Skip to main content

Electrorotation — The Spin of Cells in Rotating High Frequency Electric Fields

  • Chapter

Abstract

A number of experimental investigations were initiated by the theoretical paper of Heinrich Hertz /28/ on rotational effects of conductive bodies in electric fields. Several effects were found, all resulting in the spin of the observed body, named later as Quincke-rotation, Born-Lertes-rotation, dipole-rotation effect, conductivity-rotation effect and others. Lertes /32, 33/ used a rotating field varying in frequency up to 70 MHz, and gave a good theoretical explanation of the observed spin of small geometrically defined vessels filled with liquids of different dielectric constants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, W. M., Geier, B. M., Wendt, B., and Zimmermann, U., The change in the electro-rotation of yeast cells effected by silver ions, Biochim. Biophys. Acta 885:35 (1986)

    Article  Google Scholar 

  2. Arnold, W.M., Wendt, B., Zimmermann, U., and Korenstein, R., Rotation of single swollen thylacoid vesicle in a rotating electric field. Electrical properties of the photosynthetic membrane and their modification by ionophores, lipophilic ions and pH, Biochim. Biophys. Acta 813:117 (1985).

    Article  CAS  Google Scholar 

  3. Arnold, W.M. and Zimmermann, U., Rotating-field induced rotation and measurement of the membrane capacitance of single mesophyll cells of Avena sativa, Z. Naturforsch. 37c:908 (1982).

    Google Scholar 

  4. Arnold, W.M. and Zimmermann, U., Rotation of isolated cell in a rotating electric field, Naturwiss. 69:297 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. Arnold, W.M. and Zimmermann, U., Patent application, official designation P 3325 843.0 received at the Patent Office, F.R.G. July 18 (1983).

    Google Scholar 

  6. Bernhardt, J. and Pauly, H., On the generation of potential differences across the membranes of ellipsoidal cells in an alternating electrical field, Biophysik 10:89 (1973).

    Article  PubMed  CAS  Google Scholar 

  7. Egger, M., Donath, E., Ziemer, S., and Glaser, R., Electrorotation-A new method for investigating membrane events during thrombocyte activation. Influence of drugs and osmotic pressure, Biochim. Biophys. Acta 861:122 (1986).

    PubMed  CAS  Google Scholar 

  8. Fricke, H., A mathematical treatment of the electric conductivity and capacity of disperse systems. I. The electric conductivity of a suspension of homogeneous spheroids, Phys. Rev. 24:575 (1924).

    Article  CAS  Google Scholar 

  9. Fricke, H., Electric conductivity and capacity of disperse systems, Physics 1:106 (1931).

    Article  CAS  Google Scholar 

  10. Fricke, H., The electric permittivity of a dilute suspension of membrane-covered ellipsoids, J. appl. Phys. 24:644 (1953).

    Article  CAS  Google Scholar 

  11. Fuhr, G., Uber die Rotation dielektrischer Körper in rotierenden Feldern, Dissertation, Humboldt-Universität zu Berlin (1985).

    Google Scholar 

  12. Fuhr, G., Geiler, F., Müller, Th., Hagedorn, R. and Torner, H.: Differences in the rotation spectra of mouse oocytes and zygotes. Biophys. Biochim. Acta (in press).

    Google Scholar 

  13. Fuhr, G., Gimsa, J. and Glaser, R., Interpretation of electrorotation of protoplasts. I. Theoretical considerations, studia biophysica 108:149 (1985).

    Google Scholar 

  14. Fuhr, G., Glaser, R., and Hagedorn, R., Rotation of dielectrics in a rotating electric high-frequency field. Model experiments and theoretical explanation of the rotation effect of living cells, Biophys. J. 49:395 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. Fuhr, G., Hagedorn, R. and Göring, H., Cell rotation in a discontinuous field of a 4-electrode chamber, studia biophysica 102:221 (1984).

    Google Scholar 

  16. Fuhr, G., Hagedorn, R. and Göring, H., Separation of different cell types by rotating electric fields. Plant and Cell Physiol. 26:1527 (1985).

    Google Scholar 

  17. Fuhr, G., Hagedorn, R., and Müller, T., Simulation of the rotational behaviour of single cells by macroscopic spheres, studia biophysica 107:109 (1985).

    CAS  Google Scholar 

  18. Fuhr, G., Hagedorn, R., and Müller, T., Cell separation by using rotating electric fields, studia biophysica 107:23 (1985).

    Google Scholar 

  19. Fuhr, G. and Kuzmin, P.J., Behaviour of cells in rotating electric fields with account to surface charges and cell structures, Biophys. J. 50:789 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. Fuhr, G., Müller, Th., Wagner, A. and Donath E., Electrorotation of oat protoplasts before and after fusion. Plant and Cell Physiol. (in press).

    Google Scholar 

  21. Füredi, A.A. and Ohad, I., Effects of high-frequency electric fields on the living cell. I. Behaviour of human erythrocytes in high-frequency electric fields and its relation to their age, Biochim. Biophys. Acta 79:1 (1964).

    Google Scholar 

  22. Gimsa, J., Elektrorotation-technische Voraussetzungen und biophysikalische Aussagemöglichkeiten. Dissertation, Humboldt-Universität zu Berlin (1987).

    Google Scholar 

  23. Gimsa, J., Fuhr, G., and Glaser, R., Interpretation of electrorotation of protoplasts. II. Interpretation of experiments, studia biophysica 109:5 (1985).

    Google Scholar 

  24. Glaser, R. and Fuhr, G., Electrorotation of single cells-a new method for assessment of membrane properties, in: “Electrical Double Layers in Biology”, M. Blank, ed., Plenum Press, New York (1986).

    Google Scholar 

  25. Glaser, R., Fuhr, G., and Gimsa, J., Rotation of erythrocytes, plant cells and protoplasts in an outside rotating electric field, studia biophysica 96:11 (1983).

    Google Scholar 

  26. Glaser, R., Fuhr, G., and Gimsa, J., Electrorotation-capabilities and limitations, studia biophysica 109:4 (1985).

    Google Scholar 

  27. Hagedorn, R. and Fuhr, G., Calculation of rotation of biological objects in the electric rotation field, studia biophysica 102:229 (1984).

    Google Scholar 

  28. Hertz, H.R., IV. Uber die Vertheilung der Electricität auf die Oberfläche bewegter Leiter, Ann. d. Physik und Chemie, N.F. VIII:266 (1881).

    Article  Google Scholar 

  29. Holzapfel, C.J., Vienken, J., and Zimmermann, U., Rotation of cells in an alternating electric field: Theory and experimental proof, J. Membrane Biol. 67:13 (1982).

    Article  CAS  Google Scholar 

  30. Hub, H.H., Ringsdorf, H., and Zimmermann, U., Rotation of polimerized vesicles in an alternating electric field, Angewandte Chemie 21:134 (1982).

    Article  Google Scholar 

  31. Kuppers, G., Wendt, B., Zimmermann, U., Rotation of cells and ion exchange beads in the MHz-frequency range, Z. Naturforsch. 38c: 505 (1983).

    Google Scholar 

  32. Lertes, P., Untersuchungen über Rotationen von dielektrischen Flüssigkeiten im elektrostatischen Drehfeld, Zeitschr. f. Physik, 4:315 (1921).

    Article  CAS  Google Scholar 

  33. Lertes, P., Der Dipolrotationseffekt bei dielektrischen Flüssigkeiten, Zeitschr. f. Physik 6:56 (1921).

    Article  CAS  Google Scholar 

  34. Lovelace, R.V.E., Stout, D.G., and Steponkus, P.I., Protoplast rotation in a rotating electric field: The influence of cold acclimation, J. Membrane Biol. 82:157 (1984).

    Article  Google Scholar 

  35. Mischel, M., Pohl, H.A., Cellular spin resonance: theory and experiment, J. Biol. Phys. 11:98 (1983).

    Article  Google Scholar 

  36. Müller, T., Fuhr, G., Hagedorn, R., and Göring, H., Influence of dielectric breakdown on electrorotation. studia biophysica 113:203 (1987).

    Google Scholar 

  37. Pauly, H. and Schwan, H.P., Uber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale, Z. Naturforsch., 14b:125 (1959).

    CAS  Google Scholar 

  38. Pilwat, G., and Zimmermann, U., Rotation of a single cell in a discontinuous rotating electric field, Bioelectrochem. Bioenergetics 10:155 (1983).

    Article  Google Scholar 

  39. Pohl, H., The spinning of suspended particles in a two-pulsed three-electrode system. J. Biol. Phys. 11:66 (1983).

    Article  Google Scholar 

  40. Pohl, H., Cellular spin resonance: A new method for determining the dielectric properties of living cells, International J. Quantum Chemistry 10:161 (1983).

    CAS  Google Scholar 

  41. Pohl, H., and Crane, J. S., Dielectrophoretic force, J. theoret. Biol. 37:1 (1972).

    Article  CAS  Google Scholar 

  42. Sauer, F.A. and Schlögl, R.W.: Torques exerted on cylinders and spheres by external electromagnetic fields. A contribution to the theory of field induced cell rotation, in: “Interactions between electromagnetic fields and cells”, A. Chiabrera, C. Nicolini, and H.P. Schwan, eds., Plenum Press, New York (1985).

    Google Scholar 

  43. Schwan, H.P., Electrical properties of tissue and cell suspensions, Advances in Biol. and Med. Physics 5:147 (1957).

    CAS  Google Scholar 

  44. Wicner, D., Giindel, J. and Matthies, H.: Measuring chamber with extended applications of the electrorotation. ∝ and β dispersion of liposomes, studia biophysica 115:51 (1986)

    Google Scholar 

  45. Zimmermann, U., Vienken, J., and Pilwat, G., Rotation of cells in an alternating electric field: the occurence of a resonance frequency, Z. Naturforsch. 36c:173 (1981).

    Google Scholar 

  46. Zimmermann, U. and Arnold, W.M., The interpretation and use of the rotation of biological cells, in: “Coherent excitation in biological systems”, H. Fröhlich, and F. Kremer, eds., Springer-Verlag, Berlin (1983).

    Google Scholar 

  47. Ziervogel, H., Glaser, R., Schadow, D., and Heymann, St., Electrorotation of lymphocytes-the influence of membrane events and nucleus, Bioscience Reports 6:973 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glaser, R., Fuhr, G. (1987). Electrorotation — The Spin of Cells in Rotating High Frequency Electric Fields. In: Blank, M., Findl, E. (eds) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1968-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1968-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1970-0

  • Online ISBN: 978-1-4899-1968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics