Ridley-Watkins-Hilsum-Gunn Effect

  • Michael Shur
Part of the Microdevices book series (MDPF)

Abstract

In 1963 J. B. Gunn studied the current-voltage characteristics of GaAs and InP devices. He discovered that when the applied electric field
$$F = U/L$$
(4-1-1)
(where U is the bias voltage, L is the sample length) was greater than some critical value F t (~3kV/cm for GaAs and ~6kVJcm for InP), spontaneous current oscillations appeared in the circuit [1] (see Fig. 4–1–1). Later Gunn published the results of the detailed experimental study of this effect [2]. Using probe measurements of the potential distribution across the sample he established that a propagating high field domain forms in the sample when F ≤ F t . It nucleates near the cathode, propagates toward the anode with velocity of the order of 105m/s, and disappears near the anode (see Fig. 4–1–2). Then this process repeats itself. The domain formation leads to a current drop, the domain annihilation results in an increase in the current, and periodic current oscillations exist in the circuit.

Keywords

Permeability Microwave Anisotropy Attenuation Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. B. Gunn, Microwave oscillations of current in IH-V semiconductors, Solid State Commun. 1 (4), 88–91 (1963).CrossRefGoogle Scholar
  2. 2.
    J. B. Gunn, Instabilities of current in III-V semiconductors, IBMJ. Res. Dev. 8 (2), 141–159 (1964).CrossRefGoogle Scholar
  3. 3.
    P. Guetin, Contribution to the experimental study of the Gunn effect in the long samples, IEEE Trans. Electron Devices ED-14 (9), 552–562 (1967).CrossRefGoogle Scholar
  4. 4.
    B. K. Ridley, Specific negative resistance in solids, Proc. Phys. Soc. 82 (12), 954–966 (1963).CrossRefGoogle Scholar
  5. 5.
    B. K. Ridley and T. B. Watkins, The possibility of negative resistance, Proc. Phys. Soc. 78 (8), 293–304 (1961).CrossRefGoogle Scholar
  6. 6.
    C. Husum, Transferred electron amplifiers and oscillators, Proc. IRE 50 (2), 185–189 (1962).CrossRefGoogle Scholar
  7. 7.
    H. Kroemer, Theory of the Gunn effect, Proc. IEEE 52 (12), 1736 (1964).CrossRefGoogle Scholar
  8. 8.
    M. E. Levinstein, Y. K. Pozhela, and M. S. Shur, Gunn Effect, Sov. Radio, Moscow, 1975 (in Russian).Google Scholar
  9. 9.
    H. W. Thim, Linear negative conductance amplification with Gunn oscillators, Proc. IEEE 55, 446–447 (1967).CrossRefGoogle Scholar
  10. 10.
    J. S. Heeks, A. D. Wood, and C. P. Sandbank, Coherent high field oscillations in samples of GaAs, Proc. IEEE 53 (5), 554–555 (1965).CrossRefGoogle Scholar
  11. 11.
    C. P. Sandbank, Synthesis of complex electronic functions by solid state bulk effects, Solid State Electron. 10 (5), 369–380 (1967).CrossRefGoogle Scholar
  12. 12.
    J. A. Copeland, T. Hayashi and M. Venohara, Logic and memory elements using two valley semiconductors, Proc. IEEE 55 (7), 1236–1237 (1967).Google Scholar
  13. 13.
    H. Kroemer, The Gunn effect under imperfect cathode boundary conditions, IEEE Trans. ED-15 (11), 819–837 (1968).Google Scholar
  14. 14.
    M. P. Shaw, H. L. Grubin, and P. R. Solomon, The Gunn-Hilsum effect, New York, Academic Press, 1979.Google Scholar
  15. 15.
    K. W. Boer and G. Dohler, Influence of boundary conditions on high field domains in Gunn diodes, Phys. Rev. 186 (3), 793–800 (1969).CrossRefGoogle Scholar
  16. 16.
    M. E. Levinstein and M. S. Shur, Current stabilizer on Gunn diode, Sov. Phys. Semicond. 3 (7), 915 (1970).Google Scholar
  17. 17.
    R. Zuleeg, Possible ballistic effects in GaAs current limiters, IEEE Electron Device Lett. EDL-1 (11), 234–235, (1980).CrossRefGoogle Scholar
  18. 18.
    D. E. McCumber and A. G. Chynoweth, Theory of negative conductance amplification and of Gunn instabilities in “two-valley” semiconductors, IEEE Trans. Electron Devices ED-13 (1), 4–21 (1966).CrossRefGoogle Scholar
  19. 19.
    H. Kroemer, Detailed theory of the negative conductance of bulk negative mobility amplifiers in the limit of zero ion density, IEEE Trans. Electron Devices ED-14 (9), 476–492 (1967).CrossRefGoogle Scholar
  20. 20.
    R. Holmstrom, Small signal behavior of Gunn diodes, IEEE Trans. Electron Devices ED-14 (9), 526–531 (1967).CrossRefGoogle Scholar
  21. 21.
    P. N. Butcher, W. Fawcett, and C. Hilsum, A simple analysis of stable domain propagation in the Gunn effect, Brit. J. Appl. Phys. 17 (7), 841–850 (1966).CrossRefGoogle Scholar
  22. 22.
    B. L. Gelmont and M. S. Shur, Analytical theory of stable domains in high-doped Gunn diodes, Electron. Lett. 6 (12), 385–387 (1970).CrossRefGoogle Scholar
  23. 23.
    M. S. Shur, Maximum electric field in high field domain, Electron. Lett. 14 (16), 521–522 (1978).CrossRefGoogle Scholar
  24. 24.
    L. F. Eastman, S. Tiwari, and M. S. Shur, Design criteria for GaAs MESFETs related to stationary high field domains, Solid State Electron. 23, 383–389 (1980).CrossRefGoogle Scholar
  25. 25.
    R. A. Warriner, Computer simulation of negative resistance oscillators using a Monte Carlo model of gallium arsenide, IEE J. Solid State Electron Devices 1, 92–96 (1977).CrossRefGoogle Scholar
  26. 26.
    K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Devices ED-17(1), 38–47, 1970.CrossRefGoogle Scholar
  27. 27.
    S. I. Anisimov, V. I. Melnikov, and E. I. Rashba, Concerning one model in the theory of the Gunn effect, Sov. Phys. JETPh Lett. 7 (7), 196, (1968).Google Scholar
  28. 28.
    A. M. Mazzone and H. D. Rees, Transferred-electron harmonic generators for millimetre band sources, IEE Proc. I, Solid State Electron Devices 127 (4), 149–160 (1980).Google Scholar
  29. 29.
    A. M. Mazzone and H. D. Rees, Transferred-electron oscillatiors at very high frequencies, Electron. Lett. 17, 539–540 (1981).CrossRefGoogle Scholar
  30. 30.
    J. Owen and G. S. Kino, Theoretical study of Gunn domains and domain avalanching, J. Appl. Phys. 42 (12), 5006–5018 (1971).CrossRefGoogle Scholar
  31. 31.
    J. Kuru, R. N. Robson, and G. S. Kino, Some measurements of the steady-state and transient characteristics of high-field dipole domains in GaAs, IEEE Trans. Electron. Devices ED-15 (1), 21–29 (1968).CrossRefGoogle Scholar
  32. 32.
    K. Kurokawa, Transient behavior of high field domain in bulk semiconductors, Proc. IEEE 55 (9), 16–1616 (1967).CrossRefGoogle Scholar
  33. 33.
    M. S. Shur, Time of domain parameter changes under small bias variations, Sov. Phys. Semicond. 10 (10), 3138–3142 (1968).Google Scholar
  34. 34.
    M. S. Shur, Analytical theory of domain dynamics, Sov. Phys. Semicond. 7 (6), 1178–1183 (1973).Google Scholar
  35. 35.
    M. Claasen and E. Reinecker, Equivalent circuit of Gunn devices operating in the monostable switching mode, IEEE Trans. Electron Devices ED-28 (3), 280–284 (1980).CrossRefGoogle Scholar
  36. 36.
    M. E. Levinstein and G. S. Simin, Dynamics of changes in a Gunn domain due to changes in the bias voltage, Sov. Phys. Semicond. 13 (7), 837–839 (1979).Google Scholar
  37. 37.
    R. B. Robrock II, IEEE Trans. Electron Devices ED-17 (1), 93 (1970).CrossRefGoogle Scholar
  38. 38.
    W. Heinle, Solid State Electron. 21, 583 (1968).CrossRefGoogle Scholar
  39. 39.
    G. S. Gintsberg, V. I. Efimov, B. A. Kalbekov, and R. I. Kleinerman, Elektron Tekh. Ser. 3, Mikroelektron 5, 42 (1973) (in Russian).Google Scholar
  40. 40.
    M. E. Levinshtein and G. S. Simin, Dynamics of disappearance of a Gunn domain in the anode, Sov. Phys. Semicond. 13 (7), 529–534 (1979).Google Scholar
  41. 41.
    M. E. Levinshtein and G. S. Simin, Dynamics of dispersal of a Gunn domain at voltages below the disappearance, Sov. Phys. Semicond. 13 (12), 1365–1368 (1979).Google Scholar
  42. 42.
    H. Kroemer, IEEE Trans. Electron Devices ED-13, 27 (1966).CrossRefGoogle Scholar
  43. 43.
    D. Jones and H. D. Rees, Electron. Lett. 8, 566 (1972).CrossRefGoogle Scholar
  44. 44.
    D. Jones and H. D. Rees, Electron. Lett. 8, 363 (1972).CrossRefGoogle Scholar
  45. 45.
    T. G. Ruttan, Electron. Lett. 11, 293 (1975).CrossRefGoogle Scholar
  46. 46.
    H. Kroemer, Solid-State Electron. 21, 61 (1978).CrossRefGoogle Scholar
  47. 47.
    A. F. Volkov, Sov. Phys. Solid State 8, 2552 (1967).Google Scholar
  48. 48.
    B. W. Knight and G. A. Peterson, Phys. Rev. 155, 393 (1967).CrossRefGoogle Scholar
  49. 49.
    M. I. D’yakonov, M. E. Levinshtein, and G. S. Simin, Basic properties of an accumulation layer in a Gunn diode, Sov. Phys. Semicond. 15 (11), 1229–1234 (1981).Google Scholar
  50. 50.
    W. Thim, Experimental verification of bistable switching with Gunn diodes, Electron Lett. 7 (10), 246–247 (1971).CrossRefGoogle Scholar
  51. 51.
    W. Thim, Proc. IEEE. 59, 1285 (1971).CrossRefGoogle Scholar
  52. 52.
    S. H. Izadpanah, Solid State Electron 19, 129 (1976).CrossRefGoogle Scholar
  53. 53.
    P. Iondrup, P. Jeppesen and B. Jeppsson, IEEE Trans. Electron Devices ED-23, 1028 (1976).CrossRefGoogle Scholar
  54. 54.
    I. Magarshack and A. Mirica, Proceedings of Intern. Conf. Microw. and Opt. Generation and Amplification MOGA-70, Amsterdam, pp. 16.19–16.23, 1970.Google Scholar
  55. 55.
    A. B. Torrens, Appl. Phys. Lett. 24, 432 (1974).CrossRefGoogle Scholar
  56. 56.
    A. Aishima, K. Yokoo and S. Ono, IEEE Trans. ED-25, 640 (1978).CrossRefGoogle Scholar
  57. 57.
    K. Yokoo, S. Ono and A. Aishima, IEEE Trans. ED-27, 208 (1980).CrossRefGoogle Scholar
  58. 58.
    S. Hasuo, T. Nakamura, G. Goto, K. Kazetani, H. Ishiwari, H. Suzuki and T. Izobe, IEEE Trans. ED-23, 1063 (1976).CrossRefGoogle Scholar
  59. 59.
    O. A. Kireev, M. E. Levinshtein and S. L. Rumjantsev, Anode domain transient processes in supercritical Gunn diodes, Solid State Electron. 27 (3), 233–239 (1984).CrossRefGoogle Scholar
  60. 60.
    H. W. Thim and S. Knight, Carrier generation and switching phenomena in n-GaAs devices, Appl. Phys. Lett. 11 (3), 83 (1967).CrossRefGoogle Scholar
  61. 61.
    H. Kroemer, Non-linear space-charge domain dynamics in a semiconductor with negative differential mobility, IEEE Trans. Electron Devices ED-13 (1), 27–40 (1966).CrossRefGoogle Scholar
  62. 62.
    H. Thim and M. R. Barber, Observations of multiple high field domains in n-GaAs, Proc. IEEE 56(1), 110–111 (1968).CrossRefGoogle Scholar
  63. 63.
    M. Ohtomo, Nucleation of high-field domains in n-GaAs, Jpn. J. Appl Phys. 7(11), 1368–1380 (1968).CrossRefGoogle Scholar
  64. 64.
    H. W. Thim, Computer study of bulk GaAs devices with random and dimensional doping fluctuations, J. Appl. Phys. 39 (8), 3897–3904 (1968).CrossRefGoogle Scholar
  65. 65.
    J. B. Gunn, Effect of domain and circuit properties on oscillations in GaAs, IBM J. Res. Dev. 10 (4), 310–320 (1966).CrossRefGoogle Scholar
  66. 66.
    F. A. Myers, J. McStay, and B. C. Taylor, Variable length Gunn oscillator, Electron. Lett. 4 (18), 386–387 (1968).CrossRefGoogle Scholar
  67. 67.
    M. Suga and K. Sekido, Effects of doping profile upon electric characteristics of Gunn diodes, IEEE Trans. Electron Devices ED-17 (4), 275–281 (1970).CrossRefGoogle Scholar
  68. 68.
    M. P. Shaw, P. R. Solomon, and H. L. Grubin, The influence of boundary conditions on current instabilities in n-GaAs, IBM J. Res. Dev. 13 (5), 587–590 (1969).CrossRefGoogle Scholar
  69. 69.
    E. M. Conwell, Boundary conditions and high field domain in GaAs, IEEE Trans. Electron Devices ED-17 (4), 262–270 (1970).CrossRefGoogle Scholar
  70. 70.
    M. P. Shaw, P. R. Solomon, and H. L. Grubin, Circuit-controlled current instabilities in n-GaAs, Appl. Phys. Lett. 17 (12), 535–537 (1970).CrossRefGoogle Scholar
  71. 71.
    P. R. Solomon, M. P. Shaw, H. L. Grubin, and R. Kaul, An experimental study of the influence of boundary conditions on the Gunn effect, IEEE Trans. Electron Devices ED-22 (3), 127–139 (1975).CrossRefGoogle Scholar
  72. 72.
    R. Engelmann, Simplified model for the domain dynamics in Gunn effect semiconductors covered with dielectric sheets, Electron. Lett. 4 (24), 546–547 (1968).CrossRefGoogle Scholar
  73. 73.
    G. S. Kino and P. N. Robson, The effect of small transverse dimensions on the operation of Gunn devices, Proc. IEEE 56 (11), 2056–2057 (1968).CrossRefGoogle Scholar
  74. 74.
    H. L. Hartnagel, Gunn instabilities with surface loading, Electron Lett. 5 (14), 303–304 (1969).CrossRefGoogle Scholar
  75. 75.
    P. Gueret, Limits of validity of the 1-dimensional approach in space-charge-wave and Gunn-effect theories, Electron. Lett. 6 (7), 197–198 (1970).CrossRefGoogle Scholar
  76. 76.
    P. Gueret, Stabilization of Gunn oscillations in layered semiconductor structures, Electron. Lett. 6 (20), 637–638 (1970).CrossRefGoogle Scholar
  77. 77.
    M. Masuda, N. S. Chang, and Y. Matsuo, Suppression of Gunn-effect domain formation by ferrimagnetic materials, Electron. Lett. 6 (19), 605–606 (1970).CrossRefGoogle Scholar
  78. 78.
    S. Kataoka, H. Tateno, and M. Kawashima, Improvements in efficiency and tunability of Gunn oscillators by dielectric-surface loading, Electron. Lett. 5 (20), 491–492 (1969).CrossRefGoogle Scholar
  79. 79.
    P. Kozdon and P. N. Robson, Two-port amplifiers using the transferred electron effect in GaAs, in 8th Int. Conf. on Microwave and Optical Generation and Amplification (MOGA), Amsterdam, paper 16.2, 1970.Google Scholar
  80. 80.
    K. Kumabe, Suppression of Gunn oscillations by a two-dimensional effect, Proc. IEEE 56 (12), 2172–2173 (1968).CrossRefGoogle Scholar
  81. 81.
    M. E. Levinshtein, Influence of dielectric coatings on oscillation parameters of planar Gunn diodes, Sov. Phys. Semicond. 7 (10) 1347–1348 (1974).Google Scholar
  82. 82.
    K. R. Hoffman, Some aspects of Gunn oscillations in thin dielectric-loaded samples, Electron. Lett. 5 (11), 227–228 (1969).CrossRefGoogle Scholar
  83. 83.
    J. Kuru and Y. Tajima, Domain suppression in Gunn diodes, Proc. IEEE 57 (7), 1215–1216 (1969).CrossRefGoogle Scholar
  84. 84.
    M. T. Vlaardingerbroek, G. A. Acket, K. Hofmann, and P. M. Boers, Reduced build-up of domains in sheet-type gallium-arsenide Gunn oscillators, Phys. Lett. 28A (2), 97–99 (1968).CrossRefGoogle Scholar
  85. 85.
    H. L. Hartnagel, Gunn domains in bulk GaAs affected by surface conditions, Phys. Stat. Solidi (a) 7 (2), K99-K103 (1971).CrossRefGoogle Scholar
  86. 86.
    K. R. Freeman, C. Sozou, and H. L. Hartnagel, Two-dimensional Gunn-domain growth in bulk GaAs, Phys. Lett. 34A (2), 95–96 (1970).Google Scholar
  87. 87.
    M. Shoji, Theory of transverse extension of Gunn-domains, J. Appl. Phys. 11 (2), 774–778 (1970).CrossRefGoogle Scholar
  88. 88.
    J. S. Heeks, Some properties of the moving high-field domain in Gunn effect devices, IEEE Trans. ED-13 (1), 68–70 (1966).CrossRefGoogle Scholar
  89. 89.
    A. G. Chynoweth, W. L. Feldmann, and D. E. McCumber, Mechanism of the Gunn effect, Proc. Intern. Conf. Phys. Semicond., Kyoto, J. Phys. Soc. Jpn. 21 Suppl., 514–521 (1966).Google Scholar
  90. 90.
    P. D. Southgate, Recombination processes following impact ionization by high-field domains in gallium arsenide, J. Appl. Phys. 38 (12), 4589–4595 (1967).CrossRefGoogle Scholar
  91. 91.
    J. Owens and G. S. Kino, Experimental studies of Gunn domains and avalanching, J. Appl. Phys. 42 (12), 5019–5028 (1971).CrossRefGoogle Scholar
  92. 92.
    P. D. Southgate, H. J. Pager, and K. K. N. Chang, Modulation of infrared light by holes in pulse-ionized GaAs, J. Appl. Phys. 38 (6), 2689–2691 (1967).CrossRefGoogle Scholar
  93. 93.
    K. K. Chang, S. G. Liu, and H. J. Prager, Infrared radiation from bulk GaAs, Appl. Phys. Lett. 8, 196–198 (1966).CrossRefGoogle Scholar
  94. 94.
    S. G. Liu, Infrared and microwave radiations associated with a current controlled instabilities in GaAs, Appl. Phys. Lett. 9 (2), 79–81 (1966).CrossRefGoogle Scholar
  95. 95.
    J. A. Copeland, Switching and low-field breakdown in n-GaAs bulk diodes, Appl. Phys. Lett. 9 (4), 140–142 (1966).MathSciNetCrossRefGoogle Scholar
  96. 96.
    M. R. Oliver, A. L. McWhorter, and A. G. Foyt, Current runaway and avalanche effects in CdTe, Appl. Phys. Lett. 11 (4), 111–113 (1967).CrossRefGoogle Scholar
  97. 97.
