Catecholamine Effects on Leydig Cell Steroidogenesis

  • William H. Moger
  • Onyeama O. Anakwe
  • Paul R. Murphy

Abstract

Luteinizing hormone (LH) is without question the most important regulator of Leydig cell steroidogenesis. In some species such as the ram there is concordance between episodes of LH secretion and episodes of testosterone secretion (Lincoln, 1976). In others, such as man and rat, the concordance is less precise. Ellis and Desjardins (1982) have, for example, suggested that two or more episodes of LH secretion must occur within 70 min of each other to induce an episode of testosterone secretion. LH not only acutely stimulates testosterone secretion but is important in maintaining the morphological and enzymatic attributes required for androgen production (Wing et al., 1984). There are, however, a number of situations where testosterone secretion appears to be altered without a corresponding change in LH secretion. Examples include “testitoxicosis”, which is characterized by precocious puberty in boys with low serum gonadotropin concentrations (Weirman et al., 1985); the “testicular hemicastration response” in rats where the testosterone secretion rate of the remaining testis doubles within 24 h of hemicastration without a corresponding increase in serum LH concentrations (Frankel and Wright, 1982); the decline in serum testosterone concentrations in fetal male rats and mice late in gestation despite increasing serum LH concentrations (Pointis et al., 1980; Slob et al., 1980; Habert and Picon, 1982); and the reduction in serum testosterone concentrations induced by stress which has variable effects on LH secretion (Aona et al., 1976; Du Ruisseau et al., 1978; Gray et al., 1978; Tache et al., 1980). It must be noted that the dynamic nature of LH secretion makes it difficult to prove that small alterations in LH secretion have not occurred in situations where testosterone secretion appears to vary independent of changes in LH concentrations. Possible alterations in testicular blood flow or androgen metabolism also complicate interpretation. However, LH-independent testosterone secretion raises the possibility that factors other than LH influence Leydig cell steroidogenesis. There is considerable evidence for direct effects of prolactin (Purvis et al., 1979), estrogens (Moger, 1980), vasopressin (Adashi et al., 1981, 1984) and, in some species, gonadotropin-releasing hormone (Sharpe, 1983) on Leydig cells and for indirect effects of follicle-stimulating hormone (FSH) acting on Leydig cells via an unidentified local testicular factor (Moger and Murphy, 1982). This review will focus on our recent studies that indicate that the catecholamines epinephrine and norepinephrine can directly stimulate Leydig cell steroidogenesis and thus may have physiologic or pathophysiologic roles in the LH-independent regulation of steroidogenesis.

Keywords

Androgen Epinephrine Propranolol Prolactin Aflatoxin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adashi, E. Y., and Hsueh, A. J. W., 1981, Direct inhibition of testicular androgen biosynthesis revealing antigonadal activity of neurohypophyseal hormones, Nature, 293:650.PubMedCrossRefGoogle Scholar
  2. Adashi, E. Y., Tucker, E. M., and Hsueh, A. J. W., 1984, Direct regulation of rat testicular steroidogenesis by neurohypophyseal hormones, J. Biol. Chem., 259:5440.PubMedGoogle Scholar
  3. Aldred, L. F., and Cooke, B. A., 1982, Tne deleterious effect of mechanical dissociation of rat testes on the functional activity and purification of Leydig cells using Percoll gradients, Int. J. Androl., 5:191.PubMedCrossRefGoogle Scholar
  4. Aldred, L. F., and Cooke, B. A., 1983, The effect of cell damage on the density and steroidogenic capacity of rat testis Leydig cells, using an NADH exclusion test for determination of viability, J. Steroid Biochem., 18:411.PubMedCrossRefGoogle Scholar
  5. Anakwe, O. O., and Moger, W. H., 1984a, ゲ2-Adrenergic stimulation of androgen production by cultured mouse testicular interstitial cells, Life Sci., 35:2041.PubMedCrossRefGoogle Scholar
  6. Anakwe, O. O., and Moger, W. H., 1984b, Ontogeny of rodent testicular androgen production in response to isoproterenol and luteinizing hormone in vitro, Biol. Reprod., 30:1142.PubMedCrossRefGoogle Scholar
  7. Anakwe, O. O., and Moger, W. H., 1986, Catecholamine stimulation of androgen production by rat Leydig cells. Interactions with luteinizing hormone and luteinizing hormone-releasing hormone, Biol. Reprod., in press.Google Scholar
  8. Anakwe, O. O., Murphy, P. R., and Moger, W. H., 1985, Characterization of β-adrenergic binding sites on rodent Leydig cells, Biol. Reprod., 33:815.PubMedCrossRefGoogle Scholar
  9. Aono, T., Kurachi, K., Miyata, M., Nakasima, A., Koshiyama, K., Uozumi, T., and Matsumoto, K., 1976, Influence of surgical stress under general anesthesia on serum gonadotropin levels in male and female patients, J. Clin. Endocr. Metab., 42:144.PubMedCrossRefGoogle Scholar
  10. Armstrong, D. T., and Hansel, W., 1958, Effects of hormone treatment on testes development and pituitary function, Intern. J. Fert., 3:296.Google Scholar
  11. Baumgarten, H. G., Falck, B., Holstein, A.-F., Owman, C., and Owman, T., 1968, Adrenergic innervation of the human testis, epididymus, ductus deferens and prostate: a fluorescence microscopic and fluorimetric study, Zeit. Zell. Mikros. Anat., 90:81.CrossRefGoogle Scholar
  12. Bliss, E. L., Frischat, A., and Samuels, L., 1972, Brain and testicular function, Life Sci., 11(Part 1):231.Google Scholar
  13. Charpenet, G., Tache, Y., Bernier, M., Ducharme, J. R., and Collu, R., 1982, Stress-induced testicular hyposensitivity to gonadotropin in rats. Role of the pituitary, Biol. Reprod., 27:616.PubMedCrossRefGoogle Scholar
  14. Charpenet, G., Tache, Y., Forest, M. G., Hoar, F., Saez, J. M., Bernier, M., Ducharme, J. R., and Collu, R., 1981, Effect of chronic immobilization stress on rat testicular androgenic function, Endocrinology, 109:1254.PubMedCrossRefGoogle Scholar
  15. Collu, R., Gibb, W., Brichet, D. G., and Ducharme, J. R., 1984a, Role of arginine-vasopressin (AVP) in stress-induced inhibition of testicular steroidogenesis in normal and in AVP-deficient rats, Endocrinology, 115:1609.PubMedCrossRefGoogle Scholar
  16. Collu, R., Gibb, W., and Ducharme, J. R., 1984b, Role of catecholamines in the inhibitory effect of immobilization stress on testosterone secretion in rats, Biol. Reprod., 30:416.PubMedCrossRefGoogle Scholar
  17. Cooke, B. A., Janszen, F. H., van Driel, M. J., and van der Molen, H. J., 1979, Evidence for the involvement of lutropin-independent RNA synthesis in Leydig cell steroidogenesis, Mol. Cell. Endocr., 14:181.CrossRefGoogle Scholar
  18. Cooke, B. A., Golding, M., Dix, C. J., and Hunter, M. G., 1982, Catecholamine stimulation of testosterone production via cyclic AMP in mouse Leydig cells in monolayer culture, Mol. Cell. Endocr., 27:221.CrossRefGoogle Scholar
  19. Damber, J. E., and Janson, P. O., 1978, The effect of LH, adrenaline and noradrenaline on testosterone concentrations in anaesthetized rats, Acta Endocr., 88:390.PubMedGoogle Scholar
  20. Du Ruisseau, P., Tache, Y., Brazeau, P., and Collu, R., 1978, Pattern of adenohypophyseal hormone changes induced by various Stressors in female and male rats, Neuroendocrinology, 27:257.PubMedCrossRefGoogle Scholar
  21. Dufau, M. L., Homer, K. A., Hayashi, K., Tsuruhara, T., Conn, P. M., and Catt, K. J., 1978, Actions of choleragen and gonadotropin in isolated Leydig cells. Functional compartmentalization of the hormone-activated cyclic AMP response, J. Biol. Chem., 253:3721.PubMedGoogle Scholar
  22. Eik-Nes, K. B., 1969, An effect of isoproterenol on rates of synthesis and secretion of testosterone. Am. J. Physiol., 217:1764.PubMedGoogle Scholar
  23. Eliasson, R., and Risley, P. L., 1968, Adrenergic innervation of the male reproductive ducts of some mammals. III. Distributions of noradrenaline and adrenaline, Acta Physiol. Scand., 73:311.PubMedCrossRefGoogle Scholar
  24. Ellis, G. B., and Desjardins, C., 1982, Male rats secrete luteinizing hormone and testosterone episodically, Endocrinology, 110:1618.PubMedCrossRefGoogle Scholar
  25. Ewing, L. L., Noble, D. J., and Ebner, K. E., 1964, The effect of epinephrine and competition between males on the in vitro metabolism of rabbit testes, Can. J. Physiol. Pharmacol., 42:527.PubMedCrossRefGoogle Scholar
  26. Frankel, A. I., and Mock, E. J., 1982, A study of the first eight hours in the stabilization of plasma testosterone concentration in the hemicastrated rat, J. Endocr., 92:225.PubMedCrossRefGoogle Scholar
  27. Frankel, A. I., and Wright, W. W., 1982, The hemicastrated rat: definition of a model for the study of the regulation of testicular steroidogenesis, J. Endocr., 92:213.PubMedCrossRefGoogle Scholar
  28. Frankel, A. I., Mock, E. J., and Chapman, J. C., 1984, Hypophysectomy and hemivasectomy can inhibit the testicular hemicastration response of the mature rat, Biol. Reprod., 30:804.PubMedCrossRefGoogle Scholar
  29. Gomes, W. R., and Jain, S. K., 1976, Effect of unilateral and bilateral castration and crypt orchidism on serum gonadotropins in the rat, J. Endocr., 68:191.PubMedCrossRefGoogle Scholar
  30. Goncharov, M. P., Taranov, A. G., Antonichev, A. V., Gorlushkin, V. M., Aso, T., Cekan, S. Z., and Diczfalusy, E., 1979, Effect of stress on the profile of plasma steroids in baboons (Papio hamadryas), Acta Endocr., 90:372.PubMedGoogle Scholar
  31. Gotz, F., Stahl, F., Rhohde, W., and Dorner, G., 1983, The influence of adrenaline on plasma testosterone in adult and newborn male rats, Exp. Clin. Endocr., 81:239.CrossRefGoogle Scholar
  32. Gray, G. D., Smith, E. R., Damassa, D. A., Ehrenkranz, J. R. L., and Davidson, J. M., 1978, Neuroendocrine mechanisms mediating the suppression of circulating testosterone levels associated with chronic stress in male rats, Neuroendocrinology, 25:247.PubMedCrossRefGoogle Scholar
  33. Habert, R., and Picon, R., 1982, Control of testicular steroidogenesis in fetal rat: effect of decapitation on testosterone and plasma luteinizing hormone-like activity, Acta Endocr., 99:466.PubMedGoogle Scholar
  34. Heindel, J. J., Steinberger, A., and Strada, S. J., 1981, Identification and characterization of a β1-adrenergic receptor in the rat Sertoli cell, Mol. Cell. Endocr., 22:349.CrossRefGoogle Scholar
  35. Hodson, N., 1970, The nerves of the testis, epididymis, and scrotum, in: “The Testis,” A. D. Johnson, W. R. Gomes, and N. L. VanDemark, eds., Vol. 1, p. 47, Academic Press, New York.Google Scholar
  36. Howland, B. E., and Skinner, K. R., 1975, Changes in gonadotropin secretion following complete or hemicastration in the adult rat, Horm. Res., 6:71.PubMedCrossRefGoogle Scholar
  37. Kierszenbaum, A. L., Spruill, W. A., White, M. G., Tres, L. L., and Perkins, J. P., 1985, Rat Sertoli cells acquire β-adrenergic response during primary culture, Proc. Natl. Acad. Sci. USA, 82:2049.PubMedCrossRefGoogle Scholar
  38. Kreuz, L. E., Rose, R. M., and Jennings, J. R., 1972, Suppression of plasma testosterone levels and psychological stress. A longitudinal study of young men in Officer Candidate School, Arch. Gen. Psychiat., 26:479.PubMedCrossRefGoogle Scholar
  39. Lamar, J. K., 1943, Epinephrine effects on young male rats, Anat. Rec. Abbr., 87:453.Google Scholar
  40. Levin, J., Lloyd, C. W., Lobotsky, J., and Friedrich, E. H., 1967, The effect of epinephrine on testosterone production, Acta Endocr., 55:184.PubMedGoogle Scholar
  41. Lincoln, G. A., 1976, Seasonal variation in the episodic secretion of luteinizing hormone and testosterone in the ram, J. Endocr., 69:213.PubMedCrossRefGoogle Scholar
  42. Lindgren, S., Damber, J.-E., and Carstensen, H., 1976, Compensatory testosterone secretion in unilaterally orchidectomized rats, Life Sci., 18:1203.PubMedCrossRefGoogle Scholar
  43. Mock, E. J., and Frankel, A. I., 1982, Response of testosterone to hemicastration in the testicular vein of the mature rat, J. Endocr., 92:231.PubMedCrossRefGoogle Scholar
  44. Moger, W. H., 1980, Direct effects of estrogens on the endocrine function of the mammalian testis, Can. J. Physiol. Pharmacol., 58:1011.PubMedCrossRefGoogle Scholar
  45. Moger, W. H., and Anakwe, O. O., 1983, Effects of forskolin on androgen production by mouse interstitial cells in vitro. Interactions with luteinizing hormone and isoproterenol, Biol. Reprod., 29:932.PubMedCrossRefGoogle Scholar
  46. Moger, W. H., and Anakwe, O. O., 1986, Propranolol inhibits the compensatory increase in androgen secretion after unilateral orchidectomy in rats, J. Reprod. Fert., 76:251.CrossRefGoogle Scholar
  47. Moger, W. H., and Murphy, P. R., 1982, Reevaluation of the effect of follicle stimulating hormone on the steroidogenic capacity of the testis: The effects of neuraminidase-treated FSH preparations, Biol. Reprod., 26:422.PubMedCrossRefGoogle Scholar
  48. Moger, W. H., and Murphy, P. R., 1983, β-Adrenergic agonist induced androgen production during primary culture of mouse Leydig cells, Arch. Androl., 10:135.PubMedCrossRefGoogle Scholar
  49. Moger, W. H., Murphy, F. R., and Casper, R. F., 1982, Catecholamine stimulation of androgen production by mouse interstitial cells in primary culture, J. Androl., 3:227Google Scholar
  50. Molenaar, R., Rommerts, R. F. G., and van der Molen, H. J., 1983, The steroidogenic activity of isolated Leydig cells from mature rats depends on the isolation procedure, Int. J. Androl., 6:261.PubMedCrossRefGoogle Scholar
  51. Norberg, K. A., Risley, P. L., and Ungerstedt, U., 1967, Adrenergic innervation of the reproductive tract of some mammals. I. The distribution of adrenergic nerves, Zeit. Zell. Mikros. Anat., 76:278.CrossRefGoogle Scholar
  52. Perry, J. C., 1941, Gonadal response of male rats to experimental hyperadrenalism, Endocrinology, 29:592.CrossRefGoogle Scholar
  53. Phillippe, M., 1983, Fetal catecholamines, Am. J. Obstet. Gynecol., 146:840.PubMedGoogle Scholar
  54. Pointis, G., Latreille, M.-T., and Cedard, L., 1980, Gonadopituitary relationships in the fetal mouse at various times during sexual differentiation, J. Endocr., 86:483.PubMedCrossRefGoogle Scholar
  55. Poyet, P., and Labrie, F., 1983, Characterization of β-adrenergic receptors in dispersed rat Leydig cells, Biol. Reprod. Suppl. 1 Abbr., 28:59.Google Scholar
  56. Purvis, K., Clausen, O. P. F., Olsen, A., Haug, E., and Hansson, V., 1979, Prolactin and Leydig cell responsiveness to LH/hCG in the rat, Arch. Androl., 3:219.PubMedCrossRefGoogle Scholar
  57. Repcekova, D., and Mikulaj, L., 1977, Plasma testosterone of rats subjected to immobilization stress and/or hCG administration, Horm. Res., 8:51.PubMedCrossRefGoogle Scholar
  58. Sharpe, R. M., 1983, Local control of testicular function, Quart. J. Exp. Physiol., 68:265.Google Scholar
  59. Slob, A. K., Ooms, M. P., and Vreebury, J. T. M., 1980, Prenatal and early postnatal sex differences in plasma and gonadal testosterone and plasma luteinizing hormone in female and male rats, J. Endocr., 87:81.PubMedCrossRefGoogle Scholar
  60. Srivastava, A. K., and Singh, U. S., 1985, Effect of aflatoxin B1 on the androgen receptor and catecholamines in the rat testis, IRCS Med. Sci., 13:46.Google Scholar
  61. Subjeck, J. R., and Shyy, T.-T., 1986, Stress protein systems of mammalian cells, Am. J. Physiol., 250:C1.PubMedGoogle Scholar
  62. Tache, Y., Ducharme, J. R., Charpenet, G., Saez, J., and Collu, R., 1980, Effect of chronic intermittent immobilization stress on hypophysiogonadal function of rats, Acta Endocr., 93:168.PubMedGoogle Scholar
  63. VanDemark, N. L., and Boyd, L. J., 1956, The effect of epinephrine upon testicular function in rabbits, Intern. J. Fert., 1:245.Google Scholar
  64. Weirman, M. E., Beardsworth, D. E., Mansfield, M. J., Badger, E. M., Crawford, J. D., Crigler, Jr., J. F., Bode, H. H., Loughlin, J. S., Kushner, D. C., Scully, R. E., Hoffman, W. H., and Crowley, Jr., W. F., 1985, Puberty without gonadotropins. A unique mechanism of sexual development, New Engl. J. Med., 312:65.CrossRefGoogle Scholar
  65. Wing, Y.-Y., Ewing, L. L., and Zirkin, B. R., 1984, Effects of luteinizing hormone withdrawal on Leydig cell smooth endoplasmic reticulum and steroidogenic reactions which convert pregnenolone to testosterone, Endocrinology, 115:2290.PubMedCrossRefGoogle Scholar
  66. Zieher, L. M., Debeljuk, L., Iturriza, F., and Mancini, R. E., 1971, Biogenic amine concentrations in testes of rats at different ages, Endocrinology, 88:351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • William H. Moger
    • 1
    • 2
  • Onyeama O. Anakwe
    • 1
    • 3
  • Paul R. Murphy
    • 1
    • 4
  1. 1.Departments of Physiology & Biophysics and Obstetrics & GynaecologyDalhousie UniversityHalifaxCanada
  2. 2.Medical Research Council of CanadaCanada
  3. 3.Department of Obstetrics & GynecologyUniversity of MichiganAnn ArborUSA
  4. 4.Department of PhysiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations