Enzyme Immunoassay Using the Ammonia Gas-Sensing Electrode

  • Carl R. Gebauer


Potentiometric membrane electrodes have been applied to immunological measurements both as direct immunosensors and as detectors of enzyme label activity in enzyme immunoassays (EIA). In the latter case, no universal Potentiometric sensor is available for EIA use but rather a distinct electrode type is matched with the class of enzyme label it is best suited to detect. The ammonia gas-sens ing electrode is one example and has the capability of detecting enzymes that catalyze ammonia producing reactions. Meyerhoff and Rechnitz (1979) first described the application of this gas-sensing electrode to EIA measurements through the use of a urease label for bovine serum albumin (BSA), a model protein analyte, and for cyclic AMP (adenosine monophosphate). In this chapter the general application of the ammonia gas-sensing electrode to immunoassay methods employing deaminating enzyme labels is examined for both a model hapten, dinitrophenyl (DNP), and one of clinical interest, Cortisol.


Adenosine Deaminase Enzyme Electrode Phosphate Buffer Saline Buffer Enzyme Label Relative Standard Devia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bodlaender, P., Feinstein, G., and Shaw, E. The Use of Isoxazolium Salts for Carboxyl Group Modification of Proteins. Trypsin. Biochem. 8, 4941–4948 (1969).CrossRefGoogle Scholar
  2. Camman, K. Bio-Sensors Based on Ion-Selective Electrodes. Fres. Z. Anal. Chem. 287, 1–9 (1977).CrossRefGoogle Scholar
  3. Davies, P., and Mosbach, K. The Application of Immobilized NAD+ in an Enzyme Electrode and in Model Enzyme Reactors. Biochim. Biophys. Acta 370, 329–338 (1974).PubMedCrossRefGoogle Scholar
  4. Erlanger, B. F. Principles and Methods for the Preparation of Drug Protein Conjugates for Immunological Studies. Pharm. Rev. 25, 271–280 (1973).PubMedGoogle Scholar
  5. Fung, K. W., Kuan, S. S., Sung, H. Y., and Guilbault, G. G. Methionine Selective Enzyme Electrode, Anal. Chem. 51, 2319–2324 (1979).Google Scholar
  6. Gebauer, C. R., Meyerhoff, M. E., and Rechnitz, G. A. Enzyme Electrode-Based Kinetic Assays of Enzyme Activities. Anal. Biochem. 95, 479–482 (1979).PubMedCrossRefGoogle Scholar
  7. Gebauer, C. R., and Rechnitz, G. A. Immunoassay Studies Using Adenosine Deaminase Enzyme with Potentiometric Rate Measurement. Anal. Lett. 14, 97–109 (1981).CrossRefGoogle Scholar
  8. Gebauer, C. R., and Rechnitz, G. A. Deaminating Enzyme Labels for Potentiometric Enzyme Immunoassay. Anal. Biochem. 124, 338–348 (1982).PubMedCrossRefGoogle Scholar
  9. Gebauer, C. R. Enzyme and Immunoassay Measurements with Ion-Selective Electrodes. Ph.D. Thesis, Univ. of Delaware (1982) University Microfilm, Ann Arbor.Google Scholar
  10. Guilbault, G. G., Smith, R. K., and Montalvo, J. G. Use of Ion Selective Electrodes in Enzymic Analysis-Cation Electrodes for Deaminase Enzyme Systems. Anal. Chem. 41, 600–605 (1969).CrossRefGoogle Scholar
  11. Guilbault, G. G., and Hrabankova, E. An Electrode for Determination of Amino Acids. Anal. Chem, 42, 1779–1783 (1970).PubMedCrossRefGoogle Scholar
  12. Guilbault, G. G., and Hrabankova, E. New Enzyme Electrode Probes for D-Amino Acids and Asparagive. Anal. Chira. Acta 56, 285–290 (1971).CrossRefGoogle Scholar
  13. Hjemdahl-Monsen, C., Papastathopoulos, D. S., and Rechnitz, G. A. Automated Adenosine Deaminase Enzyme Determination with an Ammonia-Sensing Membrane Electrode. Anal. Chim. Acta 88, 253–259 (1977).PubMedCrossRefGoogle Scholar
  14. Hsiung, C. P., Kaun, S. S., and Guilbault, G. G. A Specific Enzyme Electrode for L-Phenylalanine. Anal, Chim. Acta 90, 45–49 (1977).CrossRefGoogle Scholar
  15. Huang, Y-Z. A New Method for the Assay of Glutaminase Activity: Direct Measurement of Product Formation by an Ammonia Electrode. Anal. Biochem. 61, 464–470 (1974).PubMedCrossRefGoogle Scholar
  16. Hussein, W. R., and Guilbault, G. G. Nitrate and Ammonia Ion-Selective Electrodes as Sensors. Part II. Assay of Nitrate Ion and Nitrite Reductases in Stationary Solutions and Under Flow-Stream Condition. Anal. Chira. Acta 76, 183–192 (1975).CrossRefGoogle Scholar
  17. Katz, S. A. Direct Potentiometric Determination of Urease Activity. Anal. Chem 36, 2500–2501 (1964).CrossRefGoogle Scholar
  18. Matsushima, A., Nishimura, H., Ashihara, Y., Yokota, Y., and Inada, Y. Modifications of E. coli Asparagainase with 2,4-bis(O-methoxypoly-ethylene glycol)-6-chloro-s-triazine (Activated PEG2); Disappearance of Binding Ability Towards Anti-Serum and Retention of Enzymatic Activity. Chem. Lett. 1980, 773-776 (1980).Google Scholar
  19. Meyerhoff, M. E., and Rechnitz, G. A. An Activated Enzyme Electrode for Creatinine. Anal. Chim. Acta 85, 277–285 (1976).PubMedCrossRefGoogle Scholar
  20. Meyerhoff, M. E., and Rechnitz, G. A. Electrode-Based Enzyme Immunoassays Using Urease Conjugates. Anal. Biochem. 95, 483–493 (1979).PubMedCrossRefGoogle Scholar
  21. Meyerhoff, M. E. Polymer Membrane Electrode-Based Potentiometric Ammonia Gas Sensor. Anal. Chem. 52, 1532–1534 (1980).CrossRefGoogle Scholar
  22. Meyerson, L. R., McMurtrey, K. D., and Davis, V. E. A Rapid and Sensitive Potentiometric Assay for Monoamine Oxidase Using an Ammonia-Selective Electrode. Anal. Biochem. 86, 287–297 (1978).PubMedCrossRefGoogle Scholar
  23. Ngo, T. T. Ion-Selective Electrode-Based Enzymatic Determination of L-Histidine. Int. J. Biochem. 6, 371–373 (1975).CrossRefGoogle Scholar
  24. Nikolelis, D. P., Papastathopoulos, D. S., and Hadjiiannau, T. P. Construction of a Guanine Enzyme Electrode and Determination of Guanase in Human Blood Serum with an Ammonia Gas Sensor. Anal. Chim. Acta 126, 43–50 (1981).CrossRefGoogle Scholar
  25. Papastathopoulos, D. S., and Rechnitz, G. A. Highly Selective Electrode for 5′-Adenosine Monophosphate. Anal. Chem. 48, 862–864 (1976).PubMedCrossRefGoogle Scholar
  26. Phelan, J., McEvoy, F., Rooney, S., and Brady, T. G. Structural Studies on Adenosine Deaminase from Calf Intestinal Mucosa. Biochim. Biophys. Acta 200, 370–377 (1970).PubMedCrossRefGoogle Scholar
  27. Ross, J. W., Riseman, J. H. and Krueger, J. A. Potentiometric Gas Sensing Electrodes. Pure Appl. Chem. 36, 473–487 (1973).CrossRefGoogle Scholar
  28. Schuurs, A. H. W. M., and Van Weemen, B. K. Enzyme Immunoassay. Clin. Chim. Acta 81, 1–40 (1977).PubMedCrossRefGoogle Scholar
  29. Wriston, J. C., and Yellin, T. O. L-Asparaginase: A Review. Adv. Enzymol. Relat. Areas Mol. Biol. 39, 185–248 (1973).PubMedGoogle Scholar
  30. Zettner, A., and Duly, P. E. Principles of Competitive Binding Assays (Saturation Analyses) II. Sequential Saturation. Clin. Chem. 20, 5–14 (1974).Google Scholar
  31. Zielke, C. L., and Suelter, C. H. IV. 5’-Adenylic Acid Aminohydrolase, in The Enzymes, Vol. V, Boyer, P.D., ed. Academic Press, NY pp 64–73 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Carl R. Gebauer
    • 1
  1. 1.Technicon Instruments CorporationTarrytownUSA

Personalised recommendations