc. Am. 36(10), 1906–1913 (Oct. 1964).CrossRefGoogle Scholar
  46. 46.
    V.J. Fowler and J. Schlafer, A survey of laser beam deflection techniques, Proc. IEEE 54(10), 1437–1444 (Oct. 1966).CrossRefGoogle Scholar
  47. 47.
    I.P. Kaminow, An Introduction to Electro-Optic Devices, Academic Press, New York (1974).Google Scholar
  48. 48.
    W. Kulcke, K. Kosanke, E. Max, MA Habegger, T.J. Harris, and H. Fleisher, Digital light deflectors, Proc. IEEE 54(10), 1419–1429 (Oct. 1966).CrossRefGoogle Scholar
  49. 49.
    H. Meyer, D. Riekmann, K.P. Schmidt, U.J. Schmidt, M. Rahlff, E. Schroder, and W. Thust, Design and performance of a 20-stage digital light beam deflector, Appl. Opt. 11(8), 1732–1736 (Aug. 1972).CrossRefGoogle Scholar
  50. 50.
    LJ. Pinson, Robot vision: an evaluation of imaging sensors, Proc. SPIE Intl. Soc. Optical Engineering (USA) 442, 15–26 (1983).Google Scholar
  51. 51.
    M. Ueda, F. Matsuda, and S. Sako, Color sensing system for an industrial robot, Proc. 10th Intl. Symp. on Industrial Robots and 5th Intl. Conf on Industrial Robot Technology, 153-162, Milan (March 1980).Google Scholar
  52. 52.
    M. J. Chen and D. L. Milgram, Binary color vision, Proc. 2nd Intl. Conf. on Robot Vision and Sensory Controls, 293-306, Stuttgart (Nov. 1982).Google Scholar
  53. 53.
    R.A. Jarvis, Expedient 3-D robot colour vision, Proc. 2nd Intl. Conf on Robot Vision and Sensory Controls, 327-328, Stuttgart (Nov. 1982).Google Scholar
  54. 54.
    D.M. Connah and C.A. Fishbourne, The use of colour information in industrial scene analysis, Proc. 1st Intl. Conf. on Robot Vision and Sensory Controls, 340-347, Stratford-upon-Avon (April 1981).Google Scholar
  55. 55.
    K. Ishikawa, S. Hashimoto, Y. Sone, and T. Kunii, Color reproduction of a single chip color camera with a frame transfer CCD, IEEE Jnl. of Solid State Circuits SC-16(2), 101–103 (April 1981).CrossRefGoogle Scholar
  56. 56.
    T. Watanabe, K. Hashiguchi, T. Yamano, and J-I Nakai, A CCD color signal separation IC for single-chip color imagers, IEEE Jnl. Solid-State Circuits SC-19(1), 49–54 (Feb. 1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Arthur Browne
    • 1
  • Leonard Norton-Wayne
    • 2
  1. 1.Philips Research LaboratoriesRedhill, SurreyEngland
  2. 2.Leicester PolytechnicLeicesterEngland

Personalised recommendations