Advertisement

The Gene pp 93-143 | Cite as

The 5 S Ribosomal and Other Small RNAs

  • Lawrence S. Dillon

Abstract

The second large category of substances transcribed in eukaryotes by DNA-dependent RNA polymerase III, in spite of the vast literature embracing it, is not nearly so satisfactory for discussions of gene structure as are the tRNA genes. Not that there is any paucity of sequencing studies; quite to the contrary, 5 S rRNA primary structures are probably more abundantly established than any other single species of macromolecule. More than 36 have been determined from eubacterial sources, 8 from archaebacterial ones, nearly 125 from eukaryotic cytoplasm, and 7 from eukaryotic organelles (Erdmann et al., 1984). Their lack of favorableness stems from two factors. The first of these, the cotranscription in prokaryotes of 5 S rRNA genes with the minor and major rRNA species, restricts the effectiveness of the comparative approach to transcription promoters nearly entirely to eukaryotes. The second factor is that, despite the numerous sequence studies, the genes of 5 S rRNAs remain relatively poorly explored, for the great majority of research has focused on the structure of the transcription product, not upon the gene itself.

Keywords

Small RNAs tRNA Gene Internal Promoter Nucleotide Residue Dyad Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akusjärvi, G., Mathews, M. B., Anderson, P., Vennström, B., and Pettersson, U. 1980. Structure of genes for virus-associated RNA’ and RNA1 of adenovirus type 2.Proc. Natl. Acad. Sci. USA 77: 2424–2428.PubMedCrossRefGoogle Scholar
  2. Allan, M., and Paul, J. 1984. Transcriptionin vivo of anAlu family member upstream from the human e-globin gene.Nucleic Acids Res.12: 1193–1200.PubMedCrossRefGoogle Scholar
  3. Allan, M., Lanyon, W. G., and Paul, J. 1983. Multiple origins of transcription in the 4.5 kb upstream of the eglobin gene.Cell 35: 187–197.PubMedCrossRefGoogle Scholar
  4. Aoyama, K., Hidaka, S., Tanaka, T., and Ishikawa, K. 1982. The nucleotide sequence of 5S RNA from rat liver ribosomes.J. Biochem. 91: 363–367.PubMedGoogle Scholar
  5. Balmain, A., Krumlauf, R., Vass, J. K., and Birnie, G. D. 1982. Cloning and characterisation of the abundant cytoplasmic 7S RNA from mouse cells.Nucleic Acids Res.10: 4259–4277.PubMedCrossRefGoogle Scholar
  6. Baralle, F. E., Shoulders, C. C., Goodbourn, S., Jeffreys, A., and Proudfoot, N. J. 1980. The 5’ flanking region of human e-globin gene.Nucleic Acids Res.8: 4393–4404.PubMedCrossRefGoogle Scholar
  7. Benhamou, J., Jourdan, R., and Jordan, B. R. 1977. Sequence ofDrosophila 55 RNA synthesized by cultured cells and by the insect at different developmental stages.J. Mol. Evol. 9: 279–298.PubMedCrossRefGoogle Scholar
  8. Bhat, R. A., Metz, B., and Thimmappaya, B. 1983. Organization of the noncontiguous promoter components of adenovirus VAI RNA gene is strikingly similar to that of eukaryotic transfer RNA genes.Mol. Cell. Biol. 3: 1996–2005.PubMedGoogle Scholar
  9. Bogenhagen, D. F. 1985. The intragenic control region of theXenopus 5 S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation.J. Biol. Chem. 260: 6466–6471.PubMedGoogle Scholar
  10. Brennicke, A., Möller, S., and Blanz, P. A. 1985. The 18S and 5S ribosomal RNA genes inOenothera mitochondria: Sequence rearrangements in the 18S and 5S rRNA genes of higher plants.Mol. Gen. Genet. 198: 404–410.CrossRefGoogle Scholar
  11. Brosius, J., Dull, T. J., Sleeter, D. D., and Noller, H. F. 1981. Gene organization and primary structure of a ribosomal RNA operon ofEscherichia coli. J. Mol. Biol.148: 107–127.CrossRefGoogle Scholar
  12. Brown, D. D., Wensink, P. C., and Jordan, E. 1971. Purification and some characteristics of 5S DNA fromXenopus laevis. Proc. Natl. Acad. Sci. USA 68: 3175–3179.CrossRefGoogle Scholar
  13. Brown, D. D., Carroll, D., and Brown, R. D. 1977. The isolation and characterization of a second oocyte 5S DNA fromXenopus laevis. Cell 12: 1045–1056.CrossRefGoogle Scholar
  14. Brownlee, G. G., Sanger, F., and Bartell, B. C. 1968. The sequence of 5S ribosomal ribonucleic acid.J. Mol. Biol. 34: 379–412.PubMedCrossRefGoogle Scholar
  15. Brownlee, G. G., Cartwright, E. M., and Brown, D. D. 1974. Sequence studies of the 5S DNA ofXenopus laevis. J. Mol. Biol.89: 703–718.CrossRefGoogle Scholar
  16. Burke, D. J., Schaack, J., Sharp, S., and Söll, D. 1983. Partial purification ofDrosophila Kc cell RNA polymerase III transcription components. Evidence for shared 5S RNA and tRNA gene factors.J. Biol. Chem. 258: 15224–15231.PubMedGoogle Scholar
  17. Butler, M. H., Wall, S. M., Luehrsen, K. R., Fox, G. E., and Hecht, R. M. 1981. Molecular relationships between closely related strains and species of nematodes.J. Mol. Evol. 18: 18–23.PubMedCrossRefGoogle Scholar
  18. Calabretta, B., Robberson, D. L., Maizel, A. L., and Saunders, G. F. 1981. mRNA in human cells contains sequences complementary to theAlu family of repeated DNA.Proc. Natl. Acad. Sci. USA 78: 6003–6007.Google Scholar
  19. Carrara, G., Di Segni, G., Otsuka, A., and Tocchini-Valentini, G. P. 1981. Deletion of the 3’ half of the yeast tRNAli`° gene does not abolish promoter functionin vitro. Cell 27: 371–379.Google Scholar
  20. Chao, S., Sederoff, R. R., and Levings, C. S. 1983. Partial sequence analysis of the 5S to 18S rRNA gene region of the maize mitochondrial genome.Plant Physiol.71: 190–193.PubMedCrossRefGoogle Scholar
  21. Cheng, J. F., Printz, R., Callaghan, T., Shuey, D., and Hardison, R. C. 1984. The rabbit C family of short, interspersed repeats. Nucleotide sequence determination and transcriptional analysis.J. Mol. Biol. 176: 120.CrossRefGoogle Scholar
  22. Childs, G., Maxson, R., Cohn, R. H., and Kedes, L. 1981. Orphons: Dispersed genetic elements derived from tandemly repetitive genes of eucaryotes.Cell 23: 651–663.PubMedCrossRefGoogle Scholar
  23. Ciliberto, G., Castagnoli, L., Melton, D. A., and Cortese, R. 1982a. Promoter of a eukaryotic tRNA Pro gene is composed of three noncontiguous regions.Proc. Natl. Acad. Sci. USA 79: 1195–1199.PubMedCrossRefGoogle Scholar
  24. Ciliberto, G., Traboni, G., and Cortese, R. 1982b. Relationship between the two components of the split promoter of eukaryotic tRNA genes.Proc. Natl. Acad. Sci. USA 79: 1921–1925.PubMedCrossRefGoogle Scholar
  25. Ciliberto, G., Raugei, G., Constanzo, F., Dente, L., and Cortese, R. 1983. Common and interchangeable elements in the promoters of genes transcribed by RNA polymerase III.Cell 32: 725–733.PubMedCrossRefGoogle Scholar
  26. Coggins, L. W., Grindlay, G. J., Vass, J. K., Slater, A. A., Montague, P., Stinson, M. A., and Paul, J. 1980. Repetitive DNA sequences near three human (3-type globin genes.Nucleic Acids Res.8: 3319–3334.PubMedCrossRefGoogle Scholar
  27. Corry, M. J., Payne, P. I., and Dyer, T. A. 1974. The nucleotide sequence of 5S rRNA from the blue-green algaAnacystis nidulans. FEBS Lett.46: 63–66.CrossRefGoogle Scholar
  28. Daniels, C. J., Hofman, J. D., MacWilliam, J. G., Doolittle, W. F., Woese, C. R., Luehrsen, K. R., and Fox, G. E. 1985. Sequence of 5S ribosomal RNA gene regions and their products in the archaebacteriumHalobacterium volcanii. Mol. Gen. Genet.198: 270–274.CrossRefGoogle Scholar
  29. Darlix, J. L., and Rochaix, J. D. 1981. Nucleotide sequence and structure of cytoplasmic 5S RNA and 5.8S RNA ofChlamydomonas reinhardii. Nucleic Acids Res.9: 1291–1299.CrossRefGoogle Scholar
  30. DeFranco, D., Schmidt, O., and Söll, D. 1980. Two control regions for eukaryotic tRNA gene transcription.Proc. Natl. Acad. Sci. USA 77: 3365–3368.PubMedCrossRefGoogle Scholar
  31. Deininger, P. L., Jolly, D. J., Rubin, C. M., Friedmann, T., and Schmid, C. W. 1981. Base sequence studies of 300 nucleotide renatured repeated DNA clones.J. Mol. Biol. 151: 17–33.PubMedCrossRefGoogle Scholar
  32. Delihas, N., and Andersen, J. 1982. Generalized structures of the 5S ribosomal RNAs.Nucleic Acids Res. 10: 7323–7344.PubMedCrossRefGoogle Scholar
  33. Delihas, N., Andersen, J., Sprouse, H. M., Kashdan, M., and Dudock, B. 1981a. The nucleotide sequence of spinach cytoplasmic 5S ribosomal RNA.J. Biol. Chem. 256: 7515–7517.PubMedGoogle Scholar
  34. Delihas, N., Andersen, J., Sprouse, H. M., and Dudock, B. 1981b. The nucleotide sequence of the chloroplast 5S ribosomal RNA from spinach.Nucleic Acids Res.9: 2801–2805.PubMedCrossRefGoogle Scholar
  35. Delihas, N., Andersen, J., Andresini, W., Kaufman, S., and Lyman, H. 1981c. The 5S ribosomal RNA ofEuglena gracilis cytoplasmic ribosomes is closely homologous to the 5S RNA of the trypanosomatid protozoa.Nucleic Acids Res.9: 6627–6633.PubMedCrossRefGoogle Scholar
  36. Rey, F. J., Donahue, T. F., and Fink, G. R. 1982.Sigma, a repetitive element found adjacent to tRNA genes of yeast.Proc. Natl. Acad. Sci. USA 79: 4138–4142.CrossRefGoogle Scholar
  37. Denis, H., and Mairy, M. 1972. Recherches biochimiques sur l’oogenèse. II. Distribution intracellulaire du RNA dans les petits oocytes duXenpus laevis. Eur. J. Biochem.25: 524–534.CrossRefGoogle Scholar
  38. Denis, H., and Wegnez, M. 1973. Recherches biochemiques sur l’oogenèse. 7. Synthèse et maturation du RNA 5S dans les petits oocytes deXenopus laevis. Biochimie 55: 437–1151.Google Scholar
  39. Deno, H., and Sugiura, M. 1984. Chloroplast tRNAGrr gene contains a long intron in the D stem: Nucleotide sequences of tobacco chloroplast genes for tRNAGIY (UCC) and tRNAArg (UCU).Proc. Natl. Acad. Sci. USA 81: 405–408.PubMedCrossRefGoogle Scholar
  40. Di Giovanni, L., Haynes, S. R., Misra, R., and Jelinek, W. R. 1983.Kpn I family of long-dispersed repeated DNA sequences of man: Evidence for entry into genomic DNA of DNA copies of poly A-terminatedKpn I RNAs.Proc. Natl. Acad. Sci. USA 80: 6533–6537.Google Scholar
  41. Dillon, L. S. 1962. Comparative cytology and the evolution of life.Evolution 16: 102–117.CrossRefGoogle Scholar
  42. Dillon, L. S. 1963. A reclassification of the major groups of organisms based upon comparative cytology.Syst. Zool. 12: 71–82.CrossRefGoogle Scholar
  43. Dillon, L. S. 1981.Ultrastructure, Macromolecules, and Evolution, New York, Plenum Press. Dillon, L. S. 1983.The Inconstant Gene, New York, Plenum Press.Google Scholar
  44. Dingermann, T., Burke, D. J., Sharp, S., Schaack, J., and Söll, D. 1982. The 5’ flanking sequences ofDrosophila tRNAArg genes control theirin vitro transcription in aDrosophila cell extract.J. Biol. Chem. 257: 14738–14744.PubMedGoogle Scholar
  45. Douglas, S. E., and Doolittle, W. R. 1984. Nucleotide sequence of the 5S rRNA gene and flanking regions in the cyano-bacterium,Anacystis nidulans. FEBS Lett. 166: 307–310.CrossRefGoogle Scholar
  46. Duester, G. L., and Holmes, W. M. 1980. The distal end of the ribosomal RNA operonrrnD ofEscherichia coli contains a tRNA i hr gene, two 5S rRNA genes and a transcription terminator.Nucleic Acids Res.8: 3793–3807.PubMedCrossRefGoogle Scholar
  47. Duncan, C. H., Biro, P. A., Choudary, P. V., Elder, J. T., Wang, R. R. C., Forget, B. G., deRiel, J. K., and Weissman, S. M. 1979. RNA polymerase III transcriptional units are interspersed among human non-aglobin genes.Proc. Natl. Acad. Sci. USA 76: 5095–5099.PubMedCrossRefGoogle Scholar
  48. Duncan, C. H., Jagadeesevaran, P., Wang, R. R. C., and Weissman, S. M. 1981. Structural analysis of templates and polymerase III transcripts ofAlu family sequences interspersed among the human ß-like globin genes.Gene 13: 185–196.PubMedCrossRefGoogle Scholar
  49. Dyer, T. A., and Bowman, C. M. 1979. Nucleotide sequences of chloroplast 5S ribosomal ribonucleic acid in flowering plants.Biochem. J. 183: 595–604.PubMedGoogle Scholar
  50. Elder, J. T., Pan, J., Duncan, C. H., and Weissman, S. M. 1981. Transcriptional analysis of interspersed repetitive polymerase III transcription units in human DNA.Nucleic Acids Res.9: 1171–1189.PubMedCrossRefGoogle Scholar
  51. Engelke, D. R., Ng, S. Y., Shastry, B. S., and Roeder, R. G. 1980. Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes.Cell 19: 717–728.PubMedCrossRefGoogle Scholar
  52. Erdmann, V. A., Huysmans, E., Vandenberghe, A., and De Wachter, R. 1983. Collection of published 5S and 5.8S ribosomal RNA sequences.Nuclei Acids Res.11: r107-r133.CrossRefGoogle Scholar
  53. Erdmann, V. A., Wolters, J., Huysmans, E., Vandenberghe, A., and Wachter, R. 1984. Collection of published 5S and 5.8S ribosomal RNA sequences.Nucleic Acids Res.12 (suppl.): r133-r166.PubMedCrossRefGoogle Scholar
  54. Fedoroff, N. V., and Brown, D. D. 1977. The nucleotide sequence of the repeating unit in the oocyte 5S ribosomal DNA ofXenopus laevis. Cold Spring Harbor Symp. Quant. Biol.42: 1195–1200.CrossRefGoogle Scholar
  55. Fedoroff, N. V., and Brown, D. D. 1978. The nucleotide sequence of oocyte 5S DNA inXenopus laevis. I. The AT-rich spaces.Cell 13: 701–716.PubMedCrossRefGoogle Scholar
  56. Fischel, J. L., and Ebel, J. P. 1975. Sequence studies on the 5S RNA ofProteus vulgaris: Comparison with the 5S RNA ofEscherichia coli. Biochimie 57: 899–904.Google Scholar
  57. Folk, W. R., Hofstetter, H., and Birnstiel, M. L. 1982. Some bacterial tRNA genes are transcribed by eukaryotic RNA polymerase III.Nucleic Acids Res.10: 7153–7163.PubMedCrossRefGoogle Scholar
  58. Ford, P. J. 1971. Non-coordinated accumulation and synthesis of 55 ribonucleic acid by ovaries ofXenopus laevis. Nature (London) 233: 561–564.CrossRefGoogle Scholar
  59. Ford, P. J., and Brown, R. D. 1976. Sequences of 55 ribosomal RNA fromXenopus mülleri and the evolution of 55 gene-coding sequences.Cell 8: 485–493.PubMedCrossRefGoogle Scholar
  60. Forget, B. G., and Weissman, S. M. 1969. Nucleotide sequence of KB cell 5S RNA.Science 158:1695–1700. Fournier, A., Guérin, M. A., Coriet, J., and Clarkson, S. G. 1984. Structure andin vitro transcription of a glycine tRNA gene fromBombyx mori. EMBO J. 3: 1547–1552.Google Scholar
  61. Fowlkes, D. M., and Shenk, T. 1980. Transcriptional control regions of the adenovirus VAI RNA gene.Cell 22: 405–413.PubMedCrossRefGoogle Scholar
  62. Fox, G. E., and Woese, C. R. 1975. 5S RNA secondary structure.Nature (London) 256: 505–507.Google Scholar
  63. Fox, G. E., Luehrsen, K. R., and Woese, C. R. 1982. Archaebacterial 5S ribosomal RNA.Zentrbl. Bakteriol. Hyg. I Abt. Orig. C3: 330–345.Google Scholar
  64. Fritsch, E. F., Lawn, R. M., and Maniatis, T., 1980. Molecular cloning and characterization of the 3-like globin gene cluster. Cell19: 959–972.PubMedCrossRefGoogle Scholar
  65. Fuhrman, S. A., Deininger, P. L., LaPorte, P., Friedmann, T., and Geiduschek, E. P. 1981. Analysis of transcription of the humanAlu family ubiquitous repeating element by eukaryotic polymerase III.Nucleic Acids Res.9: 6439–6456.PubMedCrossRefGoogle Scholar
  66. Galli, G., Hofstetter, H., and Bimstiel, M. L. 1981. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements.Nature (London) 294: 626–631.CrossRefGoogle Scholar
  67. Gamulin, V., Mao, J. I., Appel, B., Sumner-Smith, M., Yamao, F., and Söll, D. 1983. SixSchizosaccharomyces pombe tRNA genes including a gene for a tRNALYs with an intervening sequence which cannot base-pair with the anticodon.Nucleic Acids Res.11: 8537–8546.PubMedCrossRefGoogle Scholar
  68. Garber, R. L., and Gage, L. P. 1979. Transcription of a clonedBombyx mori tRNATa gene: Nucleotide sequence of the tRNA precursor and its processingin vitro. Cell 18: 817–828.Google Scholar
  69. Goldsbrough, P. B., Ellis, T. H. N., and Lomonossoff, G. P. 1982. Sequence variation and methylation of the flax 5S RNA genes.Nucleic Acids Res.10: 4501–4514.PubMedCrossRefGoogle Scholar
  70. Gottesfeld, J. M., Andrews, D. L., and Hoch, S. O. 1984. Association of an RNA polymerase III transcription factor with a ribonucleoprotein complex recognized by autoimmune sera.Nucleic Acids Res.12: 3185–3200.PubMedCrossRefGoogle Scholar
  71. Gray, M. W., and Spencer, D. F. 1981. Is wheat mitochondrial 5S ribosomal RNA prokaryotic in nature?Nucleic Acids Res.9: 3523–3529.PubMedCrossRefGoogle Scholar
  72. Gruissem, W., Kotzerke, M., and Seifart, H. K. 1981. Transcription of the cloned genes for ribosomal 5-S RNA in a system reconstitutedin vitro from HeLa cells.Eur. J. Biochem. 117: 407–415.PubMedCrossRefGoogle Scholar
  73. Gruissem, W., Greenberg, B. M., Zurawski, G., Prescott, D. M., and Hallick, R. B. 1983. Biosynthesis of chloroplast transfer RNA in a spinach chloroplast transcription system.Cell 35: 815–828.PubMedCrossRefGoogle Scholar
  74. Guilfoyle, R., and Weinmann, R. 1981. Control region for adenovirus VA RNA transcription.Proc. Natl. Acad. Sci. USA 78: 3378–3382.PubMedCrossRefGoogle Scholar
  75. Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 1983. Cooperative model for the binding ofXenopus transcription factor A to the 5S RNA gene.Proc. Natl. Acad. Sci. USA 80: 2142–2145.PubMedCrossRefGoogle Scholar
  76. Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 1984a. DNA unwinding ability ofXenopus transcription factor A.Nucleic Acids Res.12: 1265–1276.PubMedCrossRefGoogle Scholar
  77. Hanas, J. S., Bogenhagen, D. F., and Wu, C. W. 19846. Binding ofXenopus transcription factor A to 5S RNA and to single-stranded DNA.Nucleic Acids Res.12: 2745–2758.Google Scholar
  78. Haynes, S. R., and Jelinek, W. R. 1981. Low molecular weight RNAs transcribedin vitro by RNA polymerase III from Alu-type dispersed repeats in Chinese hamster DNA are also foundin vivo. Proc. Natl. Acad. Sci. USA 78: 6130–6134.CrossRefGoogle Scholar
  79. Haynes, S. R., Toomey, T. P., Leinwand, L., and Jelinek, W. R. 1981. The Chinese hamster A/u-equivalent sequence: A conserved, highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggesting a transposable element.Mol. Cell. Biol. 1: 573–583.PubMedGoogle Scholar
  80. Hellung-Larsen, P., Kulamowica, I., and Frederiksen, S. 1980. Synthesis of low molecular weight RNA components in cells with a temperature-sensitive polymerase II.Biochim. Biophys. Acta 609: 201–204.PubMedCrossRefGoogle Scholar
  81. Henrick, J. P., Wolin, S. L., Rinke, J., Lerner, M. R., and Steitz, J. A. 1981. Ro small cytoplasmic ribonucleoproteins are a subclass of La ribonucleoproteins: Further characterization of the Ro and La small ribonucleoproteins from uninfected mammalian cells.Mol. Cell. Biol. 1: 1138–1149.Google Scholar
  82. Hinnebusch, A. G., Klotz, L. C., Blanken, R. L., and Loeblish, A. R. 1981. An evaluation of the phylogenetic position of the dinoflagellateCrypthecondinium cohnii based on 5S rRNA characterization.J. Mol. Evol. 17: 334–347.PubMedCrossRefGoogle Scholar
  83. Hofstetter, H., Kressmann, A., and Birnstiel, M. L. 1981. A split promoter for a eukaryotic tRNA gene.Cell 24: 573–585.PubMedCrossRefGoogle Scholar
  84. Hori, H., and Osawa, S. 1979. Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species.Proc. Natl. Acad. Sci. USA 76: 381–385.PubMedCrossRefGoogle Scholar
  85. Hori, H., Osawa, S., Murao, K., and Ishikura, H. 1980. The nucleotide sequence of 5S ribosomal RNA from Micrococcus lysodeikticus.Nucleic Acids Res.8: 5423–5426.PubMedCrossRefGoogle Scholar
  86. Hori, H., Lim, B. L., and Osawa, S. 1985. Evolution of green plants as deduced from 5S rRNA sequences.Proc. Natl. Acad. Sci. USA 82: 820–823.PubMedCrossRefGoogle Scholar
  87. Jacq, B., Jourdan, R., and Jordan, B. R. 1977. Structure and processing of precursor 5S RNA in Drosophila melanogaster.J. Mol. Biol. 117: 785–795.PubMedCrossRefGoogle Scholar
  88. Jelinek, W. R., and Schmid, C. W. 1982. Repetitive sequences in eukaryotic DNA and their expression.Annu. Rev. Biochem. 51: 813–844.PubMedCrossRefGoogle Scholar
  89. Jelinek, W. R., Toomey, T. P., Leinwand, L., et al. 1980. Ubiquitous, interspersed repeated sequences in mammalian genomes.Proc. Natl. Acad. Sci. USA 77: 1398–1402.PubMedCrossRefGoogle Scholar
  90. Johnson, J. D., and Raymond, G. J. 1984. Three regions of a yeast tRNA!“ gene promote RNA polymerase III transcription.J. Biol. Chem. 259: 5090–5094.Google Scholar
  91. Jordan, B. R., Galling, G., and Jourdan, R. 1974. Sequence and conformation of 5S RNA fromChlorella cytoplasmic ribosomes: Comparison with other 5S RNA molecules. J. Mol. Biol.87: 205–225.PubMedCrossRefGoogle Scholar
  92. Kato, N., Hoshino, H., and Harada, F. 1982. Nucleotide sequence of 4.5S RNA (C8 or hY5) from the HeLacells. Biochem. Biophys. Res. Commun.108: 363–370.PubMedCrossRefGoogle Scholar
  93. Katze, M. G., Chen, Y. T., and Krug, R. M. 1984. Nuclear-cytoplasmic transport and VAI RNA-independent translation of influenza viral messenger RNAs in late adenovirus-infected cells.Cell 37: 483–490.PubMedCrossRefGoogle Scholar
  94. Keus, R. J. A., Roovers, D. J., Dekker, A. F., and Groot, G. S. P. 1983. The nucleotide sequence of the 4.5S and 5S rRNA genes and flanking regions fromSpirodela oligorhiza chloroplasts.Nucleic Acids Res.11: 3405–3410.PubMedCrossRefGoogle Scholar
  95. Kingston, R. E., and Chamberlin, M. J. 1981. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli.Cell 27: 523–531.Google Scholar
  96. Kjems, J., Olesen, S. O., and Garrett, R. A. 1985. Comparison of eubacterial and eukaryotic 5S RNA structures: A chemical modification study.Biochemistry 24: 241–250.PubMedCrossRefGoogle Scholar
  97. Kmiya, H., and Takemura, S. 1981. The nucleotide sequence of 5S ribosomal RNA from slime mold Physarum polycephalum.J. Biochem. 90: 1577–1581.Google Scholar
  98. Korn, L. J., and Brown, D. D. 1978. Nucleotide sequences of Xenopus borealis oocyte 5S DNA: Comparison of sequences that flank several related eucaryotic genes. Cell15: 1145–1156.PubMedCrossRefGoogle Scholar
  99. Koski, R. A., Allison, D. S., Worthington, M., and Hall, B. D. 1982. Anin vitro RNA polymerase III system fromS. cerevisiae: Effects of deletions and point mutations uponSUP4 gene transcription.Nucleic Acids Res.10: 8127–8143.PubMedCrossRefGoogle Scholar
  100. Krayev, A. S., Kramerov, D. A., Skryabin, K. G., Ryskov, A. P., Bayev, A. A., and Georgiev, G. P. 1980. The nucleotide sequence of the ubiquitous repetitive DNA sequence B 1 complementary to the most abundant class of mouse fold-back RNA.Nucleic Acids Res.8: 1201–1215.PubMedCrossRefGoogle Scholar
  101. Krayev, A. S., Markusheva, T. V., Kramerov, D. A., Ryskov, A. P., Skryabin, K. G., Bayev, A. A., and Georgiev, G. P. 1982. Ubiquitous transposon-like repeats B 1 and B2 of the mouse genome: B2 sequencing.Nucleic Acids Res.10: 7461–7475.PubMedCrossRefGoogle Scholar
  102. Kressmann, A., Hofstetter, H., Di Capua, E., Grosschedl, R., and Birnstiel, M. L. 1979. A tRNA gene ofXenopus laevis contains at least two sites promoting transcription.Nucleic Acids Res.7: 1749–1763.PubMedCrossRefGoogle Scholar
  103. Krolewski, J. J., Schindler, C. W., and Rush, M. G. 1984. Structure of extrachromosomal circular DNAs containing both theAlu family of dispersed repetitive sequences and other regions of chromosomal DNA.J. Mol. Biol. 174: 41–54.PubMedCrossRefGoogle Scholar
  104. Kumagai, I., Digweed, M., Erdmann, V. A., Watanabe, K., and Oshima, T. 1981. The nucleotide sequence of 5S rRNA from an extreme thermophile,Thermus thermophilus HB8.Nucleic Acids Res.9: 5159–5162.PubMedCrossRefGoogle Scholar
  105. Kumazaki, T., Hori, H., Osawa, S., Mita, T., and Higashinakagawa, T. 1982. The nucleotide sequences of 5SrRNAs from three ciliated protozoa. Nucleic Acids Res.10: 4409–4412.PubMedCrossRefGoogle Scholar
  106. Lamond, A. I., and Travers, A. A. 1983. Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature (London)305: 248–250.CrossRefGoogle Scholar
  107. Laski, F. A., Belagaje, R., RajBhandary, U. L., and Sharp, P. A. 1982. An amber suppressor tRNA gene derived by site-specific mutagenesis: Cloning and function in mammalian cells.Proc. Natl. Acad. Sci. USA 79: 5813–5817.PubMedCrossRefGoogle Scholar
  108. Lassar, A. B., Martin, P. L., and Roeder, R. G. 1983. Transcription of class III genes: Formation of preinitiation complexes.Science 222: 740–748.PubMedCrossRefGoogle Scholar
  109. Lenardo, M. J., Dorfman, D. M., Reddy, L. V., and Donelson, J. E. 1985. Characterization of theTrypanosoma brucei 5S RNA gene and transcript: The 5S rRNA is a spliced-leader-independent species.Gene 35: 131–141.PubMedCrossRefGoogle Scholar
  110. Lerner, M. R., and Steitz, J. A. 1981. Snurps and Scyrps.Cell 25: 298–300.PubMedCrossRefGoogle Scholar
  111. Lerner, M. R., Andrews, N. C., Miller, G., and Steitz, J. A. 1981. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus.Proc. Natl. Acad. Sci. USA 78: 805–809.PubMedCrossRefGoogle Scholar
  112. Li, W., Reddy, R., Henning, D., Epstein, P., and Busch, H. 1982. Nucleotide sequence of 7S RNA: Homology toAlu DNA and 4.5S DNA.J. Biol. Chem. 257: 5136–5142.PubMedGoogle Scholar
  113. Lu, A. L., Steege, D. A., and Stafford, D. W. 1980. Nucleotide sequence of a 5S ribosomal RNA gene in the sea urchinLytechinus variegatus. Nucleic Acids Res.8: 1839–1853.CrossRefGoogle Scholar
  114. Luehrsen, K. R., and Fox, G. E. 1981. Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA.Proc. Natl. Acad. Sci. USA 78: 2150–2154.PubMedCrossRefGoogle Scholar
  115. Luehrsen, K. R., Fox, G. E., and Woese, C. R. 1980. The sequence ofTetrahymena thermophila 5S ribosomal ribonucleic acid.Curr. Microbiol. 4: 123–126.CrossRefGoogle Scholar
  116. Luehrsen, K. R., Fox, G. E., Kilpatrick, M. W., Walker, R. T., Domdey, H., Krupp, G., and Gross, H. J. 1981. The nucleotide sequence of the 5S rRNA from the archaebacteriumThermoplasma acidophilum. Nucleic Acids Res.9: 965–970.CrossRefGoogle Scholar
  117. Luoma, G. A., and Marshall, A. G. 1978a. Laser Raman evidence for a new cloverleaf secondary structure for eucaryotic 5S RNA.J. Mol. Biol. 125: 95–105.PubMedCrossRefGoogle Scholar
  118. Luoma, G. A., and Marshall, A. G. 1978b. Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA.Proc. Natl. Acad. Sci. USA 75: 4901–4905.PubMedCrossRefGoogle Scholar
  119. MacKay, R. M., and Doolittle, W. F. 1981. Nucleotide sequence ofAcanthamoeba castellani 5S and 5.8S ribosomal ribonucleic acids: phylogenetic and comparative structural analysis.Nucleic Acids Res.9: 3321–3334.PubMedCrossRefGoogle Scholar
  120. MacKay, R. M., Spencer, D. F., Doolittle, W. F., and Gray, M. W. 1980. Nucleotide sequences of wheatembryo cytosol 5-S and 5.8-S ribosomal ribonucleic acids.Eur. J. Biochem. 112: 561–576.PubMedCrossRefGoogle Scholar
  121. MacKay, R. M., Salgado, D., Bonen, L., Stackebrandt, E., and Doolittle, W. F. 1982. The 5S ribosomal RNAs ofParacoccus denitrificans andProchloron. Nucleic Acids Res.10: 2963–2970.CrossRefGoogle Scholar
  122. Maeda, N., Bliska, J. B., and Smithies, O. 1983. Recombination and balanced chromosome polymorphism suggested by DNA sequences 5’ to the human S-globin gene.Proc. Natl. Acad. Sci. USA 80: 5012–5016.PubMedCrossRefGoogle Scholar
  123. Margulis, L. 1970.Origin of Eukaryotic Cells, New Haven, Yale University Press.Google Scholar
  124. Marotta, C. A., Varricchio. F., Smith, I., Weissman, S. M., Sogin, M. L., and Pace, N. R. 1976. The primary structure ofBacillus subtilis andBacillus stearothermophilus 5S ribonucleic acids.J. Biol. Chem. 251: 3122–3127.Google Scholar
  125. Mattaj, I. W., Lienhard, S., Zeller, R., and DeRobertis, E. M. 1983. Nuclear exclusion of transcription factor IIIA and the 42S particle transfer-RNA-binding protein inXenopus oocytes: A possible mechanism for gene control?J. Cell Biol. 97: 1261–1265.PubMedCrossRefGoogle Scholar
  126. Maxam, A. M., Tizard, R., Skryabin, K. G., and Gilbert, W. 1977. Promoter region for yeast 5S ribosomal RNA.Nature (London) 267: 643–645.CrossRefGoogle Scholar
  127. Miller, J. R. 1983. 5S ribosomal RNA genes. In: Maclean, N., Gregory, S. P., and Flavell, R. A., eds.,Eukaryotic Genes: Their Structure, Activity and Regulation, London, Butterworths, pp. 225–237.Google Scholar
  128. Miller, J. R., Cartwright, E. M., Brownlee, G. G., Fedoroff, N. V., and Brown, D. D. 1978. The nucleotide sequence of.00cyte 5S DNA inXenopus laevis. II. The GC-rich region.Cell 13: 717–725.PubMedCrossRefGoogle Scholar
  129. Morgens, P. H., Grabau, E. A., and Gesteland, R. F. 1984. A novel soybean mitochondrial transcript resulting from a DNA rearrangement involving the 5S rRNA gene.Nucleic Acids Res.12: 5665–5684.PubMedCrossRefGoogle Scholar
  130. Morris, G. F., and Marzluff, W. F. 1983. A factor in sea urchin eggs inhibits transcription in isolated nuclei by sea urchin RNA polymerase III.Biochemistry 22: 645–653.PubMedCrossRefGoogle Scholar
  131. Morton, D. G., and Sprague, K. U. 1984.In vitro transcription of a silkworm 5S RNA gene requires an upstream signal.Proc. Natl. Acad. Sci. USA 81: 5519–5522.CrossRefGoogle Scholar
  132. Murphy, M. H., and Baralle, F. E. 1983. Directed semisynthetic point mutational analysis of an RNA polymerase III promoter.Nucleic Acids Res.11: 7695–7716.PubMedCrossRefGoogle Scholar
  133. Newhouse, N., Nicoghosian, K., and Cedergren, R. J. 1982. The nucleotide sequence of phenylalanine tRNA and 5S RNA fromRhodospirillum rubrum. Can. J. Biochem.59: 921–932.CrossRefGoogle Scholar
  134. Nishikawa, K., and Takemura, S. 1974. Structure and function of 5S ribosomal ribonucleic acid fromTorulopsis utilis. II. Partial digestion from ribonucleases and derivation of the complete sequence.J. Biochem. 76: 935–947.PubMedGoogle Scholar
  135. Page, G. S., Smith, S., and Goodman, H. M. 1981. DNA sequence of the rat growth hormone gene; Location of the 5’ terminus of the growth hormone mRNA and identification of an internal transposon-like element.Nucleic Acids Res.9: 2087–2103.PubMedCrossRefGoogle Scholar
  136. Pan, J., Elder, J. T., Duncan, C. H., and Weissman, S. M. 1981. Structural analysis of interspersed repetitive polymerase III transcription units in human DNA.Nucleic Acids Res.9: 1151–1169.PubMedGoogle Scholar
  137. Parker, C. S., and Topol, J. 1984. ADrosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene.Cell 37: 273–283.PubMedCrossRefGoogle Scholar
  138. Pederson, D. S., Yao, M. C., Kimmel, A. R., and Gorovsky, M. A. 1984. Sequence organization and flanking clusters of 5S ribosomal RNA genes inTetrahymena. Nucleic Acids Res.12: 3003–3021.CrossRefGoogle Scholar
  139. Peffley, D. M., and Sogin, M. L. 1981. A putative tRNATm gene cloned fromDictyostelium discoideum: Its nucleotide sequence and association with repetitive deoxyribonucleic acid.Biochemistry 20: 4015–4021.PubMedCrossRefGoogle Scholar
  140. Pelham, H. R. B., Wormington, W. M., and Brown, D. D. 1981. Related 5S RNA transcription factors inXenopus oocytes and somatic cells.Proc. Natl. Acad. Sci. USA 78: 1760–1764.PubMedCrossRefGoogle Scholar
  141. Perez-Stable, C., Ayres, T. M., and Shen, C. K. J. 1984. Distinctive sequence organization and functional programming of anAlu repeat promoter.Proc. Natl. Acad. Sci. USA 81: 5291–5295.PubMedCrossRefGoogle Scholar
  142. Peterson, R. C., Doering, J. L., and Brown, D. D. 1980. Characterization of twoXenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA.Cell 20: 131–141.PubMedCrossRefGoogle Scholar
  143. Picard, B. M., and Wegnez, M. 1979. Isolation of a 7S particle fromXenopus laevis oocytes: A 5S RNA-protein complex.Proc. Natl. Acad. Sci. USA 76: 241–245.PubMedCrossRefGoogle Scholar
  144. Picard, B. M., Maire, M., Wegnez, M., and Denis, H. 1980. Biochemical research on oogenesis. Composition of the 42S storage particles ofXenopus laevis oocytes.Eur. J. Biochem. 109: 359–368.PubMedCrossRefGoogle Scholar
  145. Piper, P. W., Lockheart, A., and Patel, N. 1984. A minor class of 5S rRNA genes inSaccharomyces cerevisiae X2180-IB, one member of which lies adjacent to a Ty transposable element.Nucleic Acids Res.12: 4083–4096.PubMedCrossRefGoogle Scholar
  146. Poncz, M., Schwartz, E., Ballantine, M., and Surrey, S. 1983. Nucleotide sequence analysis of the 83-globin gene region in humans.J. Biol. Chem. 258: 11599–11609.PubMedGoogle Scholar
  147. Potter, S. S. 1982. DNA sequence of a foldback transposable element inDrosophila. Nature (London) 297: 201–204.CrossRefGoogle Scholar
  148. Pribula, C. D., Fox, G. E., and Woese, C. R. 1976. Nucleotide sequence ofClostridium pasteurianum 5S rRNA.FEBS Lett.64: 350–352.PubMedCrossRefGoogle Scholar
  149. Reynolds, W. F., and Gottesfeld, J. M. 1983. 5S rRNA gene transcription factor IIIA alters the helical configuration of DNA.Proc. Natl. Acad. Sci. USA 80: 1862–1866.Google Scholar
  150. Reynolds. W. F., Bloomer, L. S., and Gottesfeld, J. M. 1983. Control of 5S RNA transcription inXenopus somatic cell chromatin: Activation with an oocyte extract.Nucleic Acids Res.11: 57–75.CrossRefGoogle Scholar
  151. Robertson, H. D., and Dickson, E. 1984. Structure and distribution ofAlu family sequences or their analogs within heterogeneous nuclear RNA of HeLa, KB, and L cells.Mol. Cell. Biol. 4: 310–316.PubMedGoogle Scholar
  152. Rosa, M. D., Gottlieb, E., Lerner, M. R., and Steitz, J. A. 1981. Striking similarities are exhibited by 2 small Epstein-Barr virus-encoded RNA species and the adenovirus-associated species VAI and VAII.Mol. Cell. Biol. 1: 785–796.PubMedGoogle Scholar
  153. Rosenthal, D., and Doering, J. L. 1983. The genomic organization of dispersed tRNA and 5S RNA genes inXenopus laevis. J. Biol. Chem.258: 7402–7410.Google Scholar
  154. Roy, M. K., Singh, B., Ray, B. K., and Apirion, D. 1983. Maturation of 5-S rRNA: Ribonuclease E cleavages and their dependence on precursor sequences.Eur. J. Biochem. 131: 119–127.Google Scholar
  155. Rubin, C. M., Houck, C. M., Deininger, P. L., Friedmann, T., and Schmid, C. W. 1980. Partial nucleotide sequence of the 300-nucleotide interspersed repeated human DNA sequences.Nature (London) 284: 372–374.CrossRefGoogle Scholar
  156. Ruet, A., Carnier, S., Smagowicz, W., Sentenac, A., and Fromageot, P. 1984. Isolation of a class C transcription factor which forms a stable complex with tRNA genes.EMBO J.3: 343–350.PubMedGoogle Scholar
  157. Sagin, L. 1967. On the origin of mitosing cells.J. Theor. Biol. 14: 225–274.CrossRefGoogle Scholar
  158. Sakamoto, K., Kominami, R., Mishima, Y., and Okada, N. 1984. The 6S RNA transcribed from rodent total DNAin vitro is the transcript of the type 2Alu family.Mol. Gen. Genet. 194: 1–6.PubMedCrossRefGoogle Scholar
  159. Sakonju, S. 1981. Identification of a control region that directs the initiation of transcription with a specific transcription factor. Ph.D. dissertation, Johns Hopkins University, Baltimore.Google Scholar
  160. Sakonju, S., and Brown, D. D. 1982. Contact points between a positive transcription factor and theXenopus 5S RNA gene.Cell 31: 395–405.PubMedCrossRefGoogle Scholar
  161. Sakonju, S., Brown, D. D., Engelke, D. R., Ng, S. Y., Shastry, B. S., and Roeder, R. 1981. The binding of a transcription factor to deletion mutants of a 55 ribosomal RNA gene.Cell 23: 665–669.PubMedCrossRefGoogle Scholar
  162. Schaack, J., Sharp, S., Dingermann, T., Burke, D. J., Cooley, L., and Söll, D. 1984. The extent of a eukaryotic tRNA gene.J. Biol. Chem. 259: 1461–1467.PubMedGoogle Scholar
  163. Scherer, G., Tschudi, C., Perera, J., Delius, H., and Pirotta, V. 1982.B104, a new dispersed repeated gene family inDrosophila melanogaster and its analogies with retroviruses.J. Mol. Biol. 157: 435–451.Google Scholar
  164. Schimenti, J. C., and Duncan, C. H. 1984. Ruminant globin gene structures suggest an evolutionary role for Alu-type repeats.Nucleic Acids Res.12: 1641–1655.PubMedCrossRefGoogle Scholar
  165. Schmid, C. W., and Jelinek, W. R. 1982. TheAlu family of dispersed repetitive sequences.Science 218: 1065–1070.CrossRefGoogle Scholar
  166. Schon, E. A., Cleary, M. L., Haynes, J. R., and Lingrel, J. B. 1981. Structure and evolution of goat y-, and ßA-globin genes: Three developmentally regulated genes contain inserted elements.Cell 27: 359–369.PubMedCrossRefGoogle Scholar
  167. Segall, J., Matsui, T., and Roeder, R. G. 1980. Multiple factors are required for the accurate transcription of purified genes by RNA polymerase III.J. Biol. Chem. 255: 11986–11991.PubMedGoogle Scholar
  168. Sekiya, T., Mori, M., Takahashi, N., and Nishimura, S. 1980. Sequence of the distal tRNAASP gene and the transcription termination signal in theEscherichia coli ribosomal RNA operonrrnF(or G). Nucleic Acids Res.8: 3809–3827.CrossRefGoogle Scholar
  169. Setzer, D. R., and Brown, D. D. 1985. Formation and stability of the 5S RNA transcription complex.J. Biol. Chem. 260: 2483–2492.PubMedGoogle Scholar
  170. Sharp, S., Dingermann, T., Schaack, J., Sharp, J. A., Burke, D. J., DeRobertis, E. M., and Söll, D. 1983. Each element of theDrosophila tRNAArg gene split promoter directs transcription inXenopus oocytes.Nucleic Acids Res.11: 8677–8690.PubMedCrossRefGoogle Scholar
  171. Shen, C. K. J., and Maniatis, T. 1982. The organization, structure, andin vitro transcription ofAlu family RNA polymerase III transcription units in the human a-like globin gene cluster: Precipitation ofin vitro transcripts by lupus anti-La antibodies.J. Mol. Appl. Genet. 1: 343–360.PubMedGoogle Scholar
  172. Shi, X. P., Wingender, E., Böttrich, J., and Seifart, K. H. 1983. Faithful transcription of ribosomal 5-S RNAin vitro depends on the presence of several factors.Eur. J. Biochem. 131: 189–194.PubMedCrossRefGoogle Scholar
  173. Simoncsits, A. 1980. 3’ terminal labelling of RNA with ß-32P-pyrophosphate group and its application to the sequence analysis of 5S RNA fromStreptomyces griseus. Nucleic Acids Res. 8:4111–4124.Google Scholar
  174. Singer, M. F. 1982. SINES and LINES: Highly repeated short and long interspersed sequences in mammalian genomes.Cell 28: 433–434.PubMedCrossRefGoogle Scholar
  175. Singh, B., and Apirion, D. 1982. Primary and secondary structure in a precursor of 5S rRNA.Biochim. Biophys. Acta 698: 252–259.PubMedCrossRefGoogle Scholar
  176. Smith, D. R., Jackson, J., and Brown, D. D. 1984. Domains of the positive transcription factor specific for theXenopus 5S RNA gene.Cell 37: 645–652.PubMedCrossRefGoogle Scholar
  177. Spencer, D. F., Bonen, L., and Gray, M. W. 1981. Primary sequence of wheat mitochondrial 5S ribosomal ribonucleic acid: Functional and evolutionary implications.Biochemistry 20: 4022–4029.PubMedCrossRefGoogle Scholar
  178. Spradling, A. C., and Rubin, G. M. 1981.Drosophila genome organization: Conserved and dynamic aspects.Annu. Rev. Genet. 15: 219–264.Google Scholar
  179. Sprague, K. U., Larson, D., and Morton, D., 1980. 5’ flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologousin vitro transcription systems.Cell 22: 171–178.Google Scholar
  180. Sprinzl, M., and Gauss, D. H. 1984. Compilation of sequences of tRNA genes.Nucleic Acids Res.12 (Suppl.): r59-r131.PubMedCrossRefGoogle Scholar
  181. Stahl, D. A., Luehrsen, K. R., Woese, C. R., and Pace, N. R. 1981. An unusual 5S rRNA1 fromSulfolobus acidocaldarius, and its implications for a general 5S rRNA structure.Nucleic Acids Res.9: 6129–6137.PubMedCrossRefGoogle Scholar
  182. Stillman, D. J., and Geiduschek, E. P. 1984. Differential binding ofS. cerevisiae RNA polymerase III transcription factors to two promoter segments of a tRNA gene.EMBO J.3: 847–853.PubMedGoogle Scholar
  183. Stillman, D. J., Sivertsen, A. L., Zentner, P. G., and Geiduschek, E. P. 1984. Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions.J. Biol. Chem. 259: 7955–7962.PubMedGoogle Scholar
  184. Stumph, W. E., Kristo, P., Tsai, M. J., and O’Malley, B. W. O. 1981. A chicken middle-repetitive DNA sequence which shares homology with mammalian ubiquitous repeats.Nucleic Acids Res.9: 5383–5397.PubMedCrossRefGoogle Scholar
  185. Szeberényi, J., and Apirion, D. 1983. Initiation, processing, and termination of ribosomal RNA from a hybrid 5 S ribosomal RNA gene in a plasmid.J. Mol. Biol. 168: 525–561.PubMedCrossRefGoogle Scholar
  186. Tabata, S. 1980. Structure of the 5-S ribosomal RNA gene and its adjacent regions inTorulopsis utilis. Eur. J. Biochem.110: 107–114.CrossRefGoogle Scholar
  187. Takaiwa, F., and Sugiura, M. 1980. Nucleotide sequences of the 4.5S and 5S ribosomal RNA genes from tobacco chloroplasts.Mol. Gen. Genet. 180: 1–4.CrossRefGoogle Scholar
  188. Takaiwa, F., and Sugiura, M. 1982. The nucleotide sequence of chloroplast 5S ribosomal RNA from a fern,Dryopteris acuminata. Nucleic Acids Res. 10: 5369–5373.CrossRefGoogle Scholar
  189. Takaiwa, F., Kusuda, M., Saga, N., and Sugiura, M. 1982. The nucleotide sequence of 5S rRNA from a red alga,Prophyra yezoensis. Nucleic Acids Res. 10: 6037–6040.CrossRefGoogle Scholar
  190. Thimmappaya, B., Weinberger, C., Schneider, R. J., and Shenk, T. 1982. Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection.Cell 31: 543–551.PubMedCrossRefGoogle Scholar
  191. Traboni, C., Ciliberto, G., and Cortese, R. 1982. A novel method for site-directed mutagenesis: Its application to a eukaryotic tRNAPr0 gene promoter.EMBO J.1: 415–420.PubMedGoogle Scholar
  192. Tschudi, C., and Pirrotta, V. 1980. Sequence and heterogeneity in the 5S RNA gene cluster ofDrosophila melanogaster. Nucleic Acids Res.8: 441–451.CrossRefGoogle Scholar
  193. Ullu, E., and Tschudi, C. 1984.Alu sequences are processed 7SL RNA genes.Nature (London) 312: 171–172.CrossRefGoogle Scholar
  194. Ullu, E., Murphy, S., and Melli, M. 1982. Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in anAlu sequence.Cell 29: 195–202.PubMedCrossRefGoogle Scholar
  195. Valenzuela, P., Bell, G. I., Masiarz, F. R., DeGennaro, L. J., and Rutter, W. J. 1977a. Nucleotide sequence of the yeast 5S ribosomal RNA gene and adjacent putative control regions.Nature (London) 267: 641–643.CrossRefGoogle Scholar
  196. Valenzuela, P., Bell, G. I., Venegas, A., Sewell, E. T., Masiarz, F. R., DeGennaro, L. J., Weinberg, F., and Rutter, W. J. 1977b. Ribosomal RNA genes ofSaccharomyces cerevisiae. H. Physical map and nucleotide sequence of the 5S ribosomal RNA gene and adjacent intergenic regions.J. Biol. Chem. 252: 8126–8135.PubMedGoogle Scholar
  197. Vandenberghe, A., Wassink, A., Raeymaekers, P., DeBaerre, R., Huysmans, E., and De Wachter, R. 1985. Nucleotide sequence, secondary structure and evolution of the 5S ribosomal RNA from five bacterial species.Eur. J. Biochem. 149: 537–542.PubMedCrossRefGoogle Scholar
  198. Walker, W. F., and Doolittle, W. F. 1982. Nucleotide sequences of 5S ribosomal RNA from four oomycete and chytrid water molds.Nucleic Acids Res.10: 5717–5721.PubMedCrossRefGoogle Scholar
  199. Walker, R. T., Cheton, E. T. J., Kilpatrick, M. W., Rogers, M. J., and Simmons, J. 1982. The nucleotide sequence of the 5S rRNA fromSpiroplasma species BC3 andMycoplasma mycoides sp.capri PG3.Nucleic Acids Res.10: 6363–6367.PubMedCrossRefGoogle Scholar
  200. Walter, P., and Blobel, G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum.Nature (London) 299: 691–698.CrossRefGoogle Scholar
  201. Watanabe, Y., Tsukada, T., Notake, M., Nakanishi, S., and Numa, S. 1982. Structural analysis of repetitive DNA sequences in the bovine corticotropin-ß-lipotropin precursor gene region.Nucleic Acids Res.10: 1459–1469.PubMedCrossRefGoogle Scholar
  202. Weiner, A. M. 1980. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome.Cell 22: 209–218.PubMedCrossRefGoogle Scholar
  203. Woese, C. R., and Fox, G. E. 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms.Proc. Nad. Acad. Sci. USA 74: 5088–5090.CrossRefGoogle Scholar
  204. Woese, C. R., Pribula, C. D., Fox, G. E., and Zablen, L. B. 1975. The nucleotide sequence of the 5S ribosomal RNA from a photobacterium.J. Mol. Evol. 5: 35–46.PubMedCrossRefGoogle Scholar
  205. Woese, C. R., Luehrsen, K. R., Pribula, C. D., and Fox, G. E. 1976. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes.J. Mol. Evol. 8:143-153.Google Scholar
  206. Woese, C. R. Magrum, L. J., and Fox, G. E. 1978. Archaebacteria.J. Mol. Evol. 11: 245–252.CrossRefGoogle Scholar
  207. Wolin, S. L., and Steitz, J. A. 1983. Genes for two small cytoplasmic Ro RNAs are adjacent and appear to be single-copy in the human genome.Cell 32: 735–744.PubMedCrossRefGoogle Scholar
  208. Wormington, W., Bogenhagen, D. F., Jordan, E., and Brown, D. D. 1982. A quantitative assay forXenopus 5S RNA gene transcriptionin vitro. Cell 24: 809–818.Google Scholar
  209. Yamamoto, T., Davis, C. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L., and Russell, D. W. 1984. The human LDL receptor: A cysteine-rich protein with multipleAlu sequences in its mRNA.Cell 39: 27–38.PubMedCrossRefGoogle Scholar
  210. Zieve, G. W. 1981. Two groups of small stable RNAs.Cell 25: 296–297.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Lawrence S. Dillon
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations