Advertisement

Origins of Genetic Toxicology

  • David Brusick

Abstract

The field of toxicology deals with effects of agents on living systems, with the purpose of defining human health effects. It is an applied science, which draws on data and methodology from a multitude of basic sciences, such as physiology, pharmacology, the study of metabolism, ethology, genetics, embryology, chemistry, and statistics.

Keywords

Technology Transfer Environmental Mutagen Genetic Toxicology Methyl Isocyanate Animal Toxicology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burnet, F. M.: Intrinsic Mutagenesis: A Genetic Approach to Aging, Medical and Technical Publishing, Lancaster, England, 1974.Google Scholar
  2. 2.
    Hanin, I., and Usdin, E. (eds.): Animal Models in Psychiatry and Neurology, Pergamon Press, New York, 1978.Google Scholar
  3. 3.
    Brusick, D. J.: The value and significance of carcinogenic, mutagenic, and teratogenic tests. In Cutaneous Toxicity (V. A. Drill and P. Lazar, eds.), Academic Press, New York, pp. 189–201, 1977.Google Scholar
  4. 4.
    Shubik, P.: Identification of environmental carcinogens. Animal test models. In Carcinogens: Identification of Mechanisms of Action (A. C. Griffin and C. R. Shaw, eds.), Raven Press, New York, pp. 37–47, 1979.Google Scholar
  5. 5.
    Wilson, J. G.: Environment and Birth Defects, Academic Press, New York, Chapter 8, 1973.Google Scholar
  6. 6.
    Ehrenberg, L., Brookes, P., Druckrey, H., Lagerlof, B., Litwin, J., and Williams, G.: The relation of cancer induction and genetic damage. In Evaluation of Genetic Risks of Environmental Chemicals, Report of Group 3, Ambio Special Report No. 3, Royal Swedish Academy of Sciences, Universitetsforlaget, 1973.Google Scholar
  7. 7.
    ICPEMC: Committee 1 Final Report. Screening strategy for chemicals that are potential germ-cell mutagens in mammals. Mutat. Res. 114: 117–177, 1983.CrossRefGoogle Scholar
  8. 8.
    Muller, H. J.: Artificial transmutation of the gene. Science 66: 84–87, 1927.PubMedCrossRefGoogle Scholar
  9. 9.
    Auerbach, C., Robson, J. M., and Carr, J. G.: The chemical production of mutations. Science 105: 243, 1947.PubMedCrossRefGoogle Scholar
  10. 10.
    Cattanach, B. M.: Chemically induced mutations in mice. Mutat. Res. 3: 346–353, 1966.PubMedCrossRefGoogle Scholar
  11. 11.
    Russell, W. L.: X-ray induced mutations in mice. Cold Spring Harbor Symp. Quant. Biol. 16: 327–330, 1951.PubMedCrossRefGoogle Scholar
  12. 12.
    Bridges, G. A., Bochkov, N. P., and Jansen, J. D.: Genetic monitoring of human populations accidentally exposed to a suspected mutagenic chemical. International Commission for Protection against Environmental Mutagens and Carcinogens, Publication No. 1, Mutat. Res. 64: 57–60, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Russell, W. L.: The role of mammals in the future of chemical mutagenesis research. Arch. Toxicol. 38: 141–147, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Avery, O. T., MacLeod, C. M., and McCarty, M.: Studied on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137158, 1944. Reprinted in Classic Papers in Genetics (J. A. Peters, ed.), Prentice-Hall, Englewood Cliffs, New Jersey, pp. 173–192, 1959; and Papers on Bacterial Genetics (E. A. Adelberg, ed.), Little, Brown, Boston, pp. 147–168, 1960.Google Scholar
  15. 15.
    Watson, J. D., and Crick, F. H. C.: The structure of DNA. In Papers on Genetics: A Book of Readings (L. Levine, ed.), C. V. Mosby, St. Louis, pp. 11–21, 1971.Google Scholar
  16. 16.
    Crick, F. H. C.: On protein synthesis. Symp. Soc. Exp. Biol. 12: 138–163, 1958.PubMedGoogle Scholar
  17. 17.
    Meselson, M. S., and Stahl, F. W.: The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 44: 671–682, 1958.CrossRefGoogle Scholar
  18. 18.
    Jacob, F., and Monod, J.: On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26: 193, 1961.CrossRefGoogle Scholar
  19. 19.
    Nirenberg, M., Caskey, T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Levin, J., Rottman, F., Pestka, S., Wilcox, M., and Anderson, F.: The RNA code and protein synthesis. In Papers on Genetics: A Book of Readings (L. Levine, ed.), C. V. Mosby, St. Louis, pp. 34–52, 1971.Google Scholar
  20. 20.
    Goulian, M., Kornberg, K., and Sinsheimer, R. L.: Enzymatic synthesis of DNA, XXIV. Synthesis of infectious phage OX174 DNA. In Molecular Biology of DNA and RNA: An Analysis of Research Papers (I. D. Raacke, ed.), C. V. Mosby, St. Louis, pp. 112–119, 1971.Google Scholar
  21. 21.
