Advertisement

Film Boiling

  • D. Clements
Part of the The International Cryogenics Monograph Series book series (INCMS)

Abstract

Film boiling is a form of change-of-phase heat transfer which is characterized by a solid body transferring heat to a surrounding liquid through an intermediate vapor film The vapor film forms a continuous, relatively regular blanket over the solid surface. This liquid-over-vapor arrangement is inherently unstable. However, the solid—liquid temperature differences characteristic of film boiling are so large that no liquid can remain in contact with the solid, thus maintaining the stable film.

Keywords

Heat Transfer Heat Transfer Coefficient Copper Tube Vapor Film Dimensional Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Jordan, Advan. Heat Transfer 5, 55 (1968).CrossRefGoogle Scholar
  2. 2.
    L. D. Clements and C. P. Colver, Ind. Eng. Chem. 62, 26 (1970).CrossRefGoogle Scholar
  3. 3.
    E. G. Brentari, P. T. Giarratano, and R. V. Smith, NBS Tech. Note 317 (1965).Google Scholar
  4. 4.
    E. G. Brentari, P. T. Giarratano, and R. V. Smith, in International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 325.Google Scholar
  5. 5.
    R. J. Richards, W. G. Steward, and R. B. Jacobs, NBS Tech. Note 122 (1961).Google Scholar
  6. 6.
    L. Weil, in Proc. 8th Intern. Congr. Refrig. London (1951), p. 181.Google Scholar
  7. 7.
    L. Weil and A. Lacaze, J. Phys. Radium 12 (9), 890 (1951).CrossRefGoogle Scholar
  8. 8.
    R. N. Mulford and J. P. Nigon, LA-1416 (1952).Google Scholar
  9. 9.
    C. R. Class, J. R. DeHaan, M. Piccone, and R. B. Cost, in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 254.Google Scholar
  10. 10.
    R. W. Graham, R. C. Hendricks, and R. C. Ehlers, in International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 342.Google Scholar
  11. 11.
    T. H. K. Frederking, AIChE J. 5 (3), 403 (1959).CrossRefGoogle Scholar
  12. 12.
    T. H. K. Frederking, Forschung 27 (1), 17 (1961).Google Scholar
  13. 13.
    T. H. K. Frederking and P. Grassmann, Bull. Inst. Intern. Froid, Annexe 1958–1, 317 (1958).Google Scholar
  14. 14.
    P. Grassmann, A. Karagounis, J. Kopp, and T. Frederking, Kältetecknik 10 (7), 206 (1958).Google Scholar
  15. 15.
    T. H. K. Frederking, R. C. Chapman, and S. Wang, in International Advances in Cryogenic Engineering, Plenum Press (1965), p. 353.Google Scholar
  16. 16.
    T. H. K. Frederking, Y. C. Wu, and B. W. Clement, AIChE J. 12 (2), 238 (1966).CrossRefGoogle Scholar
  17. 17.
    D. N. Lyon, in Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371.Google Scholar
  18. 18.
    R. M. Holdredge and P. W. McFadden, in Advances in Cryogenic Engineering, Vol. 16, Plenum Press, New York (1971), p. 352.Google Scholar
  19. 19.
    P. Grassmann and A. Karagounis, in Proceedings 5th Intern. Conference, Low Temperature Physics and Chemistry, Madison, Wisconsin (1958), p. 41.Google Scholar
  20. 20.
    T. M. Flynn, J. W. Draper, and J. J. Roos, in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 539.Google Scholar
  21. 21.
    G. G. Harman and L. H. Gordy, Cryogenics 7 (2), 89 (1967).CrossRefGoogle Scholar
  22. 22.
    L. A. Bromley, AEC D2295 (1948).Google Scholar
  23. 23.
    L. A. Bromley, Chem. Eng. Progr. 46 (5), 221 (1950).Google Scholar
  24. 24.
    C. W. Cowley, W. J. Timson, and J. A. Sawdye, Ind. Eng. Chem., Process Des. Develop. 1(2), 81 (1962); also in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 385.Google Scholar
  25. 25.
    Y. Y. Hsu and J. W. Westwater, Chem. Eng. Progr., Symp. Ser. 56 (30), 15 (1960).Google Scholar
  26. 26.
    Y. Y. Hsu and J. W. Westwater, AIChE J. 4 (1), 58 (1958).CrossRefGoogle Scholar
  27. 27.
    J. Ruzicka, in Problems of Low Temperature Physics, Vol. 1, Pergamon Press, New York (1959), p. 323.Google Scholar
  28. 28.
    L. G. Rhea and R. G. Nevins, Trans. ASME, J. Heat Transfer 91C (2), 267 (1969).CrossRefGoogle Scholar
  29. 29.
    E. L. Park, C. P. Colver, and C. M. Sliepcevich, in Advances in Cryogenic Engineering, Vol. 11, Plenum Press, New York (1966), p. 516.Google Scholar
  30. 30.
    D. N. Lyon, P. G. Kosky, and B. N. Harman, in Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 77.Google Scholar
  31. 31.
    L. Weil and A. Lacaze, Compt. Rend. 230 (1), 186 (1950).Google Scholar
  32. 32.
    H. J. Sauer and K. M. Ragsdell, in Advances in Cryogenic Engineering, Vol. 16, Plenum Press, New York (1971), p. 412.Google Scholar
  33. 33.
    V. J. Flanigan and E. L. Park, in Advances in Cryogenic Engineering, Vol. 16, Plenum Press, New York (1971), p. 402.Google Scholar
  34. 34.
    J. A. Clark and H. Merte, Advan. Astronaut. Sci. 14, 177 (1963).Google Scholar
  35. 35.
    H. Merte and J. A. Clark, Trans. ASME, J. Heat Transfer 86C (3), 351 (1964).CrossRefGoogle Scholar
  36. 36.
    H. Merte and J. A. Clark, Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 546.Google Scholar
  37. 37.
    C. E. Price and H. J. Sauer, ASHRAE Trans. 76, 58 (1970).Google Scholar
  38. 38.
    S. G. Bankoff, AIChE J. 7 (3), 485 (1961).CrossRefGoogle Scholar
  39. 39.
    V. K. Pai and S. G. Bankoff, AIChE J. 11 (1), 65 (1965).CrossRefGoogle Scholar
  40. 40.
    V. K. Pai and S. G. Bankoff, AIChE J. 12 (4), 727 (1966).CrossRefGoogle Scholar
  41. 41.
    P. C. Wayner and S. G. Bankoff, AIChE J. 11 (1), 59 (1965).CrossRefGoogle Scholar
  42. 42.
    L. Bochirol, E. Bonjour, and L. Weil, Bull. Inst. Intern. Froid., Annexe 1960–1, 251 (1960).Google Scholar
  43. 43.
    J. T. Banchero, G. E. Barker, and R. H. Boll, Chem. Eng., Progr. Symp. Ser. 51 (17), 21 (1955).Google Scholar
  44. 44.
    W. F. Giaque, OSRD-491, Ser. 201 (1942).Google Scholar
  45. 45.
    L. Bochirol, E. Bonjour, and L. Weil, Compt. Rend. 250 (1), 76 (1960).Google Scholar
  46. 46.
    J. M. Astruc, P. Perroud, A. Lacaze, L. Weil, Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 387.Google Scholar
  47. 47.
    C. T. Sciance, C. P. Colver, and C. M. Sliepcevich, Chem. Eng. Progr. Symp. Ser. 63 (77), 115 (1967).Google Scholar
  48. 48.
    C. T. Sciance, C. P. Colver, and C. M. Sliepcevich, in Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 395.Google Scholar
  49. 49.
    G. J. Capone and E. L. Park, “Comparison of the Experimental Film Boiling Behavior of Carbon Monoxide with Several Film Boiling Correlations,” presented at 3rd AIChE-IMIQ Joint Meeting, Denver, Colorado (1970).Google Scholar
  50. 50.
    U. Grigull and E. Abadzic, Forschung 31 (1), 27 (1965).Google Scholar
  51. 51.
    E. Abadzic and R. J. Goldstein, Intern. J. Heat Mass Transfer 13, 1163 (1970).CrossRefGoogle Scholar
  52. 52.
    L. E. Brown and C. P. Colver, in Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 647.Google Scholar
  53. 53.
    C. P. Colver and L. E. Brown in Proc. 48th Annual Convention, Natural Gas Processors Association, Dallas, Texas (1969), p. 85.Google Scholar
  54. 54.
    R. D. Wright, L. D. Clements, and C. P. Colver, to appear in AIChE J.Google Scholar
  55. 55.
    R. Bellman and R. H. Pennington, Quart. Appl. Math. 12 (2), 151 (1954).Google Scholar
  56. 56.
    G. Taylor, Proc. Roy. Soc. (London) 201A (1065), 192 (1950).CrossRefGoogle Scholar
  57. 57.
    R. Siegel and E. G. Keshock, NASA TR R-216 (1965).Google Scholar
  58. 58.
    J. H. Lienhard and P. T. Y. Wong, Trans. ASME, J. Heat Transfer 86C, 220 (1964).CrossRefGoogle Scholar
  59. 59.
    J. H. Lienhard and K.-H. Sun, Trans. ASME, J. Heat Transfer 92C, 292 (1970).CrossRefGoogle Scholar
  60. 60.
    L. A. Bromley, Ind. Eng. Chem. 44 (12), 2966 (1952).CrossRefGoogle Scholar
  61. 61.
    L. A. Bromley, N. R. LeRoy, and J. A. Robbers, Ind. Eng. Chem. 45 (11), 2639 (1953).CrossRefGoogle Scholar
  62. 62.
    B. P. Breen and J. W. Westwater, Chem. Eng. Progr. 58 (7), 67 (1962).Google Scholar
  63. 63.
    K. J. Baumeister and T. D. Hamill, AIChE-ASME Heat Transfer Conference, Paper 67-HT-2 Seattle, Washington (1967).Google Scholar
  64. 64.
    K. J. Baumeister and T. D. Hamill, NASA TN D-4035 (1967).Google Scholar
  65. 65.
    M. L. Pomerantz, Trans. ASME, J. Heat Transfer 86C (2), 213 (1964).Google Scholar
  66. 66.
    T. H. K. Frederking, Paper 21b presented at the 52nd National AIChE Meeting, Memphis, Tennessee (1964).Google Scholar
  67. 67.
    L. D. Clements and C. P. Colver, submitted to J. Heat Transfer.Google Scholar
  68. 68.
    P. J. Berenson, Trans. ASME, J. Heat Transfer 83C (3), 351 (1961).CrossRefGoogle Scholar
  69. 69.
    Y. P. Chang, Trans. ASME, J. Heat Transfer 81C, 1 (1959).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • D. Clements
    • 1
  1. 1.U.S. Army Ordnance Center and SchoolUSA

Personalised recommendations