Molecular Mechanisms Involved in GLUT4 Translocation in Muscle during Insulin and Contraction Stimulation

  • S. W. Cushman
  • L. J. Goodyear
  • P. F. Pilch
  • E. Ralston
  • H. Galbo
  • T. Ploug
  • Søren Kristiansen
  • Amira Klip
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 441)


Studies in mammalian cells have established the existence of numerous intracellular signaling cascades that are critical intermediates in the regulation of various biological functions. Over the past few years considerable research has shown that many of these signaling proteins are expressed in skeletal muscle. However, the detailed mechanisms involved in the regulation of glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface membrane in response to insulin and contractions in skeletal muscle are not well understood.


Insulin Receptor Transferrin Receptor GLUT4 Translocation GLUT4 Glucose Transporter Cell Surface Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alblas, J., E. J. van Corven, P. L. Hordijk, G. Milligan, and W. H. Moolenaar. Gi-mediated activation of the p21ras-mitogen-activated protein kinase pathway by α2-adrenergic receptors expressed in fibroblasts. J. Biol. Chem. 268: 22235–22238, 1993.PubMedGoogle Scholar
  2. 2.
    Aledo, J. C., F. Darakhshan, and H. S. Hundal. Rab4, but not the transferrin receptor, is colocalized with GLUT4 in an insulin-sensitive intracellular compartment in rat skeletal muscle. Biochem. Biophys. Res. Comm. 215: 321–328, 1995.PubMedCrossRefGoogle Scholar
  3. 3.
    Aledo, J. C., E. Hajduch, F. Darakhshan, and H. S. Hundal. Analyses of the co-localization of cellubrevin and the GLUT4 glucose transporter in rat and human insulin-responsive tissues. FEBS Lett. 395: 211–216, 1996.PubMedCrossRefGoogle Scholar
  4. 4.
    Anderson, N. G. Growth hormone activates mitogen-activated protein kinase and S6 kinase and promotes intracellular tyrosine phosphorylation in 3T3-F442A preadipocytes. Biochem. J. 284: 649–652, 1992.PubMedGoogle Scholar
  5. 5.
    Aronson, D., M. A. Violan, D. Dufresne, D. Zangen, R. A. Fielding, and L. J. Goodyear. Exercise stimulates the mitogen-activated protein kinase signaling pathways in rat skeletal muscle. J. Clin. Invest. 99: 1251–1257, 1997.PubMedCrossRefGoogle Scholar
  6. 6.
    Backer, J. M., G. G. Schroeder, C. R. Kahn, M. G. Myers, P. A. Wilden, D. A. Cahil, and M. F. White. Insulin receptor stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation. J. Biol. Chem. 267: 1367–1374, 1992.PubMedGoogle Scholar
  7. 7.
    Cain, C. C., W. S. Trimble, and G. E. Lienhard. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter-containing vesicles from rat adipocytes. J. Biol. Chem. 261: 11681–11684, 1992.Google Scholar
  8. 8.
    Campbell, G. S., L. Pang, S. Miyatake, A. R. Saltiel, and C. Carter-Su. Stimulation by growth hormone of MAP kinase activity in 3T3-L1F442A fibroblasts. J. Biol. Chem. 267: 6074–6080, 1992.PubMedGoogle Scholar
  9. 9.
    Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. Phophatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14: 4902–4911, 1994.PubMedGoogle Scholar
  10. 10.
    Chen, K. S., J. C. Friel, and N. B. Ruderman. Regulation of phosphatidylinositol 3-kinase by insulin in rat skeletal muscle. Am. J. Physiol. (Endocrinol Metab. 28) 265: E736–E742, 1993.Google Scholar
  11. 11.
    Coderre, L., K. V. Kandror, G. Vallega, and P. F. Pilch. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J. Biol. Chem. 46: 27584–27588, 1995.Google Scholar
  12. 12.
    Cormont, M., J. Tanti, T. Gremeaux, E. Obberghen, and Y. Marchand-Brustel. Subcellular distribution of low molecular weight guanosine triphosphate-binding proteins in adipocytes: Colocalization with the glucose transporter GLUT4. Endocrinology. 129: 3343–3350, 1991.PubMedCrossRefGoogle Scholar
  13. 13.