    Guarente, L., Lauer, G., Roberts, J. M., and Ptaskne, M.: Improved methods for maximizing expression of a cloned gene: A bacterium that synthesizes rabbit 3-globin. Cell 20: 543–553, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Itabura, K., Hirose, T., Crea, R., Riggs, A. D., Heyneker, H. L., Bolivar, F., and Boyer, H. W.: Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063, 1977.CrossRefGoogle Scholar
  23. 23.
    Ames, B. N.: Identifying environmental chemicals causing mutations and cancer. Science 204: 587–593, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Bridges, B. A.: Short-term screening tests for carcinogens. Nature 261: 195–200, 1976.PubMedCrossRefGoogle Scholar
  25. 25.
    Brusick, D. J.: The role of short-term testing in carcinogen detection. Chemosphere 5: 403–417, 1978.CrossRefGoogle Scholar
  26. 26.
    McCann, J., Choi, E., Yamasaki, E., and Ames, B. N.: Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. USA 72 (12): 5135–5139, 1975.PubMedCrossRefGoogle Scholar
  27. 27.
    Sugimura, T., Sato, S., Nagao, M., Yahagi, T., Matsushima, T., Seino, Y., Takeuchi, M., and Kawachi, T.: Overlapping of carcinogens and mutagens. In Fundamentals in Cancer Prevention (P. N. Magee, T. Matsushima, T. Sugimura, and S. Takayama, eds.), University of Tokyo Press, Tokyo, and University Park Press, Baltimore, Maryland, pp. 191–215, 1976.Google Scholar
  28. 28.
    Brusick, D. J.: In vitro mutagenesis assays as predictors of chemical carcinogenesis in mammals. In Toxicology Annual, Vol. 2 (C. L. Winek, ed.), Marcel Dekker, New York, pp. 79–105, 1977.Google Scholar
  29. 29.
    Gabridge, M. G., and Legator, M. S.: A host-mediated assay for the detection of mutagenic compounds. Proc. Soc. Exp. Biol. Med. 130: 831, 1969.PubMedGoogle Scholar
  30. 30.
    Mailing, H. V.: Dimethylnitrosamine: Formation of mutagenic compounds by interaction with mouse liver microsomes. Mutat. Res. 13: 425, 1971.CrossRefGoogle Scholar
  31. 31.
    Reddy, E. P., Reynolds, R. K., Santos, E., and Barbacid, M.: A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300: 149–152, 1982.PubMedCrossRefGoogle Scholar
  32. 32.
    Whitfield, H. J., Martin, R. G., and Ames, B. N.: Classification of aminotransferase (C gene) mutants in the histidine operon. J. Mol. Biol. 21: 335, 1966.PubMedCrossRefGoogle Scholar
  33. 33.
    Moreau, P., Bailone, A., and Devoret, R.: Prophage X induction in Escherichia coli, K12 env A, uVr B: A highly sensitive test for potential carcinogens. Proc. Natl. Acad. Sci. USA 73: 3700–3704, 1976.PubMedCrossRefGoogle Scholar
  34. 34.
    McPherson, F., Bridges, J. W., and Parke, D. V.: In vitro enhancement of hepatic microsomal biphenyl 2-hydroxylation by carcinogens. Nature 252: 488–489, 1974.PubMedCrossRefGoogle Scholar
  35. 35.
    Arni, P., Mantel, T., Deparade, E., and Muller, D.: Intrasanguine host-mediated assay with Salmonella typhimurium. Mutat. Res. 45 (3): 291–307, 1977.CrossRefGoogle Scholar
  36. 36.
    Durston, W. E., and Ames, B. N.: A simple method for the detection of mutagens in urine: Studies with the carcinogen 2-acetylaminofluorene. Proc. Natl. Acad. Sci. USA 71: 737–741, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Vogel, E., and Sobels, F. H.: The function of Drosophila in genetic toxicology testing. In Chemical Mutagens: Principles and Methods for Their Detection, Vol. 4 (A. Hollaender, ed.), Plenum Press, New York, Chapter 38, pp. 93–142, 1976.Google Scholar
  38. 38.
    Graf, U., Wurgler, F. E., Katz, A. J., Frei, H., Juon, H., Hall, C. B., and Kale, P. G.: Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mu-tagen. 6: 153–188, 1984.Google Scholar
  39. 39.
    Mailing, H. V., and Valcovic, L. R.: New approaches to detecting gene mutations in mammals. In Advances in Modern Toxicology, Vol. 4 (G. Flamm and M. Mehlman, eds.), Halsted Press, New York, Chapter 8, 1978.Google Scholar
  40. 40.
    Tazima, Y., and Onimaku, K.: Results of mutagenicity testing for some nitrofuran derivatives in a sensitive test system with silkworm oocytes. Japanese Environmental Mutagen Society, 2nd Annual Meeting, Abstract 16, 1976.Google Scholar
  41. 41.
    Underbrink, A. G., Schairer, L. A., and Sparrow, A. H.: Trandescantia stamen hairs: A radiobiological test system applicable to chemical mutagenesis. In Chemical Mutagens: Principles and Methods for Their Detection, Vol. 3 (A. Hollaender, ed.), Plenum Press, New York, Chapter 30, p. 171, 1976.Google Scholar
  42. 42.
    Brusick, D., and Auletta, A.: Developmental status of bioassays in genetic toxicology. Mutat. Res. 153: 1–10, 1985.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • David Brusick
    • 1
  1. 1.Hazleton LaboratoriesKensingtonUSA

Personalised recommendations