Skip to main content

The Water Structure in Membrane Models Studied by Nuclear Magnetic Resonance and Infrared Spectroscopies

  • Chapter
Membranes and Membrane Processes

Abstract

The arrangement of lipids, proteins and water in a membrane is intrinsically dynamic, changing to suit its instantaneous functional needs: therefore some insight on the control mechanisms of membrane functions can be obtained from the comprehension of the dynamic properties of its components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Marshall, “Biophysical Chemistry,” J. Wiley & Sons, New York p.384 (1978).

    Google Scholar 

  2. U. P. Fringely, and Hs. H. Günthard, Infrared membrane spectroscopy, in: “Membrane Spectroscopy,” E. Grell, ed., Springer-Verlag, Berlin (1981).

    Google Scholar 

  3. S. I. Chan, D. F. Bocian, and N. O. Petersen, Nuclear magnetic resonance studies of the phospholipid bilayer membrane, in: “Membrane Spectroscopy,” E. Grell, ed., Springer-Verlag, Berlin (1981).

    Google Scholar 

  4. E. G. Finer and A. Darke, Phospholipid hydration studied by deuteron magnetic resonance spectroscopy, Chem.Phys.Lipids, 12:1 (1974).

    Article  CAS  Google Scholar 

  5. C. A. Boicelli, F. Conti, M. Giomini, and A. M. Giuliani, Water organization in reversed micelles, in: “Physical Methods on Biological Membranes and their Models,” F. Conti, ed., NATO-ASI, A Series, Plenum Publ.Corp., New York (1984), in the press.

    Google Scholar 

  6. C. A. Boicelli, M. Giomini, and A. M. Giuliani, Infrared characterization of different water types inside reverse micelles, Appl.Spectry, 38:537 (1984).

    Article  CAS  Google Scholar 

  7. E. G. Finer, Interpretation of deuteron magnetic resonance spectro-scopic studies of the hydration of macromolecules, J.Chem.Soc. Faraday Trans.II, 69:1590 (1973).

    Article  CAS  Google Scholar 

  8. C. A. Boicelli, F. Conti, M. Giomini, and A. M. Giuliani, Interactions of small molecules with phospholipids in inverted micelles, Chem.Phys.Lett., 89:490 (1982).

    Article  CAS  Google Scholar 

  9. C. A. Boicelli, F. Conti, M. Giomini, and A. M. Giuliani, The influence of phosphate buffers on the 31P longitudinal relaxation time in inverted micelles, Spectrochim.Acta, 38A:299 (1982).

    CAS  Google Scholar 

  10. S. G. A. McLaughlin, G. Szabo, and G. Eisenman, Divalent ions and the surface potential of charged phospholipid membranes, J.Gen. Physiol., 58:667 (1971).

    Article  CAS  Google Scholar 

  11. S. McLaughlin and H. Harary, The Hydrophobie adsorption of charged molecules to bilayer membranes; a test for the applicability of Stern equation, Biochem., 15:1941 (1976).

    Article  CAS  Google Scholar 

  12. A. McLaughlin, C. Grathwohl, and S. McLaughlin, The adsorption of divalent cations to phosphatidylcholine bilayer membranes, Biochim.Biophys.Acta, 513:338 (1978).

    Article  CAS  Google Scholar 

  13. K. H. Stern and E. S. Amis, Ionic Size, Chem.Revs., 59:1 (1959).

    Article  CAS  Google Scholar 

  14. J. G. Stollery and W. J. Vail, Interactions of Divalent cations or basic proteins with phosphatidylethanolamine vesicles, Biochem. Biophys.Acta, 471:372 (1977).

    Article  CAS  Google Scholar 

  15. H. Akutsu and J. Seelig, Interaction of metal ions with phosphatidylcholine bilayer membranes, Biochem., 20:7366 (1981).

    Article  CAS  Google Scholar 

  16. H. F. Hahn, J. M. Collins, and L. J. Lis, Anion influence on the binding of divalent cations to phosphatidylcholine, Biochim. Biophys.Acta, 736:235 (1983).

    Article  CAS  Google Scholar 

  17. O. Söderman, G. Arvidson, G. Lindblom, and K. Fontell, The interactions between Monovalent ions and phosphatidylcholines in aqueous bilayers, Eur.J.Biochem., 134:309 (1983).

    Article  Google Scholar 

  18. C. G. Brouillette, J. P. Segrest, T. C. Ng, and J. L. Jones, Minimal size phosphatidylcholine vesicles: effects of radius of curvature on head group packing and conformation, Biochem., 21:4569 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boicelli, C.A., Giomini, M., Giuliani, A.M. (1986). The Water Structure in Membrane Models Studied by Nuclear Magnetic Resonance and Infrared Spectroscopies. In: Drioli, E., Nakagaki, M. (eds) Membranes and Membrane Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2019-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2019-5_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2021-8

  • Online ISBN: 978-1-4899-2019-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics