Four-Index Transformations

  • S. Wilson


Atomic and molecular electronic structure calculations are most frequently performed by employing basis set expansion techniques; that is, by invoking the algebraic approximation (for recent reviews see Refs. 1 and 2). In electronic structure calculations which go beyond an independent electron or orbital model and take account of electron correlation effects, it is necessary to perform, either explicitly or implicitly, a transformation. Specifically, it is necessary to carry out a transformation of integrals involving the components of the Schrödinger operator over the chosen basis functions, usually either exponential-type functions or Gaussian-type functions, to integrals over the orbitals resulting from the independent electron model calculation, usually a self-consistent-field calculation.


Electronic Structure Calculation Point Group Symmetry Partial Transformation Electron Correlation Effect Parallel Processing Computer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Wilson, Basis sets, Adv. Chem. Phys. 67, 439 (1987).CrossRefGoogle Scholar
  2. 2.
    S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).Google Scholar
  3. 3.
    C. F. Bender, Integral transformations: A bottle neck in molecular quantum mechanical calculations, J. Comp. Phys. 9, 547–554 (1972).CrossRefGoogle Scholar
  4. 4.
    I. Shavitt, The method of configuration interaction, in: Methods in Electronic Structure Theory (H. F. Schaefer III, ed.), Plenum Press, New York (1977).Google Scholar
  5. 5.
    S. T. Elbert, Four index integral transformations: An n 4? problem? in: Numerical Algorithms in Chemistry: Algebraic Methods, Report of NRCC Workshop August 9–11, 1978, pp. 129-141, LBL-8158 (1978).Google Scholar
  6. 6.
    V. R. Saunders and J. H. van Lenthe, The direct CI method. A detailed analysis, Molec. Phys. 48, 923–954 (1983).CrossRefGoogle Scholar
  7. 7.
    P. Pendergast and E. F. Hayes, A partial transformation for application to perturbation theory configuration interaction, J. Comp. Phys. 26, 236–242 (1978).CrossRefGoogle Scholar
  8. 8.
    N. H. Beebe and J. Linderberg, Simplifications in the generation and transformation of two-electron integrals in molecular calculations, Int. J. Quantum Chem. 12, 683 (1977).CrossRefGoogle Scholar
  9. 9.
    O. Steinborn, On the evaluation of exponential (Slater) type integrals, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).Google Scholar
  10. 10.
    V. R. Saunders, Molecular integrals for Gaussian-type functions, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).Google Scholar
  11. 11.
    S. Wilson, Computational Quantum Chemistry, Clarendon Press, Oxford (1988).Google Scholar
  12. 12.
    F. Billingsley, Int. J. Quantum Chem. 12, 843 (1972).Google Scholar
  13. 13.
    M. Yoshimine, The use of direct access devices in problems requiring the reordering of long lists of data, Report RJ-555 IBM Research Laboratory, San Jose, California, 1969.Google Scholar
  14. 14.
    K. C. Tang and C. Edmiston, More efficient method for the basis transformation of electron interaction integrals, J. Chem. Phys. 52, 997 (1970).CrossRefGoogle Scholar
  15. 15.
    R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963).CrossRefGoogle Scholar
  16. 16.
    A. D. McLean, Potential energy surfaces from ab initio computation: Current and projected capabilities of the ALCHEMY computer program, in: Proceedings of the Conference on Potential Energy Surfaces in Chemistry (W. A. Lester, Jr., ed.), IBM (1971).Google Scholar
  17. 17.
    M. Yoshimine, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 143, Wiley, New York (1973).Google Scholar
  18. 18.
    P. S. Bagus, A. D. McLean, and M. Yoshimine, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 130, Wiley, New York (1973).Google Scholar
  19. 19.
    G. H. F. Diercksen, Optimized transformation of four centre integrals, Theoret. Chim. Acta 33, 1 (1974).CrossRefGoogle Scholar
  20. 20.
    C. N. M. Pounder, The two-electron integral transformation and two-body density matrix transformation, Theoret. Chim. Acta 39, 247–253 (1975).CrossRefGoogle Scholar
  21. 21.
    P. Pendergast and W. H. Fink, A thorough analysis and exposition of the four-index transformation, J. Comp. Phys. 14, 286–300 (1974).CrossRefGoogle Scholar
  22. 22.
    S. Wilson, Diagrammatic many-body perturbation theory of atomic and molecular structure, Comput. Phys. Rep. 2, 389–482 (1985).CrossRefGoogle Scholar
  23. 23.
    S. Wilson, The Many-Body Perturbation Theory of Atoms and Molecules, Adam Hilger, Bristol (1988).Google Scholar
  24. 24.
    B. H. Wells and S. Wilson, Second-order correlation energy of the argon atom using basis sets of gaussian-type functions, J. Phys. B: At. Mol. Phys. 19, 2411 (1986).CrossRefGoogle Scholar
  25. 25.
    M. W. Schmidt and K. Ruedenberg, Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitive, J. Chem. Phys. 71, 3951 (1979).CrossRefGoogle Scholar
  26. 26.
    B. H. Wells and S. Wilson, On the accuracy of the algebraic approximation for diatomic molecules, J. Phys. B: At. Mol. Phys. 18, L731 (1985).CrossRefGoogle Scholar
  27. 27.
    H. M. Quiney, I. P. Grant, and S. Wilson, Diagrammatic perturbation theory: A comparison of numerical methods with basis set expansion techniques for a model problem, J. Phys. B: At. Mol. Phys. 18, 577 (1985).CrossRefGoogle Scholar
  28. 28.
    H. M. Quiney, I. P. Grant and S. Wilson, The Dirac equation in the algebraic approximation. III. Diagrammatic perturbation theory calculations for a model problem, J. Phys. B: At. Mol. Phys. 18, 2805 (1985).CrossRefGoogle Scholar
  29. 29.
    E. dementi and G. Corongiu, Geometrical basis sets for molecular computations, IBM Research Report, Poughkeepsie, New York, 1982.Google Scholar
  30. 30.
    S. Huzinaga, Basis sets for molecular calculations, Comput. Phys. Rep. 2, 279 (1985).CrossRefGoogle Scholar
  31. 31.
    S. Wilson, Universal basis sets and Cholesky decomposition of the two-electron integral matrix, to be published.Google Scholar
  32. 32.
    J. A. Pople, R. Seeger, and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem. S11, 149 (1977).Google Scholar
  33. 33.
    D. M. Silver, K. Ruedenberg, and E. L. Mehler, Electron correlation and the separated electron pair approximation in diatomic molecules. III, J. Chem. Phys. 52, 1206 (1970).CrossRefGoogle Scholar
  34. 34.
    B. O. Roos, The multiconfigurational SCF method, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).Google Scholar
  35. 35.
    W. Meyer, J. Chem. Phys. 64, 2901 (1975)CrossRefGoogle Scholar
  36. R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979).CrossRefGoogle Scholar
  37. 36.
    J. Almhof, K. Faegri, and K. Korsell, Principles for a direct SCF approach to LCAO-MO ab initio calculations, J. Comp. Chem. 3, 385 (1982).CrossRefGoogle Scholar
  38. 37.
    M. F. Guest and S. Wilson, The use of vector processors in quantum chemistry, in: Supercomputers in Chemistry (P. Lykos and I. Shavitt, eds.), American Chemical Society, Washington, D.C. (1981).Google Scholar
  39. 38.
    V. R. Saunders and M. F. Guest, Applications of the Cray 1 for quantum chemical calculations, Comput. Phys. Commun. 26, 389 (1982).CrossRefGoogle Scholar
  40. 39.
    S. Winograd, A new algorithm for inner products, IEEE Trans. Comput. 17, 693 (1968).CrossRefGoogle Scholar
  41. 40.
    R. P. Brent, Error analysis of algorithms for matrix multiplication and triangular decomposition using Winograd’s identity, Numer. Math. 16, 145 (1970).CrossRefGoogle Scholar
  42. 41.
    R. W. Hockney and C. R. Jesshope, Parallel Computers: Architecture, Programming and Algorithms, Adam Hilger, Bristol (1981).Google Scholar
  43. 42.
    L. N. Bhuyan and D. P. Agrawal, Generalized hypercube and hyperbus structures for a computer network, IEEE Trans. Comput. C-33, 322 (1984).CrossRefGoogle Scholar
  44. 43.
    Inmos, The occam Programming Manual, Prentice Hall, Englewood Cliffs, New Jersey (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • S. Wilson
    • 1
  1. 1.University of Manchester Regional Computer CentreManchesterEngland

Personalised recommendations