Skip to main content

Four-Index Transformations

  • Chapter
Methods in Computational Chemistry

Abstract

Atomic and molecular electronic structure calculations are most frequently performed by employing basis set expansion techniques; that is, by invoking the algebraic approximation (for recent reviews see Refs. 1 and 2). In electronic structure calculations which go beyond an independent electron or orbital model and take account of electron correlation effects, it is necessary to perform, either explicitly or implicitly, a transformation. Specifically, it is necessary to carry out a transformation of integrals involving the components of the Schrödinger operator over the chosen basis functions, usually either exponential-type functions or Gaussian-type functions, to integrals over the orbitals resulting from the independent electron model calculation, usually a self-consistent-field calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Wilson, Basis sets, Adv. Chem. Phys. 67, 439 (1987).

    Article  CAS  Google Scholar 

  2. S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).

    Google Scholar 

  3. C. F. Bender, Integral transformations: A bottle neck in molecular quantum mechanical calculations, J. Comp. Phys. 9, 547–554 (1972).

    Article  Google Scholar 

  4. I. Shavitt, The method of configuration interaction, in: Methods in Electronic Structure Theory (H. F. Schaefer III, ed.), Plenum Press, New York (1977).

    Google Scholar 

  5. S. T. Elbert, Four index integral transformations: An n 4? problem? in: Numerical Algorithms in Chemistry: Algebraic Methods, Report of NRCC Workshop August 9–11, 1978, pp. 129-141, LBL-8158 (1978).

    Google Scholar 

  6. V. R. Saunders and J. H. van Lenthe, The direct CI method. A detailed analysis, Molec. Phys. 48, 923–954 (1983).

    Article  CAS  Google Scholar 

  7. P. Pendergast and E. F. Hayes, A partial transformation for application to perturbation theory configuration interaction, J. Comp. Phys. 26, 236–242 (1978).

    Article  CAS  Google Scholar 

  8. N. H. Beebe and J. Linderberg, Simplifications in the generation and transformation of two-electron integrals in molecular calculations, Int. J. Quantum Chem. 12, 683 (1977).

    Article  CAS  Google Scholar 

  9. O. Steinborn, On the evaluation of exponential (Slater) type integrals, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).

    Google Scholar 

  10. V. R. Saunders, Molecular integrals for Gaussian-type functions, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).

    Google Scholar 

  11. S. Wilson, Computational Quantum Chemistry, Clarendon Press, Oxford (1988).

    Google Scholar 

  12. F. Billingsley, Int. J. Quantum Chem. 12, 843 (1972).

    Google Scholar 

  13. M. Yoshimine, The use of direct access devices in problems requiring the reordering of long lists of data, Report RJ-555 IBM Research Laboratory, San Jose, California, 1969.

    Google Scholar 

  14. K. C. Tang and C. Edmiston, More efficient method for the basis transformation of electron interaction integrals, J. Chem. Phys. 52, 997 (1970).

    Article  CAS  Google Scholar 

  15. R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963).

    Article  CAS  Google Scholar 

  16. A. D. McLean, Potential energy surfaces from ab initio computation: Current and projected capabilities of the ALCHEMY computer program, in: Proceedings of the Conference on Potential Energy Surfaces in Chemistry (W. A. Lester, Jr., ed.), IBM (1971).

    Google Scholar 

  17. M. Yoshimine, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 143, Wiley, New York (1973).

    Google Scholar 

  18. P. S. Bagus, A. D. McLean, and M. Yoshimine, in Energy, Structure and Reactivity (D. W. Smith and W. B. McRae, eds.), p. 130, Wiley, New York (1973).

    Google Scholar 

  19. G. H. F. Diercksen, Optimized transformation of four centre integrals, Theoret. Chim. Acta 33, 1 (1974).

    Article  CAS  Google Scholar 

  20. C. N. M. Pounder, The two-electron integral transformation and two-body density matrix transformation, Theoret. Chim. Acta 39, 247–253 (1975).

    Article  CAS  Google Scholar 

  21. P. Pendergast and W. H. Fink, A thorough analysis and exposition of the four-index transformation, J. Comp. Phys. 14, 286–300 (1974).

    Article  Google Scholar 

  22. S. Wilson, Diagrammatic many-body perturbation theory of atomic and molecular structure, Comput. Phys. Rep. 2, 389–482 (1985).

    Article  CAS  Google Scholar 

  23. S. Wilson, The Many-Body Perturbation Theory of Atoms and Molecules, Adam Hilger, Bristol (1988).

    Google Scholar 

  24. B. H. Wells and S. Wilson, Second-order correlation energy of the argon atom using basis sets of gaussian-type functions, J. Phys. B: At. Mol. Phys. 19, 2411 (1986).

    Article  CAS  Google Scholar 

  25. M. W. Schmidt and K. Ruedenberg, Effective convergence to complete orbital bases and to the atomic Hartree-Fock limit through systematic sequences of Gaussian primitive, J. Chem. Phys. 71, 3951 (1979).

    Article  CAS  Google Scholar 

  26. B. H. Wells and S. Wilson, On the accuracy of the algebraic approximation for diatomic molecules, J. Phys. B: At. Mol. Phys. 18, L731 (1985).

    Article  CAS  Google Scholar 

  27. H. M. Quiney, I. P. Grant, and S. Wilson, Diagrammatic perturbation theory: A comparison of numerical methods with basis set expansion techniques for a model problem, J. Phys. B: At. Mol. Phys. 18, 577 (1985).

    Article  CAS  Google Scholar 

  28. H. M. Quiney, I. P. Grant and S. Wilson, The Dirac equation in the algebraic approximation. III. Diagrammatic perturbation theory calculations for a model problem, J. Phys. B: At. Mol. Phys. 18, 2805 (1985).

    Article  CAS  Google Scholar 

  29. E. dementi and G. Corongiu, Geometrical basis sets for molecular computations, IBM Research Report, Poughkeepsie, New York, 1982.

    Google Scholar 

  30. S. Huzinaga, Basis sets for molecular calculations, Comput. Phys. Rep. 2, 279 (1985).

    Article  CAS  Google Scholar 

  31. S. Wilson, Universal basis sets and Cholesky decomposition of the two-electron integral matrix, to be published.

    Google Scholar 

  32. J. A. Pople, R. Seeger, and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem. S11, 149 (1977).

    Google Scholar 

  33. D. M. Silver, K. Ruedenberg, and E. L. Mehler, Electron correlation and the separated electron pair approximation in diatomic molecules. III, J. Chem. Phys. 52, 1206 (1970).

    Article  CAS  Google Scholar 

  34. B. O. Roos, The multiconfigurational SCF method, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), Reidel, Dordrecht (1983).

    Google Scholar 

  35. W. Meyer, J. Chem. Phys. 64, 2901 (1975)

    Article  Google Scholar 

  36. R. Ahlrichs, Comput. Phys. Commun. 17, 31 (1979).

    Article  CAS  Google Scholar 

  37. J. Almhof, K. Faegri, and K. Korsell, Principles for a direct SCF approach to LCAO-MO ab initio calculations, J. Comp. Chem. 3, 385 (1982).

    Article  Google Scholar 

  38. M. F. Guest and S. Wilson, The use of vector processors in quantum chemistry, in: Supercomputers in Chemistry (P. Lykos and I. Shavitt, eds.), American Chemical Society, Washington, D.C. (1981).

    Google Scholar 

  39. V. R. Saunders and M. F. Guest, Applications of the Cray 1 for quantum chemical calculations, Comput. Phys. Commun. 26, 389 (1982).

    Article  CAS  Google Scholar 

  40. S. Winograd, A new algorithm for inner products, IEEE Trans. Comput. 17, 693 (1968).

    Article  Google Scholar 

  41. R. P. Brent, Error analysis of algorithms for matrix multiplication and triangular decomposition using Winograd’s identity, Numer. Math. 16, 145 (1970).

    Article  Google Scholar 

  42. R. W. Hockney and C. R. Jesshope, Parallel Computers: Architecture, Programming and Algorithms, Adam Hilger, Bristol (1981).

    Google Scholar 

  43. L. N. Bhuyan and D. P. Agrawal, Generalized hypercube and hyperbus structures for a computer network, IEEE Trans. Comput. C-33, 322 (1984).

    Article  Google Scholar 

  44. Inmos, The occam Programming Manual, Prentice Hall, Englewood Cliffs, New Jersey (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, S. (1987). Four-Index Transformations. In: Wilson, S. (eds) Methods in Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1983-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1983-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1985-4

  • Online ISBN: 978-1-4899-1983-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics