Advertisement

Chemistry and Biosynthesis of Penicillins and Cephalosporins

  • B. W. Bycroft
  • R. E. Shute
Part of the Biotechnology Handbooks book series (BTHA, volume 1)

Abstract

It has now been more than 50 years since Fleming’s legendary observations on the inhibition of bacterial growth by Penicillium notatum laid the foundations of modern antibiotic chemotherapy.

Keywords

Total Synthesis Penicillium Chrysogenum Raney Nickel Penicillin Biosynthesis Semisynthetic Penicillin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberhart, D. A., 1977, Biosynthesis of β-lactam antibiotics, Tetrahedron 33:1545–1559.Google Scholar
  2. Aberhart, D. J., Chu, J. Y. R., and Lin, L. J., 1975, Studies on the biosynthesis of β-lactam antibiotics: Synthesis and incorporation into penicillin G of (2RS, 2′RS, 3R, 3′R)-3,3′-3H2-cystine and (2RS, 2′RS, 3S, 3′S)-3,3′-3H2-cystine, J. Chan. Soc. Perkin Trans. 1 1975:2517–2523.Google Scholar
  3. Abraham, E. P., 1974, Biosynthesis and Enzymic Hydrolysis of Penicillins and Cephalosporins, University of Tokyo Press, Tokyo.Google Scholar
  4. Abraham, E. P., and Chain, E. B., 1940, An enzyme from bacteria able to destroy penicillin, Nature (London) 146:837.Google Scholar
  5. Abraham, E. P., and Loder, P. B., 1972, Cephalosporin C., in: Cephalosporins and Penicillins: Chemistry and Biology (E. H. Flynn, ed.), Academic Press, New York, pp. 2–26.Google Scholar
  6. Abraham, E. P., and Newton, G. G. F., 1954, Synthesis of D-δ-amino-δ-carboxyvalerylglycine (a degradation product of cephalosporin N) and of DL-δ-amino-δ-carboxyvaleramide, Biochem. J. 58:226–268.Google Scholar
  7. Abraham, E. P., and Newton G. G. F., 1961, The structure of cephalosporin C., Biochem. J. 79:377–393.PubMedGoogle Scholar
  8. Abraham, E. P., Newton, G. G. F., and Warren, S. C., 1965, Problems relating to the biosynthesis of peptide antibiotics, in: Biogenesis of Antibiotic Substances (Z. Vanek and Z. Hostalek, eds.), Academic Press, New York, pp. 169–194.Google Scholar
  9. Abraham, E. P., Huddlestone, J. A., Jayatilake, G. S., O’Sullivan, J., and White, R. L., 1981, Conversion of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N in cell-free extracts of Cephalosporium acremonium, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 2nd International Symposium (G. I. Gregory, ed.), Royal Society of Chemistry, London, pp. 125–134.Google Scholar
  10. Adlington, R. M., Aplin, R. T., Baldwin, J. E., Chakravarti, B., Field, L. D., John, E. M. M., Abraham, E. P., and White, R. L., 1983a, Conversion of 17O/18O-labelled δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to 17O/18O-labelled isopenicillin N in a cell-free extract of Cephalosporium acremonium, Tetrahedron 39:1061–1068.Google Scholar
  11. Adlington, R. M., Baldwin, J. E., Lopez-Nieto, M., Murphy, J. A., and Patel, N., 1983b, A study of the biosynthesis of the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine in a β-lactam-negative mutant of Cephalosporium acremonium, Biochem. J. 213:573–576.PubMedGoogle Scholar
  12. Adriaens, P., Vanderhaege, B., Meesschaert, B., and Eyssen, H., 1975, Incorporation of double-labelled L-cystine and DL-valine in penicillin, Antimicrob. Agents Chemother. 8:15–17.PubMedGoogle Scholar
  13. Anderson, E. G., and Pratt, R. F., 1981, Pre-steady state β-lactamase kinetics: Observation of a covalent intermediate during turnover of a fluorescent cephalosporin by the β-lactamase of Staphylococcus aureus PCI, J. Biol. Chem. 256:11, 401–11, 404.Google Scholar
  14. Arnstein, H. R. V., and Grant, P. T., 1954, The biosynthesis of penicillin: The incorporation of some amino acids into penicillin, Biochem. J. 57:353–359.PubMedGoogle Scholar
  15. Arnstein, H. R. V., and Morris, D., 1960, The structure of a peptide containing α-aminoadipic acid, cystine and valine, present in the mycelium of Penicillium chrysogenum, Biochem. J. 76:357–361.PubMedGoogle Scholar
  16. Baldwin, J. E., 1985, Recent studies on the biosynthesis of penicillins, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 3rd International Symposium (A. G. Brown and S. M. Roberts, eds.), Royal Society of Chemistry, London, pp. 62–85.Google Scholar
  17. Baldwin, J. E., Singh, P. D., Yoshida, M., Sawada, Y., and Demain, A. L., 1980, Incorporation of 3H and 14C from 6-α-3H-penicillin N and 10-14C-6-α-3H-penicillin N into deacetoxycephalosporin C., Biochem. J. 186:889–895.PubMedGoogle Scholar
  18. Baldwin, J. E., Jung, M., Usher, J. J., Abraham, E. P., Huddleston, J. A., and White, R. L., 1981a, Penicillin biosynthesis: Conversion of deuterated δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine into isopenicillin N by a cell-free extract of Cephalosporium acremonium, J. Chem. Soc. Chem. Commun. 1981:246–247.Google Scholar
  19. Baldwin, J. E., Keeping, J. W., Singh, P. D., and Vallejo, C. A., 1981b, Cell-free conversion of isopenicillin N into deacytoxycephalosporin C by Cephalosporium acremonium M-0198, Biochem. J. 194:649–651.PubMedGoogle Scholar
  20. Baldwin, J. E., Abraham, E. P., Adlington, R. M., Chakravati, B., Derome, A. E., Murphy, J. A., Field, L. D., Green, N. B., Ting, H.-H., and Usher, J. J., 1983, Penicillin biosynthesis: Dual pathways from a modified substrate, J. Chem. Soc. Chem. Commun. 1983:1317–1319.Google Scholar
  21. Baldwin, J. E., Abraham, E. P., Adlington, R. M., Bahadur, G. A., Chakravati, B., Domayne-Hayman, B. P., Field, L. D., Flitsch, S. L., Jayatilake, G. S., Spakovskis, A., Ting, H.-H., Turner, N. J., White, R. L., and Usher, J. J., 1984a, Penicillin biosynthesis: Active site mapping with aminoadipylcysteinylvaline variants, J. Chem. Soc. Chem. Commun. 1984:1225–1227.Google Scholar
  22. Baldwin, J. E., Abraham, E. P., Lovel, C. G., and Ting, H.-H., 1984b, Inhibition of penicillin biosynthesis by δ-(L-α-aminoadipyl)-L-cysteinylglycine: Evidence for initial β-lactam ring formation, J. Chem. Soc. Chem. Commun. 1984:902–903.Google Scholar
  23. Batchelor, F. R., Doyle, F. P., Nayler, J. H. C., and Rolinson, G. N., 1959, Synthesis of penicillin-6-aminopenicillanic acid in penicillin fermentations, Nature (London) 183:257–258.Google Scholar
  24. Behrens, O. K., 1949, Biosynthesis of penicillins, in: The Chemistry of Penicillin (H. T. Clarke, J. R. Johnson, and R. Robinson, eds.), Princeton University Press, Princeton, New Jersey, pp. 657–679.Google Scholar
  25. Blumberg, P. M., and Strominger, J. L., 1972, Five penicillin-binding components occur in Bacillus subtilis membranes, J. Biol. Chan. 247:8107–8113.Google Scholar
  26. Booth, H., Bycroft, B. W., Wels, C. M., Corbett, K., and Maloney, A. P., 1976, Application of 15N pulsed Fourier transform nuclear magnetic resonance spectroscopy to biosynthesis: Incorporation of L-15N-valine into penicillin G, J. Chem. Soc. Chem. Commun. 1976:110–111.Google Scholar
  27. Bost, P. E., and Demain, A. L., 1977, Studies on cell-free biosynthesis of β-lactam antibiotics, Biochem. J. 161:681–687.Google Scholar
  28. Brewer, S. J., Farthing, J. E., and Turner, M. K., 1977, Oxygénation of the 3-methyl group of 7-β-(5-D-aminoadipamido)-3-methylceph-3-em-4-carboxylic acid (deacetoxycephalosporin G) by extracts of Acremonium chrysogenum, Biochem. Soc. Trans. 5:1024–1026.PubMedGoogle Scholar
  29. Brotzu, G., 1948, Lavori dell’Istituto d’Igiene di Cagliari, Cagliari.Google Scholar
  30. Brown, A. G., and Roberts, S. M. (eds.), 1985, Recent Advances in the Chemistry of β-Lactam Antibiotics: 3rd International Symposium, Royal Society of Chemistry, London.Google Scholar
  31. Bycroft, B. W., and Shute, R. E., 1985, The molecular basis for the mode of action of β-lactam antibiotics and mechanisms of resistance, Pharm. Res. 1985:3–14.Google Scholar
  32. Bycroft, B. W., Wels, C. M., Corbett, K., and Lowe, D. A., 1975a, Incorporation of α-2H-and α-3H-L-cystine into penicillin G and the location of the label using isotope exchange and 2H nuclear magnetic resonance, J. Chem. Soc. Chem. Commun. 1975:123.Google Scholar
  33. Bycroft, B. W., Wels, C. M., Corbett, K., and Maloney, A. P., 1975b, Biosynthesis of penicillin G from D-and L-14C-and α-3H-valine, J. Chem. Soc. Chem. Commun. 1975:923–924.Google Scholar
  34. Bycroft, B. W., Wels, C. M., Corbett, K., and Maloney, A. P., 1976, Studies on the biosynthesis of penicillin G in a high-producing strain of Penicillium chrysogenum, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 1st International Symposium (J. Elks, ed.), Royal Society of Chemistry, London, pp. 12–19.Google Scholar
  35. Chan, J. A., Huang, F. C., and Sih, C. J., 1976, The absolute configuration of the amino acids in δ-(α-aminoadipyl)cysteinylvaline from Penicillium chrysogenum, Biochemistry 15:177–180.PubMedGoogle Scholar
  36. Chauvette, R. R., Pennington, P. A., Ryan, C. W., Cooper, R. D. G., José, F. L., Wright, I. G., Van Heyningen, E. M., and Huffman, G. W., 1971, Chemistry of cephalosporin antibiotics: Conversion of penicillins to cephalexin, J. Org. Chem. 36:1259–1267.PubMedGoogle Scholar
  37. Claridge, C. A., Luttinger, J. R., and Lein, S., 1963, Specificity of penicillin amidases, Proc. Soc. Exp. Biol. Med. 113:1008–1012.PubMedGoogle Scholar
  38. Clarke, H. T., Johnson, J. R., and Robinson, R. (eds.), 1949, The Chemistry of Penicillin, Princeton University Press, Princeton, New Jersey.Google Scholar
  39. Cole, M., 1966a, Microbial synthesis of penicillins. I, Process Biochem. 1:334–338.Google Scholar
  40. Cole, M., 1966b, Microbial synthesis of penicillins. II, Process Biochem. 1:373–377.Google Scholar
  41. Cole, M., and Batchelor, F. R., 1963, Aminoadipoylpenicillin in penicillin fermentations, Nature (London) 198:383–384.Google Scholar
  42. Cooper, R. D. G., 1980, New β-lactam antibiotics, in: Topics in Antibiotic Chemistry, Vol. III (P. G. Sammes, ed.), Wiley and Sons, New York, pp. 39–199.Google Scholar
  43. Cooper, R. D. G., and Koppel, G. A., 1982, The chemistry of penicillin sulfoxide, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. I (R. B. Morin, and M. Gorman, eds.), Academic Press, New York, pp. 1–92.Google Scholar
  44. Cooper, R. D. G., and Spry, D. O., 1972, Rearrangements of cephalosporins and penicillins, in: Cephalosporins and Penicillins: Chemistry and Biology (E. H. Flynn, ed.), Academic Press, New York, pp. 183–254.Google Scholar
  45. Cooper, R. D. G., Hatfield, L. D., and Spry, D. O., 1973, Chemical interconversion of the β-lactam antibiotics, Acc. Chem. Res. 6:32–40.Google Scholar
  46. Crowfoot, D., Bunn, C. W., Rogers-Low, B. W., and Turner-Jones, A., 1949, The X-ray crystallographic investigation of the structure of penicillin, in: The Chemistry of Penicillin (H. T. Clarke, J. R. Johnson, and R. Robinson, eds.), Princeton University Press, Princeton, New Jersey, pp. 310–366.Google Scholar
  47. Demain, A. L., 1957, Inhibition of penicillin formation by lysine, Arch. Biochem. Biophys. 67:244–246.PubMedGoogle Scholar
  48. Demain, A. L., 1963, Synthesis of cephalosporin C by resting cells of Cephalosporium acremonium, Clin. Med. 70:2045–2051.PubMedGoogle Scholar
  49. Demain, A. L., 1974, Biochemistry of penicillin and cephalosporin fermentations, Lloydia 37:147–167.PubMedGoogle Scholar
  50. Demain, A. L., Walton, R. B., Newkirk, J. F., and Miller, I. M., 1963, Microbial degradation of cephalosporin C., Nature (London) 199:909–910.Google Scholar
  51. Elander, R. D., and Aoki, H., 1982, β-Lactam-producing micro-organisms: Their biology and fermentation behavior, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. III (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 84–183.Google Scholar
  52. Ernest, I., 1982, The penams, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. II (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 315–360.Google Scholar
  53. Fawcett, P. A., Usher, J. J., and Abraham, E. P., 1975, Behavior of tritium-labelled isopenicillin N and 6-aminopenicillanic acid as potential precursors in an extract of Penicillium chrysogenum, Biochem. J. 151:741–746.PubMedGoogle Scholar
  54. Fawcett, P. A., Usher, J. J., Huddleston, J. A., Bleany, R. C., Nisbet, J.J., and Abraham, E. P., 1976, Synthesis of δ-(α-aminoadipyl)cysteinylvaline and its role in penicillin biosynthesis, Biochem. J. 157:651–660.PubMedGoogle Scholar
  55. Felix, H. R., Nuesch, J., and Wehrli, W., 1980, Investigation of the two final steps in the biosynthesis of cephalosporin C using permeabilized cells of Cephalosporium acremonium, FEMS Microbiol. Lett. 8:55–58.Google Scholar
  56. Flynn, E. H., McCormick, M. H., Stamper, M. C., De Valeria, H., and Godzeskii, C. W., 1962, A new natural penicillin from Penicillium chrysogenum, J. Am. Chem. Soc. 84:4594–4595.Google Scholar
  57. Friedrich, C. G., and Demain, A. L., 1977, Homocitrate synthetase as the crucial site of the lysine effect on penicillin biosynthesis, J. Antibiot. 30:760–761.PubMedGoogle Scholar
  58. Fujisawa, Y., 1977, Studies on the biosynthesis of cephalosporin C., J. Takeda Res. Lab. 36(3/4):295–356.Google Scholar
  59. Fujisawa, Y., and Kanzaki, T., 1975, Role of acetyl CoA-deacetylcephalosporin C acetyltransferase in cephalosporin C biosynthesis by Cephalosporium acremonium, Agric. Biol. Chem. 39:2043–2048.Google Scholar
  60. Fujisawa, Y., Shirafuji, H., Kida, M., Nara, K., Yoneda, M., and Kanzaki, T., 1975, Accumulation of deacetylcephalosporin C by cephalosporin G-negative mutants of Cephalosporium acremonium, Agric. Biol. Chem. 39:1295–1301.Google Scholar
  61. Ganguly, A. K., Girijavallabhan, J. M., McCombie, S., Pinto, P., Rizvi, R., Jeffrey, P. D., and Lin, S., 1982, Synthesis of Sch 29482 [5R, 6S, 8R] 6-(l-hydroxyethyl)-2-ethylthiopenem-3-carboxylic acid sodium salt): A novel penem antibiotic, J. Antimicrob. Chemother. 9(Suppl. C):1–6.PubMedGoogle Scholar
  62. Gardner, A. D., 1940, Morphological effects of penicillin on bacteria, Nature (London) 146:837–838.Google Scholar
  63. Ghuysen, J.-M., 1977, Biosynthesis and assembly of bacterial cell walls, Cell Surfaces Rev. 4:463–595.Google Scholar
  64. Ghuysen, J.-M., 1980, Antibiotics and peptidoglycan metabolism, in: Topics in Antibiotic Chemistry, Vol. V (P. G. Sammes, ed.), Wiley and Sons, New York, pp. 9–117.Google Scholar
  65. Gordon, E. M., and Sykes, R. B., 1982, Cephamycin antibiotics, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. I (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 199–370.Google Scholar
  66. Goulden, S. A., and Chattaway, F. W., 1968, Lysine control of α-aminoadipate and penicillin synthesis in Penicillium chrysogenum, Biochem. J. 110:55P–56P.PubMedGoogle Scholar
  67. Goulden, S. A., and Chattaway, F. W., 1969, End-product control of acetohydroxyacid synthetase by valine in Penicillium chrysogenum Q176 and a high penicillin-yielding mutant, J. Gen. Microbiol. 59:111–118.PubMedGoogle Scholar
  68. Hale, C. W., Newton, G. G. F., and Abraham, E. P., 1961, Derivatives of cephalosporin C formed with certain heterocyclic tertiary bases: The cephalosporin Ca family, Biochem. J. 79:403–408.PubMedGoogle Scholar
  69. Hamashima, Y., Matsumura, H., Matsumura, S., Nagata, W., Narisada, M., and Yoshida, T., 1981, Synthesis and structure-activity relationships of 1-oxacephem derivatives, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 2nd International Symposium (G. I. Gregory, ed.), Royal Society of Chemistry, London, pp. 57–79.Google Scholar
  70. Hamilton-Miller, J. M. T., and Smith, J. T. (eds.), 1979, The β-Lactamases, Academic Press, New York.Google Scholar
  71. Hatfield, L. D., Lunn, W. H. W., Jackson, B. G., Peters, L. R., Blaszczak, L. C., Fisher, J. W., Gardner, J. P., and Dunigan, J. M., 1981, Application of phosphorus-halogen compounds in cleavage of the 7-amide group of cephalosporins, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 2nd International Symposium (G. I. Gregory, ed.), Royal Society of Chemistry, London, pp. 109–124.Google Scholar
  72. Hodgkin, D. C., and Maslen, E. N., 1961, The X-ray structure of cephalosporin C., Biochem. J. 79:393–402.PubMedGoogle Scholar
  73. Holden, K. G., 1982, Total synthesis of penicillins, cephalosporins, and their nuclear analogs, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. II (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 99–164.Google Scholar
  74. Huber, F. M., Chauvette, R. R., and Jackson, B. G., 1972, Preparative methods for 7-aminocephalosporanic acid and 6-aminopenicillanic acid, in: Cephalosporins and Penicillins: Chemistry and Biology (E. H. Flynn, ed.), Academic Press, New York, pp. 27–72.Google Scholar
  75. Jayatilake, G. S., Huddleston, J. A., and Abraham, E. P., 1981, Conversion of isopenicillin N into penicillin N in cell-free extracts of Cephalosporium acremonium, Biochem. J. 194:645–646.PubMedGoogle Scholar
  76. Jung, F. A., Pilgrim, W. R., Poyser, J. P., and Sirett, P. J., 1980, The chemistry and antimicrobial activity of new synthetic β-lactam antibiotics, in: Topics in Antibiotic Chemistry, Vol. IV (P. G. Sammes, ed.), Wiley and Sons, New York, pp. 11–265.Google Scholar
  77. Kluender, H., Huang, F. C., Fritzberg, A., Schones, H., Sih, C. J., Fawcett, P., and Abraham, E. P. 1974, Studies on the incorporation of (2S,3R)-4,4,4-2H3-valine and (2S,3S)-4,4,4-2H3-valine into β-lactam antibiotics, J. Am. Chem. Soc. 96:4054–4055.PubMedGoogle Scholar
  78. Kohsaka, M., and Demain, A. L., 1976, Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium, Biochem. Biophys. Res. Commun. 70:465–473.PubMedGoogle Scholar
  79. Kukolja, S., and Chauvette, R. R., 1982, Cephalosporin antibiotics prepared by modifications at the C-3 position, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. I (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 93–198.Google Scholar
  80. Lemke, P. A., and Brannon, D. R., 1972, Microbial syntheses of cephalosporin and penicillin compounds, in: Cephalosporins and Penicillins: Chemistry and Biology (E. H. Flynn, ed.), Academic Press, New York, pp. 370–437.Google Scholar
  81. Lemke, P. A., and Nash, 1972, Mutations that affect antibiotic synthesis by Cephalosporium acremonium, Can. J. Microbiol. 18:255–259.PubMedGoogle Scholar
  82. Liersch, J., Niiesch, J., and Treichler, H. J., 1976, Final steps in the biosynthesis of cephalosporin C., in: Second International Symposium on the Genetics of Industrial Microorganisms (K.D. MacDonald, ed.), Academic Press, New York, pp. 179–195.Google Scholar
  83. Loder, P. B., and Abraham, E. P., 1971, Isolation and nature of intracellular peptides from a cephalosporin C-producing Cephalosporium sp., Biochem. J. 123:471–476.PubMedGoogle Scholar
  84. Loder, P. B., Newton, G. G. F., and Abraham, E. P., 1961, The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives, Biochem. J. 79:408–416.PubMedGoogle Scholar
  85. Luengo, J. M., Revilla, G., Villanueva, J. R., and Martin, J. E., 1979, Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum, J. Gen. Microbiol. 115:207–211.PubMedGoogle Scholar
  86. Matthew, M., and Harris, A. M., 1976, Identification of β-lactamases by analytical isoelectric focusing: Correlation with bacterial taxonomy, J. Gen. Microbiol. 94:55–67.PubMedGoogle Scholar
  87. Meesschaert, B., Adriaens, P., and Eyssen, H., 1980, Studies on the biosynthesis of isopenicillin N with a cell-free preparation of Penicillium chrysogenum, J. Antibiot. 33:722–730.PubMedGoogle Scholar
  88. Meister, A., and Tate, S. S., 1976, Glutathione and related y-glutamyl compounds, in: Annual Review of Biochemistry, Vol. 45 (E. D. Snell, ed.), Annual Reviews, Palo Alto, California, pp. 559–604.Google Scholar
  89. Miller, R. D., Huckstep, L. L., McDermott, J. P., Queener, S. W., Kukolja, S., Spry, D. O., Elzey, T. K., Lawrence, S. W., and Neuss, N., 1981, High performance liquid chromatography (HPLC) of natural products: The use of HPLC in biosynthetic studies of cephalosporin C in the cell-free system, J. Antibiot. 34:984–993.PubMedGoogle Scholar
  90. Mirelman, D., 1979, Biosynthesis and assembly of cell wall peptidoglycan, in: Bacterial Outer Membranes: Biosynthesis and Functions (M. Inouye, ed.), Wiley and Sons, New York, pp. 115–166.Google Scholar
  91. Morecombe, D. J., and Young, D. W., 1975, Synthesis of chirally labelled cysteines and the steric origin of C-5 in penicillin biosynthesis, J. Chem. Soc. Chem. Commun. 1975:198–199.Google Scholar
  92. Morin, R. B., and Gorman, M., 1982, Introduction of a 6(7)-methoxyl group into penicillins and cephalosporins, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. III (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 395–401.Google Scholar
  93. Morin, R. B., Jackson, B. G., Flynn, E. H., and Roeske, R. W., 1962, Chemistry of cephalosporin antibiotics: 7-Aminocephalosporanic acid from cephalosporin C., J. Am. Chem. Soc. 84:3400–3401.Google Scholar
  94. Morin, R. N., Jackson, B. G., Mueller, R. A., Lavagnino, E. R., Scanlon, W. B., and Andrews, S. L., 1963, Chemistry of cephalosporins: Chemical correlation of penicillin and cephalosporin antibiotics, J. Am. Chem. Soc. 85:1896–1897.Google Scholar
  95. Moyer, A. J., and Coghill, R. D., 1947, Penicillin: The effect of phenylacetic acid on penicillin production, J. Bacteriol. 53:329–341.Google Scholar
  96. Nagarajan, R., Boeck, L. D., Gorman, M., Hamill, R. C., Higgens, C. E., Hoehn, M. M., Stark, W. M., and Whitney, J. G., 1971, β-Lactam antibiotics from Streptomyces, J. Am. Chem. Soc. 93:2308–2310.PubMedGoogle Scholar
  97. Neuss, N., Nash, C. H., Baldwin, J. E., Lemke, P. A., and Grutzner, J. B., 1973, Incorporation of (2RS,3S)-4 13C-valine into cephalosporin C., J. Am. Chem. Soc. 95:3797–3798.PubMedGoogle Scholar
  98. Neuss, N., Miller, R. D., Affolder, C. A., Nakatsukasa, W., Mabe, J., Huckstep, L. L., De La Higuera, N., Hunt, A. H., Occolowitz, J. L., and Gilliam, J. H., 1980, High performance liquid chromatography of natural products: Isolation of new tripeptides from the fermentation broth of P. chrysogenum, Helv. Chim. Acta 63:1119–1129.Google Scholar
  99. Newton, G. G. F., and Abraham, E. P., 1953, Isolation of penicillaminic acid and D-α-aminoadipic acid from cephalosporin N, Mature (London) 172:395.Google Scholar
  100. Nüesch, J., Treichler, H. J., and Liersch, M., 1973, The biosynthesis of cephalosporin C., in: Genetics of Industrial Micro-organisms, Vol.2 (Z. Vanek, Z. Hostalek, and J. Cudlin, eds.), Elsevier, Amsterdam, pp. 309–334.Google Scholar
  101. O’Callaghan, C. H., Morris, A., Kirby, S., and Shingler, A. H., 1972, Novel method for the detection of β-lactamases by using a chromogenic cephalosporin substance, Antimicrob. Agents Chemother. 1:283–288.PubMedGoogle Scholar
  102. O’Sullivan, J., and Abraham, E. P., 1981, Biosynthesis of β-lactam antibiotics, in: Antibiotics, Vol. IV (J. W. Corcoran, ed.), Springer-Verlag, Berlin, pp. 101–122.Google Scholar
  103. O’Sullivan, J., Bleany, R. C., Huddleston, J. A., and Abraham, E. P., 1979, Incorporation of 3H from δ-(L-α-4,5-3H2-adipyl)-L-cysteinyl-D-4,4-3H2-valine into isopenicillin N, Biochem. J. 184:421–426.PubMedGoogle Scholar
  104. Ott, J. L., Godzeski, C. W., Pavey, D. E., Farran, J. D., and Horton, D. R., 1962, Biosynthesis of cephalosporin G: Factors affecting the fermentation, Appl. Microbiol. 10:515–523.PubMedGoogle Scholar
  105. Pang, C.-P., Chakravarti, B., Adlington, R. M., Ting, H.-H., White, R. L., Jayatilake, G. S., Baldwin, J. E., and Abraham, E. P., 1984, Purification of isopenicillin N synthetase, Biochem. J. 222:789–495.PubMedGoogle Scholar
  106. Ponsford, R. J., 1985, Recent advances in the chemistry and biology of penicillins, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: International Symposium (A. G. Brown and S. M. Roberts, eds.), Royal Society of Chemistry, London, pp. 32–51.Google Scholar
  107. Price, K. E., 1970, Structure-activity relationships of semisynthetic penicillins, Adv. Appl. Microbiol. 11:17–75.Google Scholar
  108. Price, K. E., 1977, Structure-activity relationships of semisynthetic penicillins (supplement), in: Structure-Activity Relationships among the Semi-Synthetic Antibiotics (D. Perlman, ed.), Academic Press, New York, pp. 61–86.Google Scholar
  109. Queener, S. W., and Neuss, N., 1982, The biosynthesis of β-lactam antibiotics, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. III (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 1–81.Google Scholar
  110. Raper, K. B., Alexander, D. F., and Coghill, R. D., 1944, Penicillin notatum and allied species, J. Bacteriol. 48:639–659.PubMedGoogle Scholar
  111. Sassiver, M. L., and Lewis, A., 1977, Structure—activity relationships among semi-synthetic cephalosporins: The first generation compounds, in: StructureActivity Relationships among the Semi-Synthetic Antibiotics (D. Perlman, ed.), Academic Press, New York, pp. 87–160.Google Scholar
  112. Schneidegger, A., Kuenzi, M. T., and Nüesch, J., 1984, Partial purification and catalytic properties of a bifunctional enzyme in the biosynthetic pathway of β-lactams in Cephalosporium acremonium, J. Antibiot. 37:522–531.Google Scholar
  113. Segel, I. H., and Johnson, M. J., 1963, Intermediates in inorganic sulfate utilization by Penicillium chrysogenum, Arch. Biochem. Biophys. 103:216–226.PubMedGoogle Scholar
  114. Sheehan, J. C., and Henery-Logan, K. R., 1959, The total synthesis of penicillin V, J. Am. Chem. Soc. 81:3089–3094.Google Scholar
  115. Sheehan, J. C., and Henery-Logan, K. R., 1962, The total and partial general synthesis of the penicillins, J. Am. Chem. Soc. 84:2983–2989.Google Scholar
  116. Singh, P. D., Young, M. G., Johnson, J. H., Cimarusti, C. M., and Sykes, R. B., 1984, Bacterial production of 7-formamidocephalosporins: Isolation and structure determination, J. Antibiot. 37:773–780.PubMedGoogle Scholar
  117. Sinha, A. K., and Bhattacharjee, J. K., 1970, Control of a lysine-biosynthetic step by two unlinked genes of Saccharomyces, Biochem. Biophys. Res. Commun. 39:1205–1210.PubMedGoogle Scholar
  118. Sjoeberg, B., Nathorst-Westfelt, L., and Ortengren, B., 1967, Enzymatic hyrolysis of some penicillins and cephalosporins by Escherichia coli acylase, Acta Chem. Scand. 21:547–551.Google Scholar
  119. Somerson, N. L., Demain, A. L., and Nunheimer, R. D., 1961, Reversal of lysine inhibition of penicillin production by α-aminoadipic acid, Arch. Biochem. Biophys. 93:238–241.Google Scholar
  120. Stevens, C. M., and De Long, C. W., 1958, Valine metabolism and penicillin biosynthesis, J. Biol. Chem. 230:991–999.PubMedGoogle Scholar
  121. Suginaka, H., Blumberg, P. M., and Strominger, J. L., 1972, Peptidoglycan of bacterial cell walls: Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococ-cus aureus and Escherichia coli, J. Biol. Chem. 247:5279–5288.PubMedGoogle Scholar
  122. Sweet, R. M., 1972, Chemical and biological activity: Inferences from X-ray crystal structures, in: Cephalosporins and Penicillins: Chemistry and Biology (E. H. Flynn, ed.), Academic Press, New York, pp. 280–309.Google Scholar
  123. Sykes, R. B., and Matthew, M., 1976, The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics, J. Antimicrob. Chemother. 2:115–157.PubMedGoogle Scholar
  124. Tipper, D. J., and Strominger, J. L., 1965, Mechanism of action of penicillins: A proposal based on their structural similarity to acyl D-alanyl-D-alanine, Proc. Natl. Acad. Sci. U.S.A. 54:1133–1141.PubMedGoogle Scholar
  125. Trown, P. W., Sharp, M., and Abraham, E. P., 1963a, α-Oxoglutarate and a precursor of D-α-aminoadipic acid residue in cephalosporin C., Biochem. J. 86:280–284.PubMedGoogle Scholar
  126. Trown, P. W., Smith, B., and Abraham, E. P., 1963b, Biosynthesis of cephalosporin C from amino acids, Biochem. J. 86:284–291.PubMedGoogle Scholar
  127. Turner, M. K., Farthing, J. E., and Brewer, S. J., 1978, Oxygénation of 3-3H-methyldeacetoxylosporin C ( 7-β-D-aminoadipamido-3-methylceph-3-em-4-carboxylic acid) to 3-3H-hydroxymethyldeacetylcephalosporin C by 2-oxoglutarate-linked dioxygenases from Acremonium chrysogenum and Streptomyces clavuligerus, Biochem. J. 173:839–850.PubMedGoogle Scholar
  128. Turner, W. B., and Aldridge, D. C., 1983, Fungal Metabolites, Vol.II, Academic Press, New York, pp. 424–429.Google Scholar
  129. Volkmann, R. A., Carrol, R. D., Drolet, R. B., Elliott, M. L., and Moore, B. S., 1982, Efficient preparation of 6,6-dihalopenicillanic acids: Synthesis of penicillanic acid S,S-dioxide (Sulbactam), J. Org. Chem. 47:3344–3345.Google Scholar
  130. Warren, S. C., Newton, G. G. F., and Abraham, E. P., 1967, Use of α-aminoadipic acid for the biosynthesis of penicillin N and cephalosporin C by a Cephalosporium sp., Biochem. J. 103:891–901.PubMedGoogle Scholar
  131. Waxman, D. J., and Strominger, J. L., 1982, β-Lactam antibiotics: Biochemical modes of action, in: Chemistry and Biology of β-Lactam Antibiotics, Vol. III (R. B. Morin and M. Gorman, eds.), Academic Press, New York, pp. 209–285.Google Scholar
  132. Webber, J. A., and Ott, J. L., 1977, Structure-activity relationships in the cephalosporins: Recent developments, in: Structure-Activity Relationships among the Semi-Synthetic Antibiotics (D. Perlman, ed.), Academic Press, New York, pp. 161–237.Google Scholar
  133. White, R. L., John, E. M., Baldwin, J. E., and Abraham, E. P., 1982, Stoichiometry of oxygen consumption in the biosynthesis of isopenicillin N from a tripeptide, Biochem. J. 203:791–793.PubMedGoogle Scholar
  134. Woodward, R. B., 1966, Recent advances in the chemistry of natural products, Science 153:487–493.PubMedGoogle Scholar
  135. Woodward, R. B., 1977, Recent advances in the chemistry of β-lactam antibiotics, in: Recent Advances in the Chemistry of β-Lactam Antibiotics: 1st International Symposium (J. Elks, ed.), Royal Society of Chemistry, London, pp. 167–180.Google Scholar
  136. Yoshida, M., Konomi, T., Kohsaka, M., Baldwin, J. E., Herchen, S., Singh, P., Hunt, N. A., and Demain, A. L., 1978, Cell-free ring expansion of penicillin N to deacetoxycephalosporin C by Cephalosporium acremonium CW-19 and its mutants, Proc. Natl. Acad. Sci. U.S.A. 75:6253.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • B. W. Bycroft
    • 1
  • R. E. Shute
    • 1
  1. 1.Department of PharmacyUniversity of NottinghamNottinghamEngland

Personalised recommendations