Advertisement

Approaches to Population Kinetic Analysis with Application to Metabolic Studies

  • Paolo Vicini
  • P. Hugh
  • R. Barrett
  • Claudio Cobelli
  • David M. Foster
  • Alan Schumitzky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 445)

Abstract

Population kinetic analysis is the methodology traditionally used to quantify inter-subject variability in pharmacokinetic studies. In the statistics literature, it is also called analysis of repeated measurement data or analysis of longitudinal data.

In this work, we will state the population kinetics problem and give some historical background to its significance. Then we will describe and apply to case studies in intermediary metabolism various two-stage and other parametric methods for nonlinear mixed effects models. We will then briefly review the software available for population kinetic analysis.

Keywords

Population Parameter Population Covariance Individual Estimate Nonlinear Mixed Effect Model Individual Parameter Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beal SL; Sheiner LB. Estimating population kinetics. CRC Crit Rev Bioeng, 1982, 8:195–222.Google Scholar
  2. Bell BM; Paisley B; Trippel D. O-Matrixfor Windows Users Guide. Harmonic Software, Inc.: Seattle. 1994.Google Scholar
  3. Bergman RN; Ider YZ; Bowden CR; Cobelli C. Quantitative estimation of insulin sensitivity. Am J Physiol, 1979, 236:E667–E677.Google Scholar
  4. Berman M; Weiss MF. The SAAM Manua. USPHS(NIH) Publication No. 78-180, US Government Printing Office: Washington DC. 1978.Google Scholar
  5. Davidian M; Giltinan D. Nonlinear Models for Repeated Measurement Data. Chapman and Hall: New York. 1995.Google Scholar
  6. Davidian M: Gallant A. The nonlinear mixed effects model with a smooth random effects density. Biometrika, 1993, 80:475–488.CrossRefGoogle Scholar
  7. DerSimonian R. Maximum likelihood estimation of a mixing distribution. Appl Stat, 1986, 35:302–309.CrossRefGoogle Scholar
  8. Gomeni R; Pineau G; Mentre F. Population kinetics and conditional assessment of the optimal dosage regimen using the P-PHARM software package. Anticancer Res, 1994, 14:2321–2326.Google Scholar
  9. Lindstrom MJ; Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics, 1990, 46:673–687.CrossRefGoogle Scholar
  10. Lyne A; Boston R; Pettigrew K; Zech L. EMSA: A SAAM service for the estimation of population parameters based on model fits to identically replicated experiments. Comp Meth Prog Biomed, 1992, 38:117–151.CrossRefGoogle Scholar
  11. Mallet A. A maximum likelihood estimation method for random coefficient regression models. Biometrika, 1986, 73:645–656.CrossRefGoogle Scholar
  12. Racine-Poon A. A Bayesian approach to nonlinear random effects models. Biometrics, 1985, 41:1015–1023.CrossRefGoogle Scholar
  13. Schumitzky A. Nonparametric EM algorithms for estimating prior distributions. App Math Comp, 1991, 45:141–157.CrossRefGoogle Scholar
  14. Steimer JL; Mallet A; Golmard J-L; Boisvieux J-F. Alternative approaches to estimation of population pharmacokinetic parameters: Comparison with the nonlinear mixed-effect model. Drug Metab Rev, 1984, 15:265–292.CrossRefGoogle Scholar
  15. Vonesh EF; Carter RL. Mixed-effects nonlinear regressions for unbalanced repeated measures. Biometrics, 1992, 48:1–17.CrossRefGoogle Scholar
  16. Wakefield J; Smith AFM, Racine-Poon A; Gelfand A. Bayesian analysis of linear and nonlinear population models. Appl Stat, 1994,43:201–222.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Paolo Vicini
    • 1
    • 2
  • P. Hugh
    • 1
  • R. Barrett
    • 1
  • Claudio Cobelli
    • 2
  • David M. Foster
    • 1
  • Alan Schumitzky
    • 1
    • 3
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Electronics and InformaticsUniversity of PadovaPadovaItaly
  3. 3.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations