Electron Correlation in Molecules

  • Miroslav Urban
  • Ivan Černušák
  • Vladimír Kellö
  • Jozef Noga

Abstract

An ultimate goal of present computational quantum chemistry of molecules is the prediction of “accurate” data for a variety of molecular properties and the molecular reactivity.(1,2) It is generally understood that to achieve this goal the substantial portion of the correlation energy must explicitly be included in the calculation. This holds in spite of the fact that the best independent electron model, the Hartree—Fock (HF) method, accounts for about 99.5% of the total nonrelativistic energy of a molecule since the remaining energy, the correlation energy, is comparable in magnitude to energies of chemical bonds.

Keywords

Electron Correlation Correlation Energy Configuration Interaction Potential Energy Curve Couple Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Goddard III, Science 227, 917–923 (1985).Google Scholar
  2. 2.
    H. F. Schaeffer III, Science 231, 1100–1107 (1986).Google Scholar
  3. 3.
    P. O. Löwdin, Adv. Chem. Phys. 2, 207–322 (1959).Google Scholar
  4. 4.
    J. Paldus and J. Čižek, Adv. Quantum Chem. 9, 105–197 (1975).Google Scholar
  5. 5.
    R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359–401 (1981).Google Scholar
  6. 6.
    S. Wilson, Comput. Phys. Rep. 2, 389–482 (1985); Specialist Periodical Rep.: Theoret. Chem. 4, 1-48 (1981).Google Scholar
  7. 7.
    J. Čižek, Adv. Chem. Phys. 14, 35–89 (1969).Google Scholar
  8. 8.
    J. Čižek and J. Paldus, Phys. Scr. 21, 251–254 (1980).Google Scholar
  9. 9.
    J. Paldus, in: New Horizons of Quantum Chemistry (P. O. Löwdin and B. Pullman, eds.), pp. 31–60, D. Reidel, Dordrecht (1983).Google Scholar
  10. 10.
    B. H. Brandow, Int. J. Quantum Chem. 15, 207–242 (1979).Google Scholar
  11. 11.
    I. Lindgren, Phys. Scr. 32, 291–302 (1985).Google Scholar
  12. 12.
    V. Kvasnička, Adv. Chem. Phys. 36, 345–412 (1977).Google Scholar
  13. 13.
    I. Shavitt, in: Methods of Electronic Structure Theory (H. F. Schaefer III, ed.), pp. 189–275, Plenum Press, New York (1977).Google Scholar
  14. 14.
    H. Lischka, R. Shepard, F. B. Brown, and I. Shavitt, Int. J. Quantum Chem. Quantum Chem. Symp. 15, 91–100 (1981).Google Scholar
  15. 15.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35, 33–58 (1974).Google Scholar
  16. 16.
    P. E. M. Siegbahn, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), pp. 189–207, Reidel, Dordrecht (1983).Google Scholar
  17. 17.
    P. O. Roos and P. E. M. Siegbahn, Int. J. Quantum Chem. 17, 485–500 (1980).Google Scholar
  18. 18.
    P. Saxe, D. J. Fox, H. F. Schaefer, and N. C. Handy, J. Chem. Phys. 77, 5584–5592 (1982).Google Scholar
  19. 19.
    L. Adamowicz, R. J. Bartlett, and E. A. McCullough, Jr., Phys. Rev. Lett. 54, 426–429 (1985)Google Scholar
  20. L. Adamowicz and R. J. Bartlett, J. Chem. Phys. 83, 6268–6274 (1985).Google Scholar
  21. 20.
    J. Čižek, J. Chem. Phys. 45, 4256–4266 (1966).Google Scholar
  22. 21.
    J. Paldus, J. Čižek, and I. Shavitt, Phys. Rev. A 5, 50–67 (1972).Google Scholar
  23. 22.
    W. Meyer, Int. J. Quantum Chem. 5, 341–348 (1971); J. Chem. Phys. 58, 1017-1035 (1973).Google Scholar
  24. 23.
    R. Ahlrichs, H. Lischka, V. Staemmler, and W. Kutzelnigg, J. Chem. Phys. 62, 1225–1234 (1975).Google Scholar
  25. 24.
    W. Kutzelnigg, in: Methods of Electronic Structure Theory (H. F. Schaefer, ed.), pp. 129–188, Plenum Press, New York (1977).Google Scholar
  26. 25.
    R. Ahlrichs, Comp. Phys. Commun. 17, 31–45 (1979).Google Scholar
  27. 26.
    A. C. Hurley, Electron Correlation in Small Molecules, Academic, New York (1976).Google Scholar
  28. 27.
    R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem. 14, 561–581 (1978).Google Scholar
  29. 28.
    G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910–1918 (1982).Google Scholar
  30. 29.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. 14, 545–560 (1978).Google Scholar
  31. 30.
    R. McWeeny and B. T. Sutcliffe, Comput. Phys. Rep. 2, 217–278 (1984).Google Scholar
  32. 31.
    I. Shavitt, in: Advanced Theories and Computational Approaches to the Electronic Structure of Molecules (C. E. Dykstra, ed.), pp. 185–196, Reidel, Dordrecht (1984).Google Scholar
  33. 32.
    I. Hubač and P. Čársky, Topics Curr. Chem. 75, 99–164 (1978).Google Scholar
  34. 33.
    S. Wilson, Electron Correlation in Molecules, Clarendon Press, Oxford (1984).Google Scholar
  35. 34.
    I. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer, New York (1981).Google Scholar
  36. 35.
    P. Jorgensen and J. Simons, Second Quantization Based Methods in Quantum Chemistry, Academic, New York (1981).Google Scholar
  37. 36.
    P. Čársky and M. Urban, Ab initio Calculations. Methods and Applications in Chemistry. Lecture Notes in Chemistry, Vol. 16, Springer, Berlin (1980).Google Scholar
  38. 37.
    K. Jankowski, Electron correlation in atoms, Chap. 1 in this volume.Google Scholar
  39. 38.
    S. Wilson, Four index transformations, Chap. 3 in this volume.Google Scholar
  40. 39.
    P. Hobza and R. Zahradnik, Weak Intermoleular Interactions in Chemistry and Biology, Academia, Prague, and Elsevier, Amsterdam (1980).Google Scholar
  41. 40.
    Excited States in Quantum Chemistry (C. A. Nicolaides and D. R. Beck, eds.), Reidel, Dordrecht (1979).Google Scholar
  42. 41.
    H. J. Silverstone and O. Sinanoğlu, J. Chem. Phys. 44, 1899–1907 (1966).Google Scholar
  43. 42.
    O. Sinanoğlu, Adv. Chem. Phys. 6, 315–412 (1964).Google Scholar
  44. 43.
    R. J. Bartlett and G. D. Purvis HI, Phys. Scr. 21, 255–265 (1980).Google Scholar
  45. 44.
    M. R. Nyden and G. A. Petersson, J. Chem. Phys. 74, 6312–6318 (1981).Google Scholar
  46. 45.
    S. Biskupic and V. Kvasnicka, Int. J. Quantum Chem. 21, 633–645 (1982).Google Scholar
  47. 46.
    W. A. Goddard III, J. Chem. Phys. 48, 5337–5347 (1968).Google Scholar
  48. 47.
    F. W. Bobrowitz and W. A. Goddard III, in: Methods of Electronic Structure Theory (H. F. Schaefer, ed.), pp. 79–127, Plenum Press, New York (1977).Google Scholar
  49. 48.
    B. Kirtman and S. J. Cole, J. Chem. Phys. 69, 5055–5063 (1978).Google Scholar
  50. 49.
    G. A. Petersson, Int. J. Quantum Chem. 11, 775–812 (1977).Google Scholar
  51. 50.
    G. C. Lie and E. Clementi, J. Chem. Phys. 60, 1275–1287 (1974).Google Scholar
  52. 51.
    P. Pyykköö, Adv. Quantum Chem. 11, 353–409 (1978).Google Scholar
  53. 52.
    H. M. Quiney, I. P. Grant, and S. Wilson, J. Phys. B 18, 2805–2815 (1985)Google Scholar
  54. H. J. Werner and R. L. Martin, Chem. Phys. Lett. 113, 451–456 (1985).Google Scholar
  55. 53.
    I. Hubac, M. Svrček, and P. Mäsiar, Int. J. Quantum Chem., submitted for publication.Google Scholar
  56. 54.
    S. Wilson, in: Methods in Computational Molecular Physics, (G. H. F. Diercksen and S.Wilson, eds.), pp. 71–93, Reidel, Dordrecht (1983).Google Scholar
  57. 55.
    S. Wilson and D. M. Silver, J. Chem. Phys. 72, 2159–2165 (1980).Google Scholar
  58. 56.
    J. A. Pople, J. S. Binkley, and R. Seeger, Int. J. Quantum Chem., Quantum Chem. Symp. 10, 1–19 (1976).Google Scholar
  59. 57.
    R. J. Bartlett and G. D. Purvis III, Ann. N. Y. Acad. Sci. 367, 62–82 (1981).Google Scholar
  60. 58.
    S. Wilson, Chem. Rev. 80, 263–268 (1980).Google Scholar
  61. 59.
    L. C. Allen and A. M. Karo, Rev. Mod. Phys. 32, 275–285 (1960).Google Scholar
  62. 60.
    V. R. Saunders and J. H. van Lenthe, Mol. Phys. 48, 923–954 (1983).Google Scholar
  63. 61.
    B. O. Roos, in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, eds.), pp. 161–187, Reidel, Dordrecht (1983).Google Scholar
  64. 62.
    B. O. Roos and P. E. M. Siegbahn, in: Methods in Electronic Structure Theory (H. F. Schaefer III, ed.), pp. 277–318, Plenum Press, New York (1977).Google Scholar
  65. 63.
    W. Duch and J. Karwowski, Comput. Phys. Rep. 2, 93–170 (1985).Google Scholar
  66. 64.
    P. Saxe, H. F. Schaefer, and N. C. Handy, Chem. Phys. Lett. 79, 202–204 (1981).Google Scholar
  67. 65.
    R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 95, 386–391 (1983).Google Scholar
  68. 66.
    R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 98, 97–101 (1983).Google Scholar
  69. 67.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon, Oxford (1965).Google Scholar
  70. 68.
    B. Roos, Chem. Phys. Lett. 15, 153–159 (1972).Google Scholar
  71. 69.
    P. E. M. Siegbahn, J. Chem. Phys. 70, 5391–5397 (1979).Google Scholar
  72. 70.
    P. E. M. Siegbahn, J. Chem. Phys. 72, 1647–1656 (1980).Google Scholar
  73. 71.
    P. E. M. Siegbahn, Int. J. Quantum Chem. 18, 1229–1242 (1980).Google Scholar
  74. 72.
    I. Shavitt, Int. J. Quantum Chem., Quantum Chem. Symp. 11, 131–148 (1977).Google Scholar
  75. 73.
    I. Shavitt, Int. J. Quantum Chem., Quantum Chem. Symp. 12, 5–32 (1978).Google Scholar
  76. 74.
    J. Paldus, J. Chem. Phys. 61, 5321–5330 (1974).Google Scholar
  77. 75.
    E. R. Davidson, J. Comput. Phys. 17, 87–94 (1975).Google Scholar
  78. 76.
    B. R. Brooks and H. F. Schaefer, J. Chem. Phys. 70, 5092–5106 (1979).Google Scholar
  79. 77.
    B. Liu and M. Yoshimine, J. Chem. Phys. 74, 612–616 (1981).Google Scholar
  80. 78.
    W. Meyer, J. Chem. Phys. 64, 2901–2907 (1976).Google Scholar
  81. 79.
    W. Meyer, R. Ahlrichs, and C. E. Dykstra, in: Advanced Theories and Computational Approaches to the Electronic Structure of Molecules (C. E. Dykstra, ed.), pp. 19–38, Reidel, Dordrecht (1984).Google Scholar
  82. 80.
    A. C. Wahl and G. Das, in: Methods of Electronic Structure Theory (H. F. Schaefer III, ed.), pp. 51–78, Plenum Press, New York (1977).Google Scholar
  83. 81.
    B. O. Roos, Int. J. Quantum Chem., Quantum Chem. Symp. 14, 175–189 (1980).Google Scholar
  84. 82.
    B. O. Roos, P. R. Taylor, and P. E. M. Siegbahn, Chem. Phys. 48, 157–174 (1980).Google Scholar
  85. 83.
    P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J. Chem. Phys. 74, 2384–2396 (1981).Google Scholar
  86. 84.
    P. J. Knowles, G. J. Sexton, and N. C. Handy, Chem. Phys. 72, 337–347 (1982).Google Scholar
  87. 85.
    P. Siegbahn, A. Heiberg, B. Roos, and B. Levy, Phys. Scr. 21, 323–327 (1980).Google Scholar
  88. 86.
    R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 39, 217–228 (1975).Google Scholar
  89. 87.
    R. A. Phillips, R. J. Buenker, P. J. Bruna, and S. D. Peyerimhoff, Chem. Phys. 84, 11–19 (1984).Google Scholar
  90. 88.
    P. J. A. Ruttink and M. M. M. van Schaik, J. Comput. Chem. 6, 88–92 (1985).Google Scholar
  91. 89.
    P. E. M. Siegbahn, Chem. Phys. 25, 197–205 (1977).Google Scholar
  92. 90.
    P. E. M. Siegbahn, Int. J. Quantum Chem. 23, 1869–1889 (1983).Google Scholar
  93. 91.
    J. J. Diamond, G. A. Segal, and R. W. Wetmore, J. Phys. Chem. 88, 3532–3538 (1984).Google Scholar
  94. 92.
    F. Keil and R. Ahlrichs, J. Am. Chem. Soc. 98, 4787–4793 (1976).Google Scholar
  95. 93.
    M. Urban, I. Černušák, and V. Kellö, Chem. Phys. Lett. 105, 625–629 (1984).Google Scholar
  96. 94.
    A. Meunier and B. Levy, Int. J. Quantum Chem. 16, 955–972 (1979)Google Scholar
  97. A. Meunier, B. Levy, and G. Berthier, Int. J. Quantum Chem. 10, 1061–1070 (1976).Google Scholar
  98. 95.
    W. L. Luken, Chem. Phys. Lett. 58, 421–424 (1978).Google Scholar
  99. 96.
    R. J. Bartlett and D. M. Silver, Int. J. Quantum Chem., Quantum Chem. Symp. 9, 183–198 (1975).Google Scholar
  100. 97.
    R. J. Bartlett and I. Shavitt, Int. J. Quantum Chem., Quantum Chem. Symp. 11, 165–173 (1977).Google Scholar
  101. 98.
    P. E. M. Siegbahn, Chem. Phys. Lett. 55, 386–394 (1978).Google Scholar
  102. 99.
    J. A. Pople, R. Seeger, and R. Krishnan, Int. J. Quantum Chem., Quantum Chem. Symp. 11, 149–163 (1977).Google Scholar
  103. 100.
    S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem. 8, 61–72 (1974).Google Scholar
  104. 101.
    J. Paldus, P. E. S. Wormer, F. Visser, and A. van der Avoird, J. Chem. Phys. 76, 2458–2470 (1982).Google Scholar
  105. 102.
    M. Urban, I. Hubač, V. Kellö, and J. Noga, J. Chem. Phys. 72, 3378–3385 (1980).Google Scholar
  106. 103.
    C. W. Bauschlicher, Chem. Phys. Lett. 97, 204–208 (1983).Google Scholar
  107. 104.
    J. P. Malrieu, Theor. Chim. Acta 62, 163–174 (1982).Google Scholar
  108. 105.
    P. J. A. Ruttink, Chem. Phys. Lett. 95, 55–59 (1983).Google Scholar
  109. 106.
    K. Jankowski, L. Meissner, and J. Wasilewski, Int. J. Quantum Chem. 28, 931–942 (1985).Google Scholar
  110. 107.
    P. G. Burton, R. J. Buenker, P. J. Bruna, and S. D. Peyerimhoff, Chem. Phys. Lett. 95, 379–385 (1983).Google Scholar
  111. 108.
    R. Ahlrichs, P. Scharf, and C. Ehrhardt, J. Chem. Phys. 82, 890–898 (1985).Google Scholar
  112. 109.
    S. Pal, M. D. Prasad, and D. Mukherjee, Theor. Chim. Acta 62, 523–536 (1983).Google Scholar
  113. 110.
    P. Pulay, Int. J. Quantum Chem., Quantum Chem. Symp. 17, 257–263 (1983).Google Scholar
  114. 111.
    J. S. Binkley, R. A. Whiteside, K. Raghavachari, R. Seeger, D. J. De Frees, H. B. Schlegel, M. J. Frisch, J. A. Pople, and L. R. Kahn, Gaussian 82, Carnegie Mellon University, Pittsburgh, 1982.Google Scholar
  115. 112.
    D. M. Silver, Comp. Phys. Commun. 14, 71-79, 81–89 (1978)Google Scholar
  116. S. Wilson, Comp. Phys. Commun. 14, 91–98 (1978)Google Scholar
  117. S. Wilson and D. M. Silver, Comp. Phys. Commun. 17, 47–50 (1979)Google Scholar
  118. S. Wilson and V. R. Saunders, Comp. Phys. Commun. 19, 293–297 (1980).Google Scholar
  119. 113.
    R. J. Bartlett, H. Sekino, and G. D. Purvis III, Chem. Phys. Lett. 98, 66–70 (1983).Google Scholar
  120. 114.
    V. Kellö and M. Urban, Int. J. Quantum Chem. 18, 1431–1448 (1980).Google Scholar
  121. 115.
    J. Noga, Comp. Phys. Commun. 29, 117–124 (1983).Google Scholar
  122. 116.
    V. Kvasnicka, V. Laurinc, and S. Biskupič, Czechoslov. J. Phys. B 31, 41–54 (1981).Google Scholar
  123. 117.
    V. Kvasnicka, V. Laurinc, S. Biskupič, and M. Haring, Adv. Chem. Phys. 52, 181–261 (1983).Google Scholar
  124. 118.
    P. O. Löwdin, Int. J. Quantum Chem. 2, 867–931 (1968).Google Scholar
  125. 119.
    C. Moller and M. S. Plesset, Phys. Rev. 46, 618–622 (1934).Google Scholar
  126. 120.
    R. J. Bartlett, S. Wilson, and D. M. Silver, Int. J. Quantum Chem. 12, 737–757 (1977).Google Scholar
  127. 121.
    R. Krishnan and J. A. Pople, Int. J. Quantum Chem. 14, 91–100 (1978).Google Scholar
  128. 122.
    R. Krishnan, M. J. Frisch, and J. A. Pople, J. Chem. Phys. 72, 4244–4245 (1980).Google Scholar
  129. 123.
    K. A. Brueckner, Phys. Rev. 97, 1353–1366 (1955); ibid. 100, 36-45 (1955).Google Scholar
  130. 124.
    J. Goldstone, Proc. R. Soc. London Scr. A 239, 267–279 (1957).Google Scholar
  131. 125.
    B. H. Brandow, Rev. Mod. Phys. 39, 771–828 (1967).Google Scholar
  132. 126.
    R. J. Bartlett and D. M. Silver, in: Quantum Science (J. L. Calais, O. Goscinski, J. Linderberg, and Y. Öhrn, eds.), pp. 393–408, Plenum Press, New York (1976).Google Scholar
  133. 127.
    S. J. Cole and G. D. Purvis III, J. Chem. Phys. 86, 866–873 (1987).Google Scholar
  134. 128.
    S. Wilson, Parallelism in the computation of electron correlation effects, Proc. 5th Seminar on Computational Methods in Quantum Chemistry, pp. 49-63, Groningen (1981).Google Scholar
  135. 129.
    S. Wilson and V. R. Saunders, J. Phys. B: At. Molec. Phys. 12, L403–408 (1979).Google Scholar
  136. 130.
    M. A. Robb, in: Computational Techniques in Quantum Chemistry and Molecular Physics (G. H. F. Diercksen, B. T. Sutcliffe, and A. Veillard, eds.), pp. 435–503, Reidel, Dordrecht (1975).Google Scholar
  137. 131.
    S. Wilson and D. M. Silver, Mol. Phys. 36, 1539–1548 (1978).Google Scholar
  138. 132.
    J. Paldus, J. Čižek, and M. Takahashi, Phys. Rev. A 30, 2193–2209 (1984).Google Scholar
  139. 133.
    S. Kucharski and R. J. Bartlett, Adv. Quantum Chem. 18, 281–344 (1986).Google Scholar
  140. 134.
    E. Kapuy, Z. Csépes, and C. Kozmutza, Int. J. Quantum Chem. 22, 981–990 (1983).Google Scholar
  141. 135.
    W. D. Laidig, G. Fitzgerald, and R. J. Bartlett, Chem. Phys. Lett. 113, 151–158 (1985)Google Scholar
  142. P. J. Knowles, K. Somasundram, N. C. Handy, and K. Hirao, Chem. Phys. Lett. 113, 8–12 (1985).Google Scholar
  143. 136.
    S. Wilson, K. Jankowski, and J. Paldus, Int. J. Quantum Chem. 28, 525–534 (1985).Google Scholar
  144. 137.
    S. Wilson, D. M. Silver, and R. A. Farrell, Proc. R. Soc. London Scr. A 356, 363–374 (1977).Google Scholar
  145. 138.
    D. M. Silver, S. Wilson, and R. J. Bartlett, Phys. Rev. A 16, 477–483 (1977).Google Scholar
  146. 139.
    C. Sosa and H. B. Schlegel, Int. J. Quantum Chem. 29, 1001–1015 (1986).Google Scholar
  147. 140.
    I. Hubac and P. Čársky, Phys. Rev. A 22, 2392–2399 (1980)Google Scholar
  148. P. Čársky and I. Hubac, Coll. Czech. Chem. Commun. 46, 1324–1331 (1981).Google Scholar
  149. 141.
    P. Čársky, R. Záhradník, I. Hubač, M. Urban, and V. Kellö, Theor. Chim. Acta 56, 315–328 (1980).Google Scholar
  150. 142.
    P. Čársky, M. Svrček, I. Hubač, F. B. Brown, and I. Shavitt, Chem. Phys. Lett. 85, 17–20 (1982).Google Scholar
  151. 143.
    I. Hubač and P. Čársky, Int. J. Quantum Chem. 24, 141–148 (1983).Google Scholar
  152. 144.
    S. Wilson, Theor. Chim. Acta 61, 343–362 (1982).Google Scholar
  153. 145.
    V. Kvasnička, S. Biskupič, and V. Laurinc, Mol. Phys. 42, 1345–1353 (1981).Google Scholar
  154. 146.
    A. Balková, Dissertation, Slovak Academy of Sciences, 1985.Google Scholar
  155. 147.
    H. Nakatsuji and K. Hirao, J. Chem. Phys. 68, 2053-2065, 4279–4291 (1978).Google Scholar
  156. 148.
    R. J. Bartlett, C. E. Dykstra, and J. Paldus, in: Advanced Theories and Computational Approaches to the Electronic Structure of Molecules (C. E. Dykstra, ed.), pp. 127–159, Reidel, Dordrecht (1984).Google Scholar
  157. 149.
    O. Sinanoğlu, J. Chem. Phys. 36, 706-717, 3198–3208 (1962).Google Scholar
  158. 150.
    M. S. Frisch, R. Krishnan, and J. A. Pople, Chem. Phys. Lett. 75, 66–68 (1980).Google Scholar
  159. 151.
    V. Kellö, M. Urban, J. Noga, and G. H. F. Diercksen, J. Am. Chem. Soc. 106, 5864–5871 (1984).Google Scholar
  160. 152.
    Y. S. Lee and R. J. Bartlett, J. Chem. Phys. 80, 4371–4377 (1984).Google Scholar
  161. 153.
    Y. S. Lee, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 81, 6906–5912 (1984); 82, 5761 (1985).Google Scholar
  162. 154.
    M. Urban, J. Noga, S. J. Cole, and R. J. Bartlett, J. Chem. Phys. 83, 4041–4046 (1985).Google Scholar
  163. 155.
    J. Noga, R. J. Bartlett, and M. Urban, Chem. Phys. Lett. 134, 126–133 (1987).Google Scholar
  164. 156.
    M. R. Hoffman and H. F. Schaefer III, J. Chem. Phys. 83, 703–712 (1985).Google Scholar
  165. 157.
    J. M. Cullen and M. C. Zerner, J. Chem. Phys. 77, 4088–4109 (1982).Google Scholar
  166. 158.
    V. Kvasnicka, Phys. Rev. A 25, 671–680 (1982).Google Scholar
  167. 159.
    J. Paldus, J. Chem. Phys. 67, 303–318 (1977)Google Scholar
  168. B. G. Adams and J. Paldus, Phys. Rev. A 20, 1–17 (1979).Google Scholar
  169. 160.
    R. A. Chiles and C. E. Dykstra, J. Chem. Phys. 74, 4544–4556 (1981).Google Scholar
  170. 161.
    R. A. Chiles and C. E. Dykstra, Chem. Phys. Lett. 80, 69–72 (1981).Google Scholar
  171. 162.
    S. M. Bachrach, R. A. Chiles, and C. E. Dykstra, J. Chem. Phys. 75, 2270–2275 (1981).Google Scholar
  172. 163.
    K. Jankowski and J. Paldus, Int. J. Quantum Chem. 18, 1243–1269 (1980).Google Scholar
  173. 164.
    B. G. Adams, K. Jankowski, and J. Paldus, Phys. Rev. 24, 2330–2338 (1981).Google Scholar
  174. 165.
    J. Paldus and M. J. Boyle, Int. J. Quantum Chem. 22, 1281–1305 (1982).Google Scholar
  175. 166.
    K. Szalewicz, B. Jeziorski, H. J. Monkhorst, and J. G. Zabolitzky, J. Chem. Phys. 78, 1420–1430 (1983); J. Chem. Phys. 79, 5543-5552 (1983).Google Scholar
  176. 167.
    B. Jeziorski, H. J. Monkhorst, K. Szalewicz, and J. Zabolitzky, J. Chem. Phys. 81, 368–388 (1984)Google Scholar
  177. K. Szalewicz, J. G. Zabolitzky, B. Jeziorski, and H. J. Monkhorst, J. Chem. Phys. 81, 2723–2731 (1984).Google Scholar
  178. 168.
    S. Wilson and D. M. Silver, Phys. Rev. A 14, 1949–1960 (1976).Google Scholar
  179. 169.
    J. Noga, V. Kellö, and M. Urban, COMENIUSA Technical report, Comenius University, Bratislava, 1985.Google Scholar
  180. 170.
    V. Kvasnicka, J. Chem. Phys. 76, 2471–2476 (1982).Google Scholar
  181. 171.
    G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 75, 1284–1292 (1981).Google Scholar
  182. 172.
    P. E. S. Wormer, F. Visser, and J. Paldus, J. Comput. Phys. 48, 23–44 (1982).Google Scholar
  183. 173.
    S. J. Cole, G. D. Purvis III, and R. J. Bartlett, Chem. Phys. Lett. 113, 271–273 (1985).Google Scholar
  184. 174.
    D. H. Magers, R.J. Harrison, and R. J. Bartlett, J. Chem. Phys. 84, 3284–3290 (1986).Google Scholar
  185. 175.
    M. Urban, V. Kellö, I. Černušák, J. Noga, and G. H. F. Diercksen, Chem. Phys. Lett. 135, 346–351 (1987).Google Scholar
  186. 176.
    K. Raghavachari, J. Chem. Phys. 82, 4142–4146 (1985).Google Scholar
  187. 177.
    E. L. Salter, L. Adamowicz, and R. J. Bartlett, Chem. Phys. Lett. 122, 23–28 (1985).Google Scholar
  188. 178.
    K. Hirao and Y. Hatano, Chem. Phys. Lett. 100, 519–522 (1983).Google Scholar
  189. 179.
    K. Hirao and H. Nakatsuji, Chem. Phys. Lett. 79, 292–298 (1981).Google Scholar
  190. 180.
    M. Urban, J. Noga, and V. Kellö, Theor. Chim. Acta 62, 549–562 (1983).Google Scholar
  191. 181.
    S. Wilson, K. Jankowski, and J. Paldus, Int. J. Quantum Chem. 23, 1781–1802 (1983).Google Scholar
  192. 182.
    G. D. Purvis III, R. Shepard, F. B. Brown, and R. J. Bartlett, Int. J. Quantum Chem. 23, 835–845 (1983).Google Scholar
  193. 183.
    H. Nakatsuji, J. Ushio, and T. Yonezawa, Can. J. Chem. 63, 1857–1863 (1985).Google Scholar
  194. 184.
    I. Hubac, Int. J. Quantum Chem. 17, 195–209 (1980).Google Scholar
  195. 185.
    G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 68, 2114–2124 (1978).Google Scholar
  196. 186.
    I. Hubac and M. Urban, Theor. Chim. Acta 45, 185–195 (1977).Google Scholar
  197. 187.
    J. Paldus, J. Čižek, M. Saute, and A. Laforgue, Phys. Rev. A 17, 805–815 (1978)Google Scholar
  198. M. Sante, J. Paldus, and J. Čižek, Int. J. Quantum Chem. 15, 463–479 (1979).Google Scholar
  199. 188.
    H. Nakatsuji, Chem. Phys. Lett. 67, 329-333, 334–342 (1979)Google Scholar
  200. H. Nakatsuji and K. Hirao, Int. J. Quantum Chem. 20, 1301–1313 (1981).Google Scholar
  201. 189.
    H. Nakatsuji, J. Chem. Phys. 80, 3703–3709 (1984)Google Scholar
  202. H Nakatsuji, O. Kitao, and T. Yonezawa, J. Chem. Phys. 83, 723–734 (1985).Google Scholar
  203. 190.
    L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205–344 (1977)Google Scholar
  204. W. von Neissen, J. Schirmer, and L. S. Cederbaum, in: Methods in Computational Physics (G. H. F. Diercksen and S. Wilson, eds.), pp. 227-247, Reidel, Dordrecht (1983).Google Scholar
  205. 191.
    P. O. Löwdin, J. Chem. Phys. 19, 1396–1401 (1951).Google Scholar
  206. 192.
    I. Lindgren, Int. J. Quantum Chem., Quantum Chem. Symp. 12, 33–58 (1978).Google Scholar
  207. 193.
    K. F. Freed and M. G. Sheppard, J. Phys. Chem. 86, 2130–2133 (1982).Google Scholar
  208. 194.
    M. G. Sheppard and K. F. Freed, J. Chem. Phys. 75, 4507-4524, 4525–4538 (1981).Google Scholar
  209. 195.
    T. Takada, M. G. Sheppard, and K. F. Freed, J. Chem. Phys. 79, 325–330 (1983)Google Scholar
  210. T. Takada and K. F. Freed, J. Chem. Phys. 80, 3696–3702 (1984).Google Scholar
  211. 196.
    I. Shavitt and L. T. Redmon, J. Chem. Phys. 73, 5711–5717 (1981).Google Scholar
  212. 197.
    B. Kirtman, J. Chem. Phys. 75, 798–808 (1981).Google Scholar
  213. 198.
    L. T. Redmon and R. J. Bartlett, J. Chem. Phys. 76, 1938–1948 (1982).Google Scholar
  214. 199.
    D. Hegarty and M. A. Robb, Mol. Phys. 37, 1455–1468 (1979).Google Scholar
  215. 200.
    G. Hose and U. Kaldor, J. Phys. B 12, 3827–3855 (1979).Google Scholar
  216. 201.
    P. Westhaus, Int. J. Quantum Chem. 20, 1243–1253 (1981).Google Scholar
  217. 202.
    M. Svrček and I. Hubač, Int. J. Quantum Chem., to be published.Google Scholar
  218. 203.
    P. Durand, Phys. Rev. A 28, 3184–3192 (1983).Google Scholar
  219. 204.
    N. Iijima and A. Saika, Int. J. Quantum Chem. 27, 481–493 (1985).Google Scholar
  220. 205.
    H. Sun and K. F. Freed, J. Chem. Phys. 76, 5051–5059 (1982).Google Scholar
  221. 206.
    G. Hose and U. Kaldor, J. Phys. Chem. 86, 2133–2140 (1982)Google Scholar
  222. U. Kaldor, J. Chem. Phys. 81, 2406–2410 (1984).Google Scholar
  223. 207.
    I. Hubač, M. Svrček, and A. Balková, J. Chem. Phys. 84, 3260–3270 (1986).Google Scholar
  224. 208.
    P. S. Stern and U. Kaldor, J. Chem. Phys. 64, 2002–2009 (1976).Google Scholar
  225. 209.
    Y. S. Lee and R. J. Bartlett, Int. J. Quantum Chem. Quantum Chem. Symp. 17, 347–356 (1983).Google Scholar
  226. 210.
    D. Mukherjee, R. K. Moitra, and A. Mukhopadhyay, Mol. Phys. 30, 1861–1888 (1975); 33, 955-969 (1977).Google Scholar
  227. 211.
    B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24, 1668–1681 (1981).Google Scholar
  228. 212.
    A. Haque and D. Mukherjee, J. Chem. Phys. 80, 5058–5069 (1984).Google Scholar
  229. 213.
    V. Kvasnička, Chem. Phys. Lett. 79, 89–92 (1981).Google Scholar
  230. 214.
    V. Kvasnička, Int. J. Quantum Chem. 24, 335–344 (1983).Google Scholar
  231. 215.
    A. Haque and U. Kaldor, Int. J. Quantum Chem. 29, 425–433 (1986).Google Scholar
  232. 216.
    A. Haque and U. Kaldor, Chem. Phys. Lett. 117, 347–351 (1985).Google Scholar
  233. 217.
    W. D. Laidig and R. J. Bartlett, Chem. Phys. Lett. 104, 424–430 (1984).Google Scholar
  234. 218.
    A. Banerjee and J. Simons, Int. J. Quantum Chem. 19, 207–216 (1981).Google Scholar
  235. 219.
    A. Banerjee and J. Simons, J. Chem. Phys. 76, 4548–4559 (1982).Google Scholar
  236. 220.
    A. Banerjee and J. Simons, Chem. Phys. 81, 297–302 (1983).Google Scholar
  237. 221.
    H. Nakatsuji, J. Chem. Phys. 83, 713–722 (1985).Google Scholar
  238. 222.
    L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32, 725-742, 743–747 (1985).Google Scholar
  239. 223.
    W. Kutzelnigg, J. Chem. Phys. 71, 3081–3097 (1982)Google Scholar
  240. W. Kutzelnigg and S. Koch, J. Chem. Phys. 79, 4315–4335 (1983).Google Scholar
  241. 224.
    W. Kutzelnigg, J. Chem. Phys. 82, 822-830, 4166–4186 (1985).Google Scholar
  242. 225.
    R. K. Nesbet, J. Chem. Phys. 43, S30–S33 (1965).Google Scholar
  243. 226.
    L. C. Snyder and H. Basch, J. Am. Chem. Soc. 91, 2189–2198 (1969).Google Scholar
  244. 227.
    C. Hollister and O. Sinanoğlu, J. Am. Chem. Soc. 88, 13–21 (1966).Google Scholar
  245. 228.
    P. George, M. Trachtman, A. M. Brett, and C. W. Bock, Int. J. Quantum Chem. 12, 61–81 (1977).Google Scholar
  246. 229.
    J. B. Moffat, J. Mol. Struct. 15, 325–333 (1973).Google Scholar
  247. 230.
    J. A. Pople and J. S. Binkley, Mol. Phys. 29, 599–611 (1975).Google Scholar
  248. 231.
    D. Cremer, J. Comput. Chem. 3, 165–177 (1982).Google Scholar
  249. 232.
    M. H. Ang, K. Yates, I. G. Csizmadia, and R. Daudel, Int. J. Quantum Chem. 20, 793–806 (1980).Google Scholar
  250. 233.
    J. M. McKelvey and A. Streitwieser, J. Am. Chem. Soc. 90, 7121–7125 (1977).Google Scholar
  251. 234.
    S. Wilson and M. F. Guest, Mol. Phys. 43, 1331–1345 (1981).Google Scholar
  252. 235.
    M. F. Guest and S. Wilson, Chem. Phys. Lett. 72, 49–52 (1980).Google Scholar
  253. 236.
    S. Wilson and M. F. Guest, Chem. Phys. Lett. 73, 607–609 (1980).Google Scholar
  254. 237.
    M. J. Frisch, J. S. Binkley, and H. F. Schaefer III, J. Chem. Phys. 81, 1882–1893 (1984).Google Scholar
  255. 238.
    G. H. F. Diercksen and A. J. Sadlej, Chem. Phys. 96, 17–41 (1985).Google Scholar
  256. 239.
    G. H. F. Diercksen, V. Kellö, and A. J. Sadlej, J. Chem. Phys. 79, 2918–2923 (1983).Google Scholar
  257. 240.
    S. Wilson, V. Kellö, J. Noga, and M. Urban, Mol. Phys. 50, 1323–1333 (1983).Google Scholar
  258. 241.
    R. Ahlrichs, F. Driessler, H. Lischka, and V. Staemmler, J. Chem. Phys. 62, 1235–1247 (1975).Google Scholar
  259. 242.
    R. Ahlrichs, F. Keil, H. Lischka, W. Kutzelnigg, and V. Staemmler, J. Chem. Phys. 63, 455–463 (1975).Google Scholar
  260. 243.
    R. Ahlrichs, H. Lischka, B. Zurawski, and W. Kutzelnigg, J. Chem. Phys. 63, 4685–4694 (1975).Google Scholar
  261. 244.
    W. D. Laidig, G. D. Purvis, and R. J. Bartlett, Int. J. Quantum Chem. Quantum Chem. Symp. 16, 561–573 (1982).Google Scholar
  262. 245.
    W. D. Laidig, G. D. Purvis, and R. J. Bartlett, J. Phys. Chem. 89, 2161–2171 (1985).Google Scholar
  263. 246.
    W. Förner, J. Ladik, P. Otto, and J. Čižek, Chem. Phys. 97, 251–262 (1985).Google Scholar
  264. 247.
    P. Pulay, Mol. Phys. 17, 197–204 (1969).Google Scholar
  265. 248.
    P. Pulay, in: Modern Theoretical Chemistry Applications of Electronic Structure Theory (H. F. Schaefer III, ed.), Vol. 4, pp. 153–185, Plenum Press, New York (1977).Google Scholar
  266. 249.
    S. Bratoz, Colloq. Int. CNRS 82, 287–301 (1958).Google Scholar
  267. 250.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quantum Chem. Quantum Chem. Symp. 13, 225–241 (1979).Google Scholar
  268. 251.
    P. Jørgensen and J. Simons, J. Chem. Phys. 79, 334–357 (1983).Google Scholar
  269. 252.
    H. F. Schaefer III and Y. Yamaguchi, J. Mol. Struct. (Theochem) 135, 369–390 (1986).Google Scholar
  270. 253.
    L. Adamowicz, W. D. Laidig, and R. J. Bartlett, Int. J. Quantum Chem. Quantum Chem. Symp. 18, 245–254 (1984).Google Scholar
  271. 254.
    J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, J. Chem. Phys. 72, 4654–4655 (1980).Google Scholar
  272. 255.
    B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 72, 4652–4653 (1980).Google Scholar
  273. 256.
    B. R. Brooks, W. D. Laidig, P. Saxe, N. C. Handy, and H. F. Schaefer III, Phys. Scr. 21, 312–322 (1980).Google Scholar
  274. 257.
    Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 75, 2919–2922 (1981).Google Scholar
  275. 258.
    Y. Osamura, Y. Yamaguchi, P. Saxe, M. A. Vincent, J. F. Gaw, and H. F. Schaefer III, Chem. Phys. 72, 131–139 (1982).Google Scholar
  276. 259.
    Y. Osamura, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 77, 383–390 (1982).Google Scholar
  277. 260.
    P. Pulay, J. Mol. Struct. 103, 57–66 (1983).Google Scholar
  278. 261.
    H. B. Schlegel, in: Computational Theoretical Chemistry (I. G. Csizmadia and R. Daudel, eds.), pp. 129–159, Reidel, Dordrecht (1981).Google Scholar
  279. 262.
    R. J. Bartlett, in: Geometrical Derivatives of Energy Surfaces and Molecular Properties (P. Jørgensen and J. Simons, eds.), pp. 35–61, Reidel, Dordrecht (1986).Google Scholar
  280. 263.
    N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, E. D. Simandiras, T. J. Lee, R. J. Harrison, W. D. Laidig, G. R. Fitzgerald, and R. J. Bartlett, in: Geometrical Derivatives of Energy Surfaces and Molecular Properties (P. Jørgensen and J. Simons, eds.), pp. 179–191, Reidel, Dordrecht (1986).Google Scholar
  281. 264.
    R. J. Harrison, G. B. Fitzgerald, W. D. Laidig, and R. J. Bartlett, Chem. Phys. Lett. 124, 291–294 (1986).Google Scholar
  282. 265.
    G. Fitzgerald, R. Harrison, W. D. Laidig, and R. J. Bartlett, Chem. Phys. Lett. 117, 433–436 (1985).Google Scholar
  283. 266.
    G. Fitzgerald, R. Harrison, W. D. Laidig, and R. J. Bartlett, J. Chem. Phys. 82, 4379–4380 (1985).Google Scholar
  284. 267.
    M. J. Frisch, A. C. Scheiner, H. F. Schaefer, and J. S. Binkley, J. Chem. Phys. 82, 4194–4198 (1985)Google Scholar
  285. D. Michalska, B. A. Hess, Jr., and L. J. Schaad, Int. J. Quantum Chem. 29, 1127–1137 (1986).Google Scholar
  286. 268.
    W. Meyer and P. Rosmus, J. Chem. Phys. 63, 2356–2375 (1975).Google Scholar
  287. 269.
    P. Rosmus and W. Meyer, J. Chem. Phys. 66, 13–19 (1977).Google Scholar
  288. 270.
    P. Rosmus and W. Meyer, J. Chem. Phys. 69, 2745–2751 (1978).Google Scholar
  289. 271.
    L. Farnell, J. A. Pople, and L. Radom, J. Phys. Chem. 87, 79–82 (1983).Google Scholar
  290. 272.
    G. Frenking and W. Koch, J. Chem. Phys. 84, 3224–3229 (1986).Google Scholar
  291. 273.
    K. Jankowski, R. Becherer, P. Scharf, H. Schiffer, and R. Ahlrichs, J. Chem. Phys. 82, 1413–1419 (1985).Google Scholar
  292. 274.
    M. R. A. Blomberg and P. E. M. Siegbahn, Chem. Phys. Lett. 81, 4–13 (1981).Google Scholar
  293. 275.
    S. Koch and W. Kutzelnigg, Theor. Chim. Acta 59, 387–411 (1981).Google Scholar
  294. 276.
    R. Jaquet, W. Kutzelnigg, and V. Staemmler, Theor. Chim. Acta 54, 205–227 (1980).Google Scholar
  295. 277.
    D. J. DeFrees, K. Raghavachari, H. B. Schlegel, and J. A. Pople, J. Am. Chem. Soc. 104, 5576–5580 (1982).Google Scholar
  296. 278.
    Y. Yamaguchi and H. F. Schaefer III, J. Chem. Phys. 73, 2310–2318 (1980).Google Scholar
  297. 279.
    P. E. M. Siegbahn, Chem. Phys. Lett. 119, 515–521 (1985).Google Scholar
  298. 280.
    P. R. Bunker, W. P. Kraemer, and V. Špirko, Can. J. Phys. 62, 1801–1805 (1984).Google Scholar
  299. 281.
    N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, and E. D. Simandiras, Chem. Phys. Lett. 120, 151–158 (1985).Google Scholar
  300. 282.
    D. J. DeFrees and A. D. McLean, J. Chem. Phys. 81, 3353–3355 (1984).Google Scholar
  301. 283.
    V. Kellö, I. Hubač, A. I. Boldyrev, and V. Špirko, Croatica Chim. Acta 57, 1661–1665 (1984).Google Scholar
  302. 284.
    R. J. Bartlett, I. Shavitt, and G. Purvis III, J. Chem. Phys. 71, 281–291 (1979).Google Scholar
  303. 285.
    M. M. L. Chen and H. F. Schaefer III, J. Chem. Phys. 72, 4376–4393 (1980).Google Scholar
  304. 286.
    H. J. Werner and P. Rosmus, J. Chem. Phys. 73, 2319–2328 (1980).Google Scholar
  305. 287.
    R. W. Wetmore and H. F. Schaefer III, J. Chem. Phys. 69, 1648–1654 (1978).Google Scholar
  306. 288.
    U. G. Jørgensen, J. Almlöf, B. Gustafsson, M. Larsson, and P. Siegbahn, J. Chem. Phys. 83, 3034–3041 (1985).Google Scholar
  307. 289.
    R. Ahlrichs, P. Scharf, and K. Jankowski, Chem. Phys. 98, 381–386 (1985).Google Scholar
  308. 290.
    W. L. Fergusson, Theor. Chim. Acta 59, 527–532 (1981).Google Scholar
  309. 291.
    W. C. Ermler and Ch. W. Huang, Chem. Phys. Lett. 120, 159–162 (1985).Google Scholar
  310. 292.
    S. Bell and H. F. Schaefer III, J. Chem. Phys. 67, 5173–5177 (1977).Google Scholar
  311. 293.
    T. H. Dunning, Jr., J. Chem. Phys. 73, 2304–2309 (1980).Google Scholar
  312. 294.
    G. F. Adams, G. D. Bent, R. J. Bartlett, and G. D. Purvis, in: Potential energy surfaces and dynamics calculations (D. G. Truhlar, ed.), pp. 133–167, Plenum Press, New York (1981).Google Scholar
  313. 295.
    D. J. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, and J. A. Pople, J. Am. Chem. Soc. 101, 4085–4089 (1979).Google Scholar
  314. 296.
    H. B. Schlegel and C. Sosa, J. Phys. Chem. 89, 537–541 (1985).Google Scholar
  315. 297.
    A. D. Buckingham, Adv. Chem. Phys. 12, 107–142 (1967).Google Scholar
  316. 298.
    J. Applequist, Chem. Phys. 85, 279–290 (1984).Google Scholar
  317. 299.
    I. N. Levine, Quantum Chemistry. Vol. I: Quantum Mechanics and Molecular Electronic Structure, Allyn and Bacon, Boston (1970).Google Scholar
  318. 300.
    R. A. Stanton, J. Chem. Phys. 36, 1298–1300 (1962).Google Scholar
  319. 301.
    J. A. Pople, J. W. McIver, and N. S. Ostlund, J. Chem. Phys. 49, 2960–2970 (1968).Google Scholar
  320. 302.
    P. O. Nernbrant, B. Roos, and A. J. Sadlej, Int. J. Quantum Chem. 15, 135–145 (1979).Google Scholar
  321. 303.
    G. H. F. Diercksen, B. O. Roos, and A. J. Sadlej, Chem. Phys. 59, 29–39 (1981).Google Scholar
  322. 304.
    H. D. Cohen and C. C. J. Roothaan, J. Chem. Phys. 43, S34–S39 (1965).Google Scholar
  323. 305.
    A. J. Sadlej, Acta Phys. Pol. A 59, 669–686 (1981).Google Scholar
  324. 306.
    A. J. Sadlej, J. Chem. Phys. 75, 320–331 (1981).Google Scholar
  325. 307.
    T. C. Caves and M. Karplus, J. Chem. Phys. 50, 3649–3661 (1969).Google Scholar
  326. 308.
    M. Cohen and A. Dalgarno, Rev. Mod. Phys. 35, 506–508 (1963).Google Scholar
  327. 309.
    H. J. Werner and W. Meyer, Mol. Phys. 31, 855–872 (1976).Google Scholar
  328. 310.
    R. L. Martin, E. R. Davidson, and D. F. Eggers, Chem. Phys. 38, 341–348 (1979).Google Scholar
  329. 311.
    J. E. Gready, G. B. Bacskay, and N. S. Hush, Chem. Phys. 23, 9–22 (1977).Google Scholar
  330. 312.
    H. J. Werner and W. Meyer, Phys. Rev. A 13, 13–16 (1976).Google Scholar
  331. 313.
    G. D. Zeiss, W. R. Scott, N. Suzuki, D. P. Chong, and S. R. Langhoff, Mol. Phys. 37, 1543–1572 (1979).Google Scholar
  332. 314.
    I. G. John, G. B. Bacskay, and N. S. Hush, Chem. Phys. 51, 49–60 (1980).Google Scholar
  333. 315.
    G. H. F. Diercksen and A. J. Sadlej, J. Chem. Phys. 75, 1253–1266 (1981).Google Scholar
  334. 316.
    G. H. F. Diercksen, V. Kellö, B. O. Roos, and A. J. Sadlej, Chem. Phys. 77, 93–101 (1983).Google Scholar
  335. 317.
    G. H. F. Diercksen, V. Kellö, and A. J. Sadlej, Mol. Phys. 49, 711–725 (1983).Google Scholar
  336. 318.
    G. H. F. Diercksen, V. Kellö, and A. J. Sadlej, Chem. Phys. Lett. 95, 226–231 (1983).Google Scholar
  337. 319.
    G. B. Bacskay, S. Saebø, and P. R. Taylor, Chem. Phys. 90, 215–224 (1984).Google Scholar
  338. 320.
    G. H. F. Diercksen and A. J. Sadlej, Mol. Phys. 57, 509–528 (1986).Google Scholar
  339. 321.
    B. O. Roos and A. J. Sadlej, Chem. Phys. 94, 43–53 (1985).Google Scholar
  340. 322.
    G. H. F. Diercksen and A. J. Sadlej, Chem. Phys. 96, 43–57 (1985).Google Scholar
  341. 323.
    G. Karlström, B. O. Roos, and A. J. Sadlej, Chem. Phys. Lett. 86, 374–379 (1982).Google Scholar
  342. 324.
    R. J. Bartlett and G. D. Purvis III, Phys. Rev. A 20, 1313–1322 (1979).Google Scholar
  343. 325.
    G. D. Purvis and R. J. Bartlett, Phys. Rev. A 23, 1594–1599 (1981).Google Scholar
  344. 326.
    G. H. F. Diercksen and A. J. Sadlej, J. Chem. Phys. 76, 4293–4294 (1982).Google Scholar
  345. 327.
    H. Sekino and R. J. Bartlett, J. Chem. Phys. 84, 2726–2733 (1986).Google Scholar
  346. 328.
    I. Černušák, G. H. F. Diercksen, and A. J. Sadlej, Phys. Rev. A 33, 814–823 (1986).Google Scholar
  347. 329.
    R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, J. Chem. Phys. 38, 550–560 (1963).Google Scholar
  348. 330.
    J. Gerrat and M. Mills, J. Chem. Phys. 49, 1719–1739 (1968).Google Scholar
  349. 331.
    K. Raghavachari and J. A. Pople, Int. J. Quantum Chem. 20, 1067–1071 (1981).Google Scholar
  350. 332.
    P. G. Jasien and C. E. Dykstra, Int. J. Quantum Chem. 27, 411–417 (1985).Google Scholar
  351. 333.