    P. D. Southgate, Stimulated emission from bulk field-ionized GaAs, IEEE J. Quantum Electron. QE-4 (4), 179–185 (1968).CrossRefGoogle Scholar
  98. 98.
    P. D. Southgate and R. T. Mazzochi, Stimulated emission in field-ionized bulk InP, Phys. Lett. 28A (3), 216–217 (1968).CrossRefGoogle Scholar
  99. 99.
    P. D. Southgate, Laser action in field-ionized bulk GaAs, Appl. Phys. Lett. 12 (3), 61–63 (1968).CrossRefGoogle Scholar
  100. 100.
    B. L. Gelmont and M. S. Shur, Current filamentation in high doped Gunn diodes, Sov. Phys. JETP Lett. 11 (7), 350–353 (1970).Google Scholar
  101. 101.
    B. L. Gelmont and M. S. Shur, Characteristic time of the coherency violation of Gunn oscillations, Sov. Phys. Semicond. 7 (1), 326–331 (1973).Google Scholar
  102. 102.
    B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristics in Gunn diodes, J. Phys. D Appl. Phys. 6, 842–850 (1973).CrossRefGoogle Scholar
  103. 103.
    R. Hall and J. H. Leck, Avalanche break-down of gallium arsenide p-n junctions, Int. J. Electron. 25 (6), 529–537 (1968).CrossRefGoogle Scholar
  104. 104.
    B. L. Gelmont and M. S. Shur, S-type current-voltage characteristics in Gunn diodes with deep levels, Theory, Sov. Phys. Semicond. 7 (1), 50 (1973).Google Scholar
  105. 105.
    B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristic in Gunn diodes with deep levels. Comparison of theory and experiment, Sov. Phys. Semicond. 7 (3), 377–379 (1973).Google Scholar
  106. 106.
    W. K. Kennedy, L. F. Eastman and R. J. Gilbert, LSA operation of large volume bulk GaAs samples, IEEE Trans. ED-14 (9), 500–504 (1967).CrossRefGoogle Scholar
  107. 107.
    E. D. Prokhorov and V. A. Shalaev, Influence of a magnetic field on carriers generated within a high field domain under impact ionization in a Gunn diode, Sov. Phys. Semicon. 4(10), 1707 (1970).Google Scholar
  108. 108.
    P. D. Southgate, Role of ionization inhomogeneities in the 5-type characteristic of moderately heavily doped n-GaAs, J. Appl. Phys. 43 (3), 1038–1041 (1972).CrossRefGoogle Scholar
  109. 109.
    B. L. Gelmont and M. S. Shur, Current filamentation in doped Gunn diodes, Sov. Phys. Semicond. 4 (9), 1419 (1970).Google Scholar
  110. 110.
    B. L. Gelmont and M. S. Shur, Motion of a current filament movement in a magnetic field under Gunn effect conditions, Sov. Phys. Semicond. 4 (9), 1540 (1970).Google Scholar
  111. 111.
    B. L. Gelmont and M. S. Shur, Current filament movement in transverse electric and magnetic fields, Sov. Phys. Semicond. 7 (10), 1311–1314 (1971).Google Scholar
  112. 112.
    Z. N. Chigogidze, N. P. Khuchua, L. M. Gutnic, P. G. Kharati, I. V. Varlamov, U. A. Bekirev and A.A. Tyutyun, Mechanism of failure of Gunn diodes Sov. Phys. Semicond. 6 (9), 1443 (1973).Google Scholar
  113. 113.
    Sh. G. Suleimanov, Effect of a magnetic field on the current instability in gallium arsenide, Sov. Phys. Semicond. 6 (1), 150 (1972).Google Scholar
  114. 114.
    B. L. Gelmont and M. S. Shur, 5-type current-voltage characteristic and recombination emission in Gunn diodes, Electron. Lett. 6 (16), 531–532 (1970).CrossRefGoogle Scholar
  115. 115.
    B. L. Gelmont and M. S. Shur, A quasineutral wave new instability in semiconductors with two kinds of carriers—Sov. Phys. Semicond. 5 (6), 955 (1971).Google Scholar
  116. 116.
    B. L. Gelmont and M. S. Shur, The instability of quasineutral waves in a semiconductor with two kinds of carriers, Phys. Lett. 35A (5), 353–354 (1971).CrossRefGoogle Scholar
  117. 117.
    R. A. Smith, Semiconductors, Cambridge Univ. Press, Cambridge (1959).MATHGoogle Scholar
  118. 118.
    B. L. Gelmont and M. S. Shur, High field domains in Gunn diodes with two kinds of carriers, Sov. Phys. JETP 33 (6), 1234–1239 (1971).Google Scholar
  119. 119.
    B. L. Gelmont and M. S. Shur, High field Gunn domains in the presence of electron-hole pairs, Phys. Lett. 36A (4), 305–306 (1971).CrossRefGoogle Scholar
  120. 120.
    B. L. Gelmont and M. S. Shur, High field recombination domains in semiconductors with two types of carriers, Sov. Phys. JETP 34 (6), 1295 (1972).Google Scholar
  121. 121.
    B. Fay and G. S. Kino, Appl. Phys. Lett. 15, 337 (1969).CrossRefGoogle Scholar
  122. 122.
    V. L. Dalai, Hole velocity in p-GaAs, Appl. Phys. Lett. 16 (12), 489–491 (1970).CrossRefGoogle Scholar
  123. 123.
    P. A. Borodovskii and I. F. Rosentsvaig, Mobile high field domain in a sample of n-type InSb subjected to an external magnetic field, Sov. Phys. Semicond. 6 (12), 1972 (1973).Google Scholar
  124. 124.
    P. M. Boers, Measurements on dipole domains in indium phospide, Phys. Lett. 34A (6), 329–330 (1971).CrossRefGoogle Scholar
  125. 125.
    P. Guetin, Contribution to the experimental study of the Gunn effect in long GaAs samples, IEEE Trans. ED-14 (9), 552–562 (1967).CrossRefGoogle Scholar
  126. 126.
    B. L. Gelmont and M. S. Shur, Analytical theory of recombination domains, Sov. Phys. Semicond. 5(11), 1841 (1971).Google Scholar
  127. 127.
    B. L. Gelmont and M. S. Shur, An analytical theory of the high field domain in the presence of trapping, Phys. lett. 38A (7), 503–504 (1972).CrossRefGoogle Scholar
  128. 128.
    B. L. Gelmont and M. S. Shur, Slow high field domains in Gunn diodes with two kinds of carriers 7 (9), 1279–1286 (1974).Google Scholar
  129. 129.
    M. E. Levinshtein, D. N. Nasledov, and M. S. Shur, Magnetic field influence on the Gunn effect, Phys. Status Solidi 33 (2), 897–903 (1969).CrossRefGoogle Scholar
  130. 130.
    M. E. Levinshtein, T. V. Lvova, D. N. Nasledov, and M. S. Shur, Magnetic field influence on the Gunn effect II, Phys. Status Solidi (a) 1 (1), 177–187 (1970).CrossRefGoogle Scholar
  131. 131.
    T. R. Jervis and E. F. Johnson, Geometrical magnetoresistance and Hall mobility in Gunn effect devices, Solid State Electron. 13, 181–189 (1970).CrossRefGoogle Scholar
  132. 132.
    H. L. Hartnagel, G. P. Srivastava, P. C. Mathur, K. N. Trepathi, S. K. Lomash, and A. K. Dhall, The influence of transverse magnetic field on Gunn effect threshold, Phys. Lett. 49A (6), 463–465 (1974).CrossRefGoogle Scholar
  133. 133.
    A.D. Boardman, W. Fawcett, and J. G. Ruch, Monte Carlo determination of hot electron gal-vanomagnetic effects in gallium arsenide, Phys. Status Solidi (a) 4 (1), 133–141 (1971).CrossRefGoogle Scholar
  134. 134.
    W. Heinle, Influence of magnetic field on the Gunn effect characteristic of GaAs, Phys. Status Solidi 2 (1), 115–121 (1970).CrossRefGoogle Scholar
  135. 135.
    W. K. Kennedy, Variation of the Gunn effect by magnetic field, Proc. IEEE 1639–1640, October (1965).Google Scholar
  136. 136.
    M. S. Shur, Turnover of current-voltage characteristic in high magnetic field due to geometric magnetoresistance, Proc. of 13th International Conference on Physics of Semiconductors, pp. 1145–1148, Rome 1977.Google Scholar
  137. 137.
    M. S. Shur, Geometric magnetoresistance and negative differential mobility in semiconductor devices, Solid State Electron. 20, 389–401 (1977).CrossRefGoogle Scholar
  138. 138.
    V. B. Gorfinkel, M. E. Levinshtein, and D. V. Mashovets, Influence of a strong transverse magnetic field on the Gunn effect, Sov. Phys. Semicond. 13 (3), 331 (1979).Google Scholar
  139. 139.
    A. A. Grinberg and A. A. Kastalskii, Phys. Status Solidi, 26, 219 (1968).CrossRefGoogle Scholar
  140. 140.
    A. A. Kastalskii, Sov. Phys. Semicond. 2, 995 (1969).Google Scholar
  141. 141.
    N. A. Guschina and M. S. Shur, Sov. Phys. Semicond. 4, 922 (1970).Google Scholar
  142. 142.
    H. Hagakawa, R. Ishiguro, N. Mikoshiba, and M. Kikuchi, Appl. Phys. Lett. 14, 9 (1969).CrossRefGoogle Scholar
  143. 143.
    H. Hayakawa, T. Ishiguro, S. Takada, N. Mikoshiba, and M. Kikuchi, J. Appl. Phys. 41,4755 (1970).CrossRefGoogle Scholar
  144. 144.
    R. E. Lee and R. M. White, Appl. Phys. Lett. 16, 343 (1970).CrossRefGoogle Scholar
  145. 145.
    A. L. Kazakov and M. S. Shur, Sov. Phys.—Semicond. 3, 1047 (1970).Google Scholar
  146. 146.
    M. G. Cohen, S. Knight, and J. P. Elward, Appl. Phys. Lett. 8, 269 (1966).CrossRefGoogle Scholar
  147. 147.
    P. Guetin and D. Boccon-Gibod, Appl. Phys. Lett. 13, 161 (1968).CrossRefGoogle Scholar
  148. 148.
    P. D. Southgate, H. J. Prager, and K. K. N. Chang, J. Appl. Phys. 38, 2689 (1967).CrossRefGoogle Scholar
  149. 149.
    M. S. Shur, Phys. Lett. 29A, 490 (1969).CrossRefGoogle Scholar
  150. 150.
    W. H. Haydl and R. Solomon, The effect of illumination on Gunn oscillations in epitaxial GaAs, IEEE Trans. ED-15 (11), 941–942 (1968).CrossRefGoogle Scholar
  151. 151.
    K. G. Sewell and L. A. Boather, Multimode operation in GaAs oscillators induced by cooling and illumination, Proc. IEEE 55 (7), 1228–1229 (1967).CrossRefGoogle Scholar
  152. 152.
    R. F. Adams and H. J. Schulte, Optically triggered domains in GaAs Gunn diodes, Appl. Phys. Lett. 15 (8), 265–267 (1969).CrossRefGoogle Scholar
  153. 153.
    R. R. Riesz, Optical interaction with high field domain nucleation in GaAs, IEEE Trans. ED-17 (1), 81–83 (1970).MathSciNetCrossRefGoogle Scholar
  154. 154.
    T. Igo et al, Regenerative light pulse detection using Gunn effect, Jpn J. Appl. Phys. 9 (10), 1283–1285 (1970).CrossRefGoogle Scholar
  155. 155.
    M. E. Levinshtein, Influence of the illumination on the parameters of Gunn diodes, Sov. Phys. Semicond. 7 (7), 832 (1973).Google Scholar
  156. 156.
    J. Xu and M. S. Shur, Velocity-Field Dependence in GaAs, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Michael Shur
    • 1
  1. 1.University of MinnesotaMinneapolisUSA

Personalised recommendations