Skip to main content

Ionic Processes at Membrane Surfaces: The Role of Electrical Double Layers in Electrically Stimulated Ion Transport

  • Chapter
Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems

Abstract

Surface properties differ significantly from bulk properties. At charged membrane (or channel) surfaces the surface concentrations and surface potentials of ions differ from the bulk values, but the combined electrochemical potentials are the same. Any increase in surface concentration is exactly balanced by the decrease in electrical potential, so ions at the surface are in equilibrium with those in the bulk. Since ion transport is driven by electrochemical potentials, it is clear that the driving forces for the ions are the same at the surface as in the bulk solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blank and J. S. Britten, The surface compartment model of the steady state excitable membrane, Bioelectrochem. Bioenerg. 5:528–540 (1978).

    Article  Google Scholar 

  2. W. Nernst and E. H. Reisenfeld, Uber elektrolytische erscheinungen an der grenzflache zweir losungmittel, Ann. Physik. 8:600–624 (1902).

    Article  CAS  Google Scholar 

  3. W. Nernst, Zur theorie der elektrischen reizung, Pflugers Arch. ges. Physiol. 122:275–314 (1908).

    Article  Google Scholar 

  4. M. Blank and S. Feig, Electric fields across water-nitrobenzene interfaces, Science 141:1173–1174 (1963).

    Article  PubMed  CAS  Google Scholar 

  5. I. R. Miller and M. Blank, Transport of ions across lipid monolayers: Reduction of polarographic currents of Cu++ by decylammonium monolayers, J. Colloid Interface Sci. 26:34–40 (1968).

    Article  PubMed  CAS  Google Scholar 

  6. J. S. Britten and M. Blank, The effect of surface charge on interfacial ion transport, Bioelectrochem. Bioenerg. 4:209–216 (1977).

    Article  CAS  Google Scholar 

  7. M. Blank, Properties of ion channels inferred from the surface compartment model (SCM), Bioelectrochem. Bioenerg. 13:93–101 (1984).

    Article  CAS  Google Scholar 

  8. M. Blank and W. P. Kavanaugh, The surface compartment model (SCM) during transients, Bioelectrochem. Bioenerg. 9:427–438 (1982).

    Article  Google Scholar 

  9. M. Blank, W. P. Kavanaugh and G. Cerf, The surface compartment model-Voltage clamp, Bioelectrochem. Bioenerg. 9:439–458 (1982).

    Article  Google Scholar 

  10. M. Blank, The surface compartment model (SCM)-Role of surface charge in membrane permeability changes, Bioelectrochem. Bioenerg. 9:615–624 (1982).

    Article  Google Scholar 

  11. M. Blank, The surface compartment model (SCM) with a voltage sensitive channel, Bioelectrochem. Bioenerg. 10:451–465 (1983).

    Article  Google Scholar 

  12. E. H. Serpersu, and T. Y. Tsong, Stimulation of a ouabain-sensitive Rb+ uptake in human erythrocytes with an external electric field, J. Membrane Biol. 74:191–201 (1983).

    Article  CAS  Google Scholar 

  13. W. R. Adey, Tissue interactions with nonionizing electromagnetic fields, Physiol. Rev. 61:435–514 (1981).

    PubMed  CAS  Google Scholar 

  14. M. Blank and J. N. Blank, Concentration changes at ion channels due to oscillating electric fields, J. Electrochem. Soc. 133:237–238 (1986).

    Article  CAS  Google Scholar 

  15. R. J. Miller, Multiple calcium channels and neuronal function, Science 235:46–52 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. J. S. Britten and M. Blank, Effects of cations on biologically active surfaces-specific binding sites in the Na-K-ATPase, J. Colloid Interface Sci. 43:564–570 (1973).

    Article  CAS  Google Scholar 

  17. G. H. A. Clowes, Protoplasmic equilibrium, J. Phys. Chem. 20: 407–451 (1916).

    Article  CAS  Google Scholar 

  18. G. D. Sweeney, and M. Blank, Some electrical properties of thin lipid films formed from cholesterol and cetyltrimethylammonium bromide, J. Colloid Interface Sci. 42:410–417 (1973).

    Article  CAS  Google Scholar 

  19. M. Blank, L. Soo, and R. E. Abbott, The ionic permeability of adsorbed membrane protein monolayers, J. Electrochem. Soc. 126:1471–1475 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blank, M. (1987). Ionic Processes at Membrane Surfaces: The Role of Electrical Double Layers in Electrically Stimulated Ion Transport. In: Blank, M., Findl, E. (eds) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1968-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1968-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1970-0

  • Online ISBN: 978-1-4899-1968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics