Intermediate Valence Spectroscopy

  • O. Gunnarsson
  • K. Schönhammer
Part of the NATO ASI Series book series (NSSB, volume 151)


Spectroscopic properties of intermediate valence compounds are studied using the Anderson model. Due to the large orbital and spin degeneracy Nf of the 4f-level, 1/Nf can be treated as a small parameter. This approach provides exact T = 0 results for the Anderson impurity model in the limit Nf→∞, and by adding 1/Nf corrections some properties can be calculated accurately even for Nf=1 or 2. In particular valence photoemission and resonance photoemission spectroscopies are studied. A comparison of theoretical and experimental spectra provides an estimate of the parameters in the model. Core level photoemission spectra provide estimates of the coupling between the f-level and the conduction states and of the f-level occupancy. With these parameters the model gives a fair description of other electron spectroscopies. For typical parameters the model predicts two structures in the f-spectrum, namely one structure at the f-level and one at the Fermi energy. The resonance photoemission calculation gives a photon energy dependence for these two peaks in fair agreement with experiment. The peak at the Fermi energy is partly due to a narrow Kondo resonance, resulting from manybody effects and the presence of a continuous, partly filled conduction band. This resonance is related to a large density of low-lying excitations, which explains the large susceptibility and specific heat observed for these systems at low temperatures.


Conduction State Core Hole Anderson Impurity Model Coulomb Matrix Element Folding Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.M. Lawrence, P.S. Riseborough and R.D. Parks, Rep.Progr.Phys. 41: 1 (1981).CrossRefGoogle Scholar
  2. 2.
    B. Coqblin and A. Blandin, Adv. Phys. 17, 281 (1968).CrossRefGoogle Scholar
  3. 3.
    “Valence fluctuations in solids”, L.M. Falicov, W. Hanke and M.P. Maple eds., North-Holland, Amsterdam (1981).Google Scholar
  4. 4.
    “Valence instabilities”, P. Wächter and H. Boppart eds., North-Holland, Amsterdam (1982).Google Scholar
  5. 5.
    “Valence Fluctuations”, E. Mliller-Hartmann, B. Roden and D. Wohlleben eds., J. Magn.Magn.Mater, 47 & 48 (1985).Google Scholar
  6. 6.
    A. Platau and S.E. Karlsson, Phys.Rev. B18: 3820 (1978).CrossRefGoogle Scholar
  7. 7.
    L.I. Johansson, J.W. Allen, T. Gustafsson, I. Lindau and S.B.M. Hagstrom, Solid State Commun. 28: 53 (1978).CrossRefGoogle Scholar
  8. 8.
    J.C. Fuggle, F.U. Hillebrecht, Z. Zolnierek, R. Lasser and A. Platau, Phys.Rev.Lett. 45: 1597 (1980).CrossRefGoogle Scholar
  9. 9.
    J.W. Allen, S.-J. Oh, I. Lindau, J.M. Lawrence, L.I. Johansson and S.B.M. Hagstrom, Phys.Rev.Lett 46: 1100 (1981)CrossRefGoogle Scholar
  10. M. Croft, J.H. Weaver, D.J. Peterman and A. Franciosi, Phys.Rev.Lett. 46: 1104 (1981).CrossRefGoogle Scholar
  11. 10.
    N. Martensson, B. Reihl and R.D. Parks, Solid State Commun. 41: 573 (1982).CrossRefGoogle Scholar
  12. 11.
    J.M. Lawrence, J.W. Allen, S.-J. Oh and I. Lindau, Phys.Rev. B26: 2362 (1982).CrossRefGoogle Scholar
  13. 12.
    R.D. Parks, N. Mårtensson, B. Reihl, in Ref. 4, p. 239Google Scholar
  14. J.W. Allen, S.-J. Oh, M.B. Maple and M.S. Torikachvili, Phys.Rev. B28: 5347 (1983).CrossRefGoogle Scholar
  15. 13.
    P.W. Anderson, Ref. 3, p. 451.Google Scholar
  16. 14.
    T.V. Ramakrishnan, Ref. 3, p. 13.Google Scholar
  17. 15.
    T.V. Ramakrishnan and K. Sur, Phys.Rev. B26: 1798 (1982).CrossRefGoogle Scholar
  18. 16.
    O. Gunnarsson and K. Schönhammer, Phys.Rev.Lett. 50: 604 (1983); Phys.Rev. B28: 4315 (1983).CrossRefGoogle Scholar
  19. 17.
    Y. Kuramoto, Z. Phys. B53: 37 (1983)CrossRefGoogle Scholar
  20. Grewe, Z. Phys. 53: 271 (1983)CrossRefGoogle Scholar
  21. H. Keiter and G. Czycholl, J.Magn.Magn.Mater, 31: 477 (1983)CrossRefGoogle Scholar
  22. P. Coleman, Phys.Rev. B29: 3035 (1984)CrossRefGoogle Scholar
  23. F.C. Zhang and T.K. Lee, Phys. Rev. B30: 1556 (1984)CrossRefGoogle Scholar
  24. N.E. Bickers, D.L. Cox and J.W. Wilkins, Phys.Rev.Lett. 54: 230 (1985).CrossRefGoogle Scholar
  25. 18.
    A. Kotani and Y. Toyozawa, J.Phys.Soc. Japan 37: 563 (1974); 37: 912 (1974).CrossRefGoogle Scholar
  26. 19.
    C.M. Varma and Y. Yafet, Phys.Rev. B13: 2950 (1976).CrossRefGoogle Scholar
  27. 20.
    O. Gunnarsson and K. Schqnhammer, Phys.Rev. B31: 4815 (1985).CrossRefGoogle Scholar
  28. 21.
    O. Gunnarsson and K. Schqnhammer, J.Magn.Magn.Mater, 52: 227 (1985).CrossRefGoogle Scholar
  29. 22.
    T.C. Li, O. Gunnarsson, K. Schönhammer and G. Zwicknagl, (to be published).Google Scholar
  30. 23.
    P. Schlottmann, Phys.Rev.Lett. 50: 1697 (1983)CrossRefGoogle Scholar
  31. E. Ogievetski, A.M. Tsvelick and P.B. Wiegmann, J.Phys. C16: L797 (1983).Google Scholar
  32. 24.
    L. Hedin and S. Lundqvist, Solid State Phys. 23: 1 (1969).Google Scholar
  33. 25.
    C. Guillot, Y. Ballu, J. Paigne, J. Lecante, K.P. Jain, P. Thiry, R. Pinchaux, Y. Petroff and L.M. Falicov, Phys.Rev.Lett. 39: 1632 (1977).CrossRefGoogle Scholar
  34. 26.
    W. Lenth, F. Lutz, J. Barth, G. Kalkoffen and C. Kunz, Phys.Rev.Lett. 41: 1185 (1978)CrossRefGoogle Scholar
  35. J.W. Allen, L.I. Johansson, R.S. Bauer, I. Lindau and S.B.M. Hagström, Phys.Rev.Lett. 41: 1499 (1978)CrossRefGoogle Scholar
  36. W. Gudat, S.F. Al varado and M. Campagna, Solid State Commun. 28: 943 (1978).CrossRefGoogle Scholar
  37. 27.
    D.R. Penn, Phys.Rev.Lett. 42: 921 (1979).CrossRefGoogle Scholar
  38. 28.
    L.C. Davis and L.A. Feldkamp, Phys.Rev.Lett. 43:151 (1979); 44: 673 (1980); Phys.Rev. B23: 6239 (1981)CrossRefGoogle Scholar
  39. L.C. Davis, Phys.Rev. B25: 2912 (1982).CrossRefGoogle Scholar
  40. 29.
    Y. Yafet, Phys.Rev. B21: 5023 (1980); B23: 3558 (1981)CrossRefGoogle Scholar
  41. S.M. Girvin and D.R. Penn, Phys.Rev. B22: 4081 (1980)CrossRefGoogle Scholar
  42. S.-J. Oh and S. Doniach, Physics Letter, 81A: 483 (1981); Phys. Rev. B26: 1859 (1982)CrossRefGoogle Scholar
  43. J.C. Parlebas, A. Kotani and J. Kanamori, Solid State Commun. 41: 439 (1982)CrossRefGoogle Scholar
  44. G. V. D. Laan, Solid State Commun. 42: 165 (1982).CrossRefGoogle Scholar
  45. 30.
    A. Zangwill and P. Soven, Phys.Rev.Lett. 45: 204 (1980).CrossRefGoogle Scholar
  46. 31.
    A. Sakuma, Y. Kuramoto, T. Watanabe and C. Horie, J.Magn.Magn.Mater. 52: 393 (1985).CrossRefGoogle Scholar
  47. 32.
    W.L. Schaich and N.W. Ashcroft, Phys.Rev. B3: 2452 (1971).CrossRefGoogle Scholar
  48. 33.
    O. Gunnarsson and K. Schönhammer, Phys.Rev. B22: 3710 (1980).CrossRefGoogle Scholar
  49. 34.
    J.F. Herbst and J.W. Wilkins, Phys.Rev.Lett. 43:1760 (1979)CrossRefGoogle Scholar
  50. J.F. Herbst, R.E. Watson and J.W. Wilkins, Phys.Rev. B17: 3089 (1978).CrossRefGoogle Scholar
  51. 35.
    O. Gunnarsson, K. Schönhammer, J.C. Fuggle, F.U. Hillebrecht, J.-M. Esteva, R.C. Karnatak and B. Hillebrand, Phys.Rev. B28: 7330 (1983).CrossRefGoogle Scholar
  52. 36.
    J.W. Allen, S.-J. Oh, O. Gunnarsson, K. Schönhammer, M.B. Maple, M. Torikachvili and I. Lindau, (to be published).Google Scholar
  53. 37.
    O. Gunnarsson and K. Schönhammer, in Handbook on the physics and chemistry of rare earths, K. Gschneider and L.R. Eyring eds., North-Holland, Amsterdam, Vol. 10 (1987).Google Scholar
  54. 38.
    J.C. Fuggle, F.U. Hillebrecht, J.-M. Esteva, R.C. Karnatak, O. Gunnarsson and K. Schönhammer, Phys.Rev. B27: 4637 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • O. Gunnarsson
    • 1
  • K. Schönhammer
    • 2
  1. 1.Max-Planck Institut für FestkörperforschungStuttgart 80W. Germany
  2. 2.Institut für Theoretische PhysikUniversität GöttingenGöttingenW. Germany

Personalised recommendations