    Del Vecchio, R. L. and P. F. Pilch. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT4)-containing vesicles. J. Biol. Chem. 266: 13278–13283, 1991.PubMedGoogle Scholar
  14. 14.
    Dent, P., W. Haser, T. A. J. Haystead, L. A. Vincent, T. M. Roberts, and T. W. Sturgill. Activation of mitogen-activated protein kinase kinase in NIH 3T3 cells and in vivo. Science 257: 1404–1407, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Douen, A., T. Ramlal, S. Rastogi, P. Bilan, G. Cartee, M. Vranic, J. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin-responsive glucose transporter”. J. Biol. Chem. 265: 13427–13430, 1990.PubMedGoogle Scholar
  16. 16.
    Elmendorf, J. S., A. Damrau-Abney, T. R. Smith, T. S. David, and J. Turinsky. Insulin-stimulated phosphatidyl 3-kinase activity and 2-deoxy-D-glucose uptake in rat skeletal muscles. Biochem. Biophys. Res. Comm. 208: 1147–1153, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Folli, F. F., M. J. A. Saad, J. M. Backer, and C. R. Kahn. Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J. Clin. Invest. 92: 1787–1794, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Goodyear, L. J., P. Chang, D. J. Sherwood, S. D. Dufresne, and D. E. Moller. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle. Am. J. Physiol. 271: E403–E408, 1996.PubMedGoogle Scholar
  19. 19.
    Goodyear, L. J., F. Giogino, T. W. Balon, G. Condorelli, and R. J. Smith. Effects of contractile activity on tyrosine phophoproteins and PI 3-kinase activity in rat skeletal muscle. Am. J. Physiol. (Endocrinol. Metab. 31) 268: E987–E995, 1995.Google Scholar
  20. 20.
    Hanpeter, D. and D. E. James. Characterization of the intracellular GLUT4-compartment. Mol. Membr. Biol. 12: 263–269, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayashi, T., D. Dufresen, M. F. Hirshman, and L. J. Goodyear. Contraction in vitro stimulates mitogen-activated protein kinase (MAPK) signaling in rat skeletal muscle. Diabetes 46: 385A, 1997.Google Scholar
  22. 22.
    Hayashi, T., J. F. Wojtaszewski, and L. J. Goodyear. Exercise regulation of glucose transport in skeletal muscle. Am. J. Physiol. (Endocrinol. Metab. 36) 273: E1039–E1051, 1997.Google Scholar
  23. 23.
    Heller-Harrison, R. A., M. Morin, A. Guilherme, and M. P. Czech. Insulin-mediated targeting of phosphatidylinositol 3-kinase to GLUT4 containing-vesicles. J. Biol. Chem. 271: 10200–10204, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Herbst, J. J., S. A. Ross, H. M. Scott, S. A. Bobin, N. J. Morris, G. E. Lienhard, and S. R. Keller. Insulin stimulates cell surface aminopeptidase activity toward Vasopressin in adipocytes. Am. J. Physiol. (Endocrinol. Metab. 35) 272: E600–E606, 1997.Google Scholar
  25. 25.
    Holman, G. D., L. L. Leggio, and S. W. Cushman. Insulin-stimulated GLUT4 glucose transporter recycling. J. Biol. Chem. 269: 17516–17524, 1994.PubMedGoogle Scholar
  26. 26.
    Kandror, K. and P. F. Pilch. Identification and isolation of glycoproteins that translocate to the cell membrane from GLUT4-enriched vesicles in an insulin-dependent fashion. J. Biol. Chem. 269: 138–142, 1994.PubMedGoogle Scholar
  27. 27.
    Kandror, K. V., L. Coderre, A. V. Pushkin, and P. F. Pilch. Comparison of glucose-transporter-containing vesicles from rat fat and muscle tissues: evidence for a unique endosomal compartment. Biochem. J. 307: 383–390, 1995.PubMedGoogle Scholar
  28. 28.
    Kandror, K. V. and P. Pilch. Compartmentalization of protein traffic in insulin-sensitive cells. Am. J. Physiol. (Endocrinol. Metab. 34) 271: E1–E14, 1996.Google Scholar
  29. 29.
    Kandror, K. V. and P. F. Pilch. Gp 160, a tissue-specific marker for insulin-activated glucose transport. Proc. Natl. Acad. Sci. 91: 8017–8021, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Kandror, K. V. and P. F. Pilch. The insulin-like growth factor II/Mannose 6-phosphate receptor utilizes the same compartments as GLUT4 for insulin-dependent trafficking to and from the rat adipocyte cell surface. J. Biol. Chem. 271: 21703–21708, 1996.PubMedCrossRefGoogle Scholar
  31. 31.
    Kelly, K. L. and N. B. Ruderman. Insulin-stimulated phosphatidylinositol 3-kinase. J. Biol. Chem. 268: 4391–4398, 1993.PubMedGoogle Scholar
  32. 32.
    Kelly, K. L., N. B. Ruderman, and K. S. Chen. Phosphatidylinositol-3-kinase in isolated rat adipocytes. J. Biol. Chem. 267: 3423–3428, 1992.PubMedGoogle Scholar
  33. 33.
    Klip, A., A. Volchuk, and T. Tsakiridis. The glucose transporters of skeletal muscle. Cell Develop. Biol. 7: 229–237, 1996.CrossRefGoogle Scholar
  34. 34.
    Kotani, K., A. J. Carozzi, H. Sakaue, K. Hara, L. J. Robinson, S. F. Clark, K. Yonezawa, D. E. James, and M. Kasuga. Requirements for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-11 adipocytes. Biochem. Biophys. Res. Comm. 209: 343–348, 1995.PubMedCrossRefGoogle Scholar
  35. 35.
    Kyriakis, J. M., H. App, X. Zhang, P. Banerjee, D. L. Brautigan, U. R. Rapp, and J. Avruch. Raf-1 activates MAP kinase kinase. Nature Lond. 358: 417–421, 1992.PubMedCrossRefGoogle Scholar
  36. 36.
    Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dal, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. The stress-activated protein kinase subfamily of c-jun kinases. Nature Lond. 369: 156–160, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Laurie, S. M., C. C. Cain, G. E. Lienhard, and J. D. Castle. The glucose transporter GLUT4and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytesand partally segregate during insulin stimulation. J. Biol. Chem. 268: 19110–19117, 1993.PubMedGoogle Scholar
  38. 38.
    Lavan, B. E., W. S. Lane, and G. E. Lienhard. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J. Biol. Chem. 272: 11439–11443, 1997.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee, A. D., P. A. Hansen, and J. O. Holloszy. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett. 361: 51–54, 1995.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin, B. Z., P. F. Pilch, and K. V. Kandror. Sortilin is a major protein component of GLUT4 contaning-vesicles. J. Biol. Chem. 272: 24145–24150, 1997.PubMedCrossRefGoogle Scholar
  41. 41.
    Livingstone, C., D. E. James, J. E. Rice, D. Hanpeter, and G. W. Gould. Compartment ablation analysis of the insulin-responsive glucose transporter (GLUT4) in 3T3-L1 adipocytes. Biochem. J. 315: 487–495, 1996.PubMedGoogle Scholar
  42. 42.
    Malide, D. and S. W. Cushman. Morphological effects of wortmannin on the endosomal system and GLUT4-containing compartments in rat adipose cells. J. Cell Sci. 110: 2795–2806, 1997.PubMedGoogle Scholar
  43. 43.
    Malide, D., N. K. Dwyer, E. J. Mackie-Blanchette, and S. W. Cushman. Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J. Histochem. Cytochem. 45: 1083–1096, 1997.PubMedCrossRefGoogle Scholar
  44. 44.
    Malide, D., J. St-Denis, S. R. Keller, and S. W. Cushman. Vp165 and GLUT4 share similar vesicle pools along their trafficking pathways in rat adipose cells. FEBS Letters 409: 461–468, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Mastick, C., R. Aebersold, and G. Lienhard. Characterization of a major protein in GLUT4 vesicles: Concentration in the vesicles and insulin-stimulated translocation to the plasma membrane. J. Biol. Chem. 269: 6089–6092, 1994.PubMedGoogle Scholar
  46. 46.
    Miasaka, T., M. V. Chao, P. Sherline, and A. R. Saltiel. Nerve growth factor stimulates a protein kinase in PC-12 cells that phosphorylates microtubule-associated protein-2. J. Biol Chem. 265: 4730–4735, 1990.Google Scholar
  47. 47.
    Moodie, S. A., B. M. Willumsen, M. J. Weber, and A. Wolfman. Complexes of Ras GTP with raf-1 and Mitogen kinases-activated protein kinase kinase. Science 260: 1658–1661, 1993.PubMedCrossRefGoogle Scholar
  48. 48.
    Morris, N. J., A. Ducret, R. Aebersold, S. A. Ross, S. R. Keller, and G. E. Lienhard. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. J. Biol. Chem. 272: 9388–9392, 1997.PubMedCrossRefGoogle Scholar
  49. 49.
    Pawson, T. Protein modules and signalling networks. Nature Lond. 16: 573–579, 1995.CrossRefGoogle Scholar
  50. 50.
    Payne, D. M., A. J. Rossomando, P. Martino, A. K. Erickson, J. H. Her, J. Shabanowitz, D. F. Hunt, M. J. Weber, and T. W. Sturgill. Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBOJ. 10: 885–892, 1991.Google Scholar
  51. 51.
    Quon, M. J., A. J. Butte, M. J. Zarnowski, G. Sesti, S. W. Cushman, and S. I. Taylor. Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J. Biol. Chem. 269: 27920–27924, 1994.PubMedGoogle Scholar
  52. 52.
    Rodnick, K., J. Slot, D. Studelska, D. Hanpeter, L. Robinson, H. Geuze, and D. James. Immunocytochemical and biochemical studies of GLUT4 in rat skeletal muscle. J. Biol. Chem. 6278-6285, 1992.Google Scholar
  53. 53.
    Ruderman, N. B., R. Kapeller, M. F. White, and L. C. Cantley. Activation of a phosphatidylinositol 3-kinase by insulin. Proc. Natl Acad. Sci. 87: 1411–1415, 1990.PubMedCrossRefGoogle Scholar
  54. 54.
    Satoh, S., H. Nishimura, A. E. Clark, I. J. Kozka, S. J. Vannucci, I. A. Simpson, M. J. Quon, S. W. Cushman, and G. D. Holman. Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. J. Biol. Chem. 268: 17821–17829, 1993.Google Scholar
  55. 55.
    Shisheva, A., J. Buxton, and M. P. Czech. Differential intracelullar localizations of GDP dissociation inhibitor isoforms. J. Biol. Chem. 269: 23865–23868, 1997.Google Scholar
  56. 56.
    Shoelson, S. E., S. Chatterjee, M. Chaudhuri, and M. F. White. YMXM motifs of IRS-1 define substrate specifity of the insulin receptor kinase. Proc. Natl. Acad. Sci. 89: 2027–2031, 1992.PubMedCrossRefGoogle Scholar
  57. 57.
    Slot, J. W., H. J. Geuze, S. Gigenback, G. E. Lienhard, and D. E. James. Immunolocalization of the insulinregulatable glucose transporter (GLUT4) in brown adipose tissue of the rat. J. Cell Biol. 113: 123–135, 1991.PubMedCrossRefGoogle Scholar
  58. 58.
    Stephens, J. M. and P. F. Pilch. The metabolic regulation and vesicular transport of GLUT4, the major insulin-responsive glucose transporter. Endocr. Rev. 16: 529–546, 1995.PubMedGoogle Scholar
  59. 59.
    Sturgill, T. W., L. B. Ray, E. Erikson, and J. L. Mailer. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein kinase S6 kinase II. Nature Lond. 334: 715–718, 1988.PubMedCrossRefGoogle Scholar
  60. 60.
    Sumitani, S., T. Tsakiridis, A. Volchuk, and A. Klip. Insulin induces translocation of intracellular vesicleassociated membrane proteins-2 (VAMP-2) in muscle cells; mediation by phosphatidylinositol 3-kinase (PI3K). J. Gen. Physiol. 105: 43A, 1995.Google Scholar
  61. 61.
    Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahili, B. J. Goldstein, and M. F. White. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature Lond. 352: 73–77, 1991.PubMedCrossRefGoogle Scholar
  62. 62.
    Sun, X. J., L. Wang, Y. Zhang, L. Yenush, M. G. Myers, E. Giasheen, W. S. Lane, J. H. Pierce, and M. F. White. Role of IRS-2 in insulin and cytokine signalling. Nature Lond. 377: 173–177, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Tanner, L. I. and G. E. Lienhard. Localization of transferrin receptors and insulin-like growth factor II receptors in vesicles from 3T3-L1 adipocytes that contain intracellular glucose transporters. J. Cell Biol. 108: 1537–1545, 1989.PubMedCrossRefGoogle Scholar
  64. 64.
    Tanti, J., T. Gremeaux, S. Grillo, V. Calleja, A. Klippel, L. T. Williams, E. Obberghen, and Y. Marchand-Brustel. Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote GLUT4 translocation in adipocytes. J. Biol. Chem. 271: 25227–25232, 1996.PubMedCrossRefGoogle Scholar
  65. 65.
    Thoidis, G., N. Kotliar, and P. F. Pilch. Immunological analysis of GLUT4-enriched vesicles. J. Biol. Chem. 268: 11691–11696, 1993.PubMedGoogle Scholar
  66. 66.
    Till, M., I. Uphues, and J. Eckel. Contraction-stimulated glucose transport in rat cardiac muscle is mediated via PI 3-kinase: evidence for a specific function of IRS-2. Diabetes 46: 1056, 1997.Google Scholar
  67. 67.
    Tsakiridis, T., M. Vranic, and A. Klip. Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J. Biol. Chem. 47: 29934–29942, 1994.Google Scholar
  68. 68.
    Volchuk, A., R. Sargeant, S. Sumitani, Z. Liu, L. He, and A. Klip. Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J. Biol. Chem. 270: 8233–8240, 1995.PubMedCrossRefGoogle Scholar
  69. 69.
    Volchuk, A., Q. Wang, H. S. Ewart, Z. Liu, L. He, M. K. Bennett, and A. Klip. Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Mol. Biol. Cell 7: 1075–1082, 1996.PubMedGoogle Scholar
  70. 70.
    White, M. F. and C. R. Kahn. The insulin signaling system. J. Biol. Chem. 269: 1–4, 1994.PubMedGoogle Scholar
  71. 71.
    Winitz, S., M. Russlel, N. Qian, A. Gardner, L. Dwyer, and G. L. Johnson. Involvement of rasand raf in the Gi-coupled acetylcholine muscarinic m2 receptor activation of mitogen-activated protein (MAP) kinase kinaseand MAP kinase. J. Biol. Chem. 268: 19196–19199, 1993.PubMedGoogle Scholar
  72. 72.
    Wojtaszewski, J. F., B. F. Hansen, B. Urso, and E. A. Richter. Wortmannin inhibits both insulin-and contraction-stimulated glucose uptake and transport in rat skeletal muscle. J. Appl. Physiol. 81: 1501–1509, 1996.PubMedGoogle Scholar
  73. 73.
    Yeh, J., E. A. Gulve, L. Rameh, and M. J. Birnbaum. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling parthways for insulin-and contraction-activated hexose transport. J. Biol. Chem. 270: 2107–2111, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhou, Q. and G. L. Dohm. Treadmill running increases phosphatidyl 3-kinase activity in rat skeletal muscle. Biochem. Biophys. Res. Comm. 236: 647–650, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • S. W. Cushman
    • 1
  • L. J. Goodyear
    • 2
  • P. F. Pilch
    • 3
  • E. Ralston
    • 4
  • H. Galbo
    • 5
  • T. Ploug
    • 5
  • Søren Kristiansen
    • 6
  • Amira Klip
    • 7
  1. 1.Experimental Diabetes, Metabolism, and Nutrition Section, Diabetes BranchNIDDK, National Institutes of HealthBethesdaUSA
  2. 2.Joslin Diabetes Center, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of BiochemistryBoston University School of MedicineBostonUSA
  4. 4.Laboratory of NeurobiologyNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA
  5. 5.Copenhagen Muscle Research Centre, Department of Medical PhysiologyThe Panum Institute University of CopenhagenDenmark
  6. 6.Copenhagen Muscle Research Centre, Department of Human PhysiologyThe August Krogh Institute, University of CopenhagenDenmark
  7. 7.Division of Cell BiologyHospital for Sick ChildrenTorontoCanada

Personalised recommendations