    H. P. Kelly, Adv. Chem. Phys. 14, 129–190 (1969).Google Scholar
  352. 334.
    M. Iwai and A. Saika, J. Chem. Phys. 77, 1951–1960 (1982).Google Scholar
  353. 335.
    H. J. Monkhorst, Int. J. Quantum Chem. Quantum Chem. Symp. 11, 421–432 (1977).Google Scholar
  354. 336.
    H. Sekino and R. J. Bartlett, Int. J. Quantum Chem. Quantum Chem. Symp. 18, 255–265 (1984).Google Scholar
  355. 337.
    J. Almlöf and P. R. Taylor, Int. J. Quantum Chem. 27, 743–768 (1985).Google Scholar
  356. 338.
    E. R. Davidson, in: The World of Quantum Chemistry (R. Daudel and B. Pullman, eds.), pp. 17–30, Reidel, Dordrecht (1974).Google Scholar
  357. 339.
    P. Botschwina, Chem. Phys. 81, 73–85 (1983).Google Scholar
  358. 340.
    C. F. Bender and E. R. Davidson, J. Chem. Phys. 49, 4222–4229 (1968).Google Scholar
  359. 341.
    F. Grimaldi, Adv. Quantum Chem. 14, 341–363 (1969).Google Scholar
  360. 342.
    J. Noga and M. Urban, Theor. Chim. Acta, submitted for publication.Google Scholar
  361. 343.
    D. G. Bounds and S. Wilson, Mol. Phys. 54, 445–153 (1985).Google Scholar
  362. 344.
    S. Wilson and A. J. Sadlej, Theor. Chim. Acta 60, 19–39 (1981).Google Scholar
  363. 345.
    G. H. F. Diercksen and A. J. Sadlej, Theor. Chim. Acta 63, 69–82 (1983).Google Scholar
  364. 346.
    P. A. Christiansen and E. A. McCullough, Chem. Phys. Lett. 55, 439–442 (1978).Google Scholar
  365. 347.
    E. A. McCullough, Mol. Phys. 42, 943–950 (1981).Google Scholar
  366. 348.
    A. J. Sadlej, Chem. Phys. Lett. 47, 50–54 (1977).Google Scholar
  367. 349.
    A. J. Sadlej, Acta Phys. Pol. A 53, 297–309 (1978).Google Scholar
  368. 350.
    L. Laaksonen, D. Sundholm, and P. Pyykkö, Chem. Phys. Lett. 105, 573–576 (1984).Google Scholar
  369. 351.
    D. Sundholm, P. Pyykkö, L. Laaksonen, and A. J. Sadlej, Chem. Phys. 101, 219–225 (1986).Google Scholar
  370. 352.
    J. Noga, V. Kellö, G. H. F. Diercksen, and A. J. Sadlej, to be published.Google Scholar
  371. 353.
    L. C. Snyder, J. Chem. Phys. 46, 3602–3606 (1966).Google Scholar
  372. 354.
    R. L. Disch, J. M. Schulman, and M. L. Sabio, J. Am. Chem. Soc. 107, 1904–1906 (1985).Google Scholar
  373. 355.
    P. George, M. Trachtman, A. B. Brett, and C. W. Bock, J. Chem. Soc. Perkin Trans. II, 1036–1096 (1977).Google Scholar
  374. 356.
    J. E. Del Bene, H. D. Mettee, M. J. Frisch, B. T. Luke, and J. A. Pople, J. Phys. Chem. 87, 3279–3282 (1983).Google Scholar
  375. 357.
    J. E. Del Bene, M. J. Frisch, K. Raghavachari, and J. A. Pople, J. Phys. Chem. 86, 1529–1535 (1982).Google Scholar
  376. 358.
    G. H. F. Diercksen, W. P. Kraemer, and B. O. Roos, Theor. Chim. Acta 36, 249–274 (1975).Google Scholar
  377. 359.
    P. Botschwina, J. Chem. Phys. 84, 6523–6524 (1986).Google Scholar
  378. 360.
    M. J. Frisch, H. F. Schaefer III, and J. S. Binkley, J. Phys. Chem. 89, 2192–2194 (1985).Google Scholar
  379. 361.
    P. Botschwina and P. Sebald, J. Mol. Spectrosc. 110, 1–18 (1985).Google Scholar
  380. 362.
    P. Botschwina, Chem. Phys. Lett. 124, 382–390 (1986).Google Scholar
  381. 363.
    M. Urban and R. J. Bartlett, to be published.Google Scholar
  382. 364.
    Ch. Glidewell and C. Thomson, J. Comput. Chem. 5, 3–10 (1984).Google Scholar
  383. 365.
    P. K. Pearson, H. F. Schaefer III, and U. Wahlgren, J. Chem. Phys. 62, 350–354 (1975).Google Scholar
  384. 366.
    M. Perić, M. Mladenović, S. D. Peyerimhoff, and R. Buenker, Chem. Phys. 82, 317–336 (1983).Google Scholar
  385. 367.
    L. T. Redmon, G. D. Purvis III, and R. J. Bartlett, J. Chem. Phys. 72, 986–991 (1980).Google Scholar
  386. 368.
    L. T. Redmon, G. D. Purvis, and R. J. Bartlett, J. Chem. Phys. 69, 5386–5392 (1978).Google Scholar
  387. 369.
    R. Krishnan, M. J. Frisch, J. A. Pople, and P. von R. Schleyer, Chem. Phys. Lett. 79, 408–410 (1981).Google Scholar
  388. 370.
    C. E. Dykstra and H. F. Schaefer, J. Am. Chem. Soc. 100, 1378–1382 (1978).Google Scholar
  389. 371.
    H. F. Schaefer, Acc. Chem. Res. 12, 288–295 (1979).Google Scholar
  390. 372.
    C. E. Dykstra, C. A. Parsons, and C. L. Oates, J. Am. Chem. Soc. 101, 1962–1965 (1979).Google Scholar
  391. 373.
    M. J. Frisch, R. Krishnan, J. A. Pople, and P. von R. Schleyer, Chem. Phys. Lett. 81, 421–423 (1981).Google Scholar
  392. 374.
    J. A. Pople, Y. Apeloig, and P. von R. Schleyer, Chem. Phys. Lett. 85, 489–492 (1982).Google Scholar
  393. 375.
    J. D. Goddard and H. Schaefer III, J. Chem. Phys. 70, 5117–5134 (1979).Google Scholar
  394. 376.
    J. D. Goddard, Y. Yamaguchi, and H. F. Schaefer III, J. Chem. Phys. 75, 3459–3462 (1981).Google Scholar
  395. 377.
    M. Dupuis, W. A. Lester, Jr., B. H. Lensfield III, and B. Liu, J. Chem. Phys. 79, 6167–6173 (1983).Google Scholar
  396. 378.
    U. Brandemark and P. E. M. Siegbahn, Theor. Chim. Acta 66, 233–243 (1984).Google Scholar
  397. 379.
    M. J. Frisch, B. Liu, J. S. Binkley, H. F. Schaefer III, and W. H. Miller, Chem. Phys. Lett. 114, 1–5 (1985).Google Scholar
  398. 380.
    C.F. Bender, C.W. Bauschlicher, and H.F. Schaefer, J. Chem. Phys. 60, 3707–3708 (1974).Google Scholar
  399. 381.
    K. Niblaeus, B. O. Roos, and P. E. M. Siegbahn, Chem. Phys. 26, 59–68 (1977).Google Scholar
  400. 382.
    J. S. Binkley and M. J. Frisch, Int. J. Quantum Chem. Quantum Chem. Symp. 17, 331–337 (1983)Google Scholar
  401. J. A. Pople, M. J. Frisch, D. T. Luke and J. S. Binkley, Int. J. Quantum Chem. Quantum Chem. Symp. 17, 307–320 (1983).Google Scholar
  402. 383.
    V. Kellö, J. Noga, and M. Urban, Chem. Papers 39, 245–254 (1985).Google Scholar
  403. 384.
    R. Preuss, R. J. Buenker, and S. D. Peyerimhoff, J. Mol. Struct. 49, 171–179 (1978).Google Scholar
  404. 385.
    J. Serre, Int. J. Quantum Chem. 26, 593–605 (1984).Google Scholar
  405. 386.
    I. Černušák, G. H. F. Diercksen, and M. Urban, Chem. Phys. Lett. 128, 538–544 (1986).Google Scholar
  406. 387.
    J. D. Evanseck, J. F. Blake, and W. L. Jorgensen, J. Am. Chem. Soc. 109, 2349–2353 (1987).Google Scholar
  407. 388.
    I. Černušák and M. Urban (to be published).Google Scholar
  408. 389.
    G. Karlström, B. Jönsson, B. O. Roos, and P. M. Siegbahn, Theor. Chim. Acta 48, 59–74 (1978).Google Scholar
  409. 390.
    L. B. Harding, H. B. Schlegel, R. Krishnan, and J. A. Pople, J. Phys. Chem. 84, 3394–3401 (1980).Google Scholar
  410. 391.
    G. F. Adams, G. D. Bent, R. J. Bartlett, and G. D. Purvis, J. Chem. Phys. 75, 834–842 (1981).Google Scholar
  411. 392.
    T. H. Dunning, J. Chem. Phys. 53, 2823–2833 (1970).Google Scholar
  412. 393.
    T. H. Dunning, J. Chem. Phys. 55, 716–723 (1971).Google Scholar
  413. 394.
    P. Botschwina and W. Meyer, Chem. Phys. 20, 43–52 (1977).Google Scholar
  414. 395.
    H. B. Schlegel, K. C. Bhalla, and W. L. Hase, J. Phys. Chem. 86, 4883–4888 (1982).Google Scholar
  415. 396.
    H. B. Schlegel and C. Sosa, J. Phys. Chem. 88, 1141–1145 (1984).Google Scholar
  416. 397.
    Z. Havlas and R. Zahradnik, Int. J. Quantum Chem. 26, 607–619 (1984).Google Scholar
  417. 398.
    Potential Energy Surfaces and Dynamics Calculations (D. G. Truhlar, ed.), Plenum Press, New York (1981).Google Scholar
  418. 399.
    V. Kellö, M. Urban, and A. I. Boldyrev, Chem. Phys. Lett. 106, 455–459 (1984).Google Scholar
  419. 400.
    M. L. McKee, J. Phys. Chem. 90, 4908–4910 (1986).Google Scholar
  420. 401.
    B. A. Hess, Jr., W. D. Allen, D. Michalska, L. J. Schaad, and H. F. Schaefer, J. Am. Chem. Soc. 109, 1615–1620 (1987).Google Scholar
  421. 402.
    W. P. Kraemer, B. O. Roos, and P. E. M. Siegbahn, Chem. Phys. 69, 305–321 (1982).Google Scholar
  422. 403.
    J. F. Gaw and N. C. Handy, Chem. Phys. Lett. 121, 321–329 (1985).Google Scholar
  423. 404.
    W. D. Laidig, P. Saxe, and R. J. Bartlett, J. Chem. Phys. 86, 887–907 (1987).Google Scholar
  424. 405.
    V. Klimo and J. Tiňo, Mol. Phys. 41, 483–490 (1980).Google Scholar
  425. 406.
    P. J. Bruna, H. Dohmann, and S. D. Peyerimhoff, Can. J. Phys. 62, 1508–1523 (1984)Google Scholar
  426. H. Dohmann, P. J. Bruna, S.D. Peyerimhoff, and R.J. Buenker, Mol. Phys. 51, 1109–1134 (1984)Google Scholar
  427. J. S. Wright and R.J. Buenker, J. Chem. Phys. 83, 4059–4068 (1985)Google Scholar
  428. M. Bettendorff and S. D. Peyerimhoff, Chem. Phys. 99, 55–72 (1985).Google Scholar
  429. 407.
    D. M. Hirst and M. F. Guest, Mol. Phys. 46, 427–435 (1982).Google Scholar
  430. 408.
    R. P. Saxon, D. F. Tuan, H. Helm, and B. Liu, J. Chem. Phys. 80, 2648–2653 (1984).Google Scholar
  431. 409.
    H. Lischka and A. Karpfen, Chem. Phys. 102, 77–89 (1986).Google Scholar
  432. 410.
    J. P. Daudey, P. Claveria, and J. P. Malrieu, Int. J. Quantum Chem. 8, 1–15 (1974).Google Scholar
  433. 411.
    B. Jeziorski and W. Kolos, in: Molecular Interactions, (H. Ratajczak and W. J. Orville-Thomas, eds.), Vol.3, pp. 1–46, Wiley, Chichester (1982).Google Scholar
  434. 412.
    S. F. Boys and F. Bernardi, Mol. Phys. 19, 553–566 (1970).Google Scholar
  435. 413.
    M. Gutowski, J. H. van Lenthe, J. Verbeek, F. B. van Duijneveldt, and G. Chalasinski, Chem. Phys. Lett. 124, 370–375 (1986).Google Scholar
  436. 414.
    B. H. Wells and S. Wilson, Mol. Phys. 50, 1295–1309 (1983).Google Scholar
  437. 415.
    H. Tatewaki, K. Tanaka, Y. Ohno, and T. Nakamura, Mol. Phys. 53, 233–240 (1984).Google Scholar
  438. 416.
    P. D. Dacre, Mol. Phys. 37, 1529–1541 (1979).Google Scholar
  439. 417.
    S. L. Price and A. J. Stone, Chem. Phys. Lett. 65, 127–131 (1979).Google Scholar
  440. 418.
    J. Noga, M. Urban, V. Kellö, and I. Hubač, Theor. Chim. Acta 309-317 (1981).Google Scholar
  441. 419.
    B. H. Wells and S. Wilson, Mol. Phys. 54, 787–798 (1985).Google Scholar
  442. 420.
    P. J. Hay, R. T. Pack, and R. L. Martin, J. Chem. Phys. 81, 1360–1372 (1986).Google Scholar
  443. 421.
    H. J. Böhm and R. Ahlrichs, Mol. Phys. 55, 1159–1169 (1985).Google Scholar
  444. 422.
    L. A. Curtiss and J. A. Pople, J. Chem. Phys. 82, 4230–4235 (1985).Google Scholar
  445. 423.
    M. D. Newton and N. R. Kestner, Chem. Phys. Lett. 94, 198–201 (1983).Google Scholar
  446. 424.
    O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64, 1351–1361 (1976).Google Scholar
  447. 425.
    P. Habitz and E. Clementi, IBM Research Report POK-19, Poughkeepsie, 1983.Google Scholar
  448. 426.
    M. M. Szczesniak and S. Scheiner, J. Chem. Phys. 80, 1535–1542 (1984).Google Scholar
  449. 427.
    R. J. Harrison and R. J. Bartlett, Int. J. Quant. Chem., Quant, Chem. Symp. 20, 437–443 (1987).Google Scholar
  450. 428.
    J. O. Baum and J. L. Finney, Mol. Phys. 55, 1097–1108 (1985).Google Scholar
  451. 429.
    B. Liu and A. D. McLean, J. Chem. Phys. 72, 3418–3419 (1980).Google Scholar
  452. 430.
    M. R. A. Blomberg, P. E. M. Siegbahn and B. O. Roos, Int. J. Quant. Chem., Quant. Chem. Symp. 14, 229–247 (1980).Google Scholar
  453. 431.
    B. H. Lensfield, A. D. McLean, M. Yoshimine, and B. Liu, J. Chem. Phys. 79, 1891–1895 (1983).Google Scholar
  454. 432.
    G. H. F. Diercksen, V. Kellö, and A. J. Sadlej, Chem. Phys. 96, 59–79 (1985).Google Scholar
  455. 433.
    J. Noga, M. Urban, I. Černušák, G. H. F. Diercksen, and A. J. Sadlej (to be published).Google Scholar
  456. 434.
    G. H. F. Diercksen, V. Kellö, and A. J. Sadlej, Chem. Phys. 103, 55–74 (1986).Google Scholar
  457. 435.
    W. Kutzelnigg, Faraday Discuss. 62, 185–196 (1977).Google Scholar
  458. 436.
    Z. Latajka and S. Scheiner, Chem. Phys. 98, 59–70 (1985).Google Scholar
  459. 437.
    E. Kochanski, J. Chem. Phys. 58, 5823–5831 (1973).Google Scholar
  460. 438.
    P. Hobza, B. Schneider, J. Sauer, P. Čársky, and R. Zahradnik, Chem. Phys. Lett. 134, 418–422 (1987)Google Scholar
  461. J. Sauer, P. Hobza, P. Čársky, and R. Zahradnik, Chem. Phys. Lett. 134, 553–559 (1987).Google Scholar
  462. 439.
    P. Hobza and R. Zahradnik, Intermolecular Complexes, Elsevier, Amsterdam, 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Miroslav Urban
    • 1
  • Ivan Černušák
    • 1
  • Vladimír Kellö
    • 1
  • Jozef Noga
    • 2
  1. 1.Department of Physical ChemistryComenius UniversityBratislavaCzechoslovakia
  2. 2.Institute of Inorganic Chemistry, Center for Chemical ResearchSlovak Academy of SciencesBratislavaCzechoslovakia

Personalised recommendations