Skip to main content

GLUT5 Expression and Fructose Transport in Human Skeletal Muscle

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Abstract

Biochemical and immunocytochemical studies have revealed that, in addition to GLUTI and GLUT4, human skeletal muscle also expresses the GLUT5 hexose transporter. The subcellular distribution of GLUT5 is distinct from that of GLUT4, being localised exclusively in the sarcolemmal membrane. The substrate selectivity of GLUT5 is also considered to be different to that of GLUTI and GLUT4 in that it operates primarily as a fructose transporter. Consistent with this suggestion studies in isolated human sarcolemmal vesicles have shown that fructose transport obeys saturable kinetics with a Vmax of 477 ± 37 pmol mg protein−1 min−1 and a Km of 8.3 ± 1.2 mM. Unlike glucose uptake, fructose transport in sarcolemmal vesicles was not inhibited by cytochalasin B suggesting that glucose and fructose are unlikely to share a common route of entry into human muscle. Muscle exercise, which stimulates glucose uptake through the increased translocation of GLUT4 to the plasma membrane, does not increase fructose transport or sarcolemmal GLUT5 content. In contrast, muscle inactivity, induced as a result of limb immobilisation, caused a significant reduction in muscle GLUT4 expression with no detectable effects on GLUT5. The presence of a fructose transporter in human muscle is compatible with studies showing that this tissue can utilise fructose for both glycolysis and glycogenesis. However, the full extent to which provision of fructose via GLUT5 is important in meeting the energy requirements of human muscle during both physiological and pathophysiological circumstances remains an issue requiring further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G. and O. Bjorkman. Splanchnic and muscle fructose metabolism during and after exercise. J. Appl. Physiol 69: 1244–1251, 1990.

    PubMed  CAS  Google Scholar 

  2. Ahmed, A., J. N. A. Gibson, P. M. Taylor, and M. J. Rennie. Isolation of human skeletal muscle sarcolemmal vesicles for the investigation of glutamine transport. Biochem. Soc. Trans. 118: 1238–1239, 1990.

    Google Scholar 

  3. Baron, A. D., G. Brechtel, P. Wallace, and S. V. Edelman. Rates and tissue sites of non-insulin and insulin mediated glucose uptake in humans. Am. J. Physiol. 255: E769–E774, 1988.

    PubMed  CAS  Google Scholar 

  4. Bell, G. I., T. Kayano, J. B. Buse, C. F. Burant, J. Takeda, D. Lin, H. Fukomoto, and S. Seino. Molecular biology of mammalian glucose transporters. Diabetes Care 13: 198–208, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Blakemore, S. J., J. C. Aledo, J. James, F. C. Campbell, J. M. Lucocq, and H. S. Hundal. The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochem. J. 309: 7–12, 1995.

    PubMed  CAS  Google Scholar 

  6. Blakemore, S. J., J. James, J. M. Lucocq, P. W. Watt, M. J. Rennie, and H. S. Hundal. Immunogold localization of the human fructose transporter (GLUT5) in human skeletal muscle. J. Physiol. 482: 19P, 1995. (Abstract)

    Google Scholar 

  7. Blakemore, S. J., P. K. Rickhuss, P. W. Watt, M. J. Rennie, and H. S. Hundal. Effects of limb immobilization on cytochrome c oxidase activity and GLUT4 and GLUT5 protein expression in human skeletal muscle. Clin. Sci. 91: 591–599, 1996.

    PubMed  CAS  Google Scholar 

  8. Block, N. E., D. R. Menick, K. A. Robinson, and M. G. Buse. Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. J. Clin. Invest. 88: 1546–1552, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Burant, C. F., J. Takeda, E. BrotLaroche, G. I. Bell, and N. O. Davidson. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 267: 14523–14526, 1992.

    PubMed  CAS  Google Scholar 

  10. Coderre, L., K. V. Kandror, G. Vallega, and P. F. Pilch. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal-muscle. J. Biol. Chem. 270: 27584–27588, 1995.

    Article  PubMed  CAS  Google Scholar 

  11. Davidson, N. O., A. M. L. Hausman, C. A. Ifkovits, J. B. Buse, G. W. Gould, C. F. Burant, and G. I. Bell. Human intestinal glucose transporter expression and localization of GLUT5. Am. J. Physiol. 262: C795–C800, 1992.

    PubMed  CAS  Google Scholar 

  12. Douen, A. G., T. Ramlal, S. Rastogi, P. J. Bilan, G. D. Cartee, M. Vranic, J. O. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin-responsive glucose transporter”. J. Biol. Chem. 265: 13427–13430, 1990.

    PubMed  CAS  Google Scholar 

  13. Goodyear, L. J., M. F. Hirshman, and E. S. Horton. Exercise-induced translocation of skeletal muscle glucose transporters. Am. J. Physiol. 261: E795–E799, 1991.

    PubMed  CAS  Google Scholar 

  14. Gould, G. W. and G. D. Holman. The glucose transporter family:structure, function and tissue specific expression. Biochem. J. 295: 329–341, 1993.

    PubMed  CAS  Google Scholar 

  15. Guma, A., J. R. Zierath, H. Wallberg-Henriksson, and A. Klip. Insulin induces translocation of glut-4 glucose transporters in human skeletal-muscle. Am. J. Physiol. 31: E613–E622, 1995.

    Google Scholar 

  16. Handberg, A., L. Kayser, P. E. Hoyer, and J. Vinten. A substantial part of GLUTI in crude membranes from muscle originates from perineurial sheaths. Am. J. Physiol. 262: E721–E727, 1992.

    PubMed  CAS  Google Scholar 

  17. Henriksen, E. J., K. J. Rodnick, C. E. Mondon, D. E. James, and J. O. Holloszy. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle. J. Appl. Physiol. 70: 2322–2327, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Holman, G. D. and S. W. Cushman. Subcellular localization and trafficking of the GLUT4 glucose transporter isoform in insulin-responsive cells. BioEssays 11: 753–759, 1994.

    Article  Google Scholar 

  19. Hundal, H. S., A. Ahmed, A. Guma, Y. Mitsumoto, A. Marette, M. J. Rennie, and A. Klip. Biochemical and immunocytochemical localization of the “GLUT5 glucose transporter” in human skeletal muscle. Biochem. J. 286: 348–353, 1992.

    Google Scholar 

  20. Hundal, H. S., D. L. Maxwell, A. Ahmed, F. Darakhshan, Y. Mitsumoto, and A. Klip. Subcellular distribution and immunocytochemical localization of Na, K-ATPase subunit isoforms in human skeletal muscle. Mol. Memb. Biol. 11: 255–262, 1994.

    Article  CAS  Google Scholar 

  21. Kayano, T., C. F. Burant, H. Fukumoto, G. W. Gould, Y. Fan, R. L. Eddy, M. G. Byers, T. B. Shows, S. Seino, and G. I. Bell. Human facilitative glucose transporters: Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue an unusual glucose transporter pseudogene-like sequence (GLUT6). J. Biol. Chem. 265: 13276–13282, 1990.

    PubMed  CAS  Google Scholar 

  22. Kristiansen, S., F. Darakhshan, E. A. Richter, and H. S. Hundal. Fructose transport and GLUT5 protein in human sarcolemmal vesicles. Am. J. Physiol. 273: E543–E548, 1997.

    PubMed  CAS  Google Scholar 

  23. Kristiansen, S., M. Hargreaves, and E. A. Richter. Exercise-induced increase in glucose transport, GLUT4 and VAMP-2 in plasma membrane from human muscle. Am. J. Physiol. 270: E197–E201, 1996.

    PubMed  CAS  Google Scholar 

  24. Kristiansen, S., M. Hargreaves, and E. A. Richter. Progressive increase in glucose transport and GLUT4 in human sarcolemmal vesicles during moderate dynamic exercise. Am. J. Physiol. 272: E385–E389, 1997.

    PubMed  CAS  Google Scholar 

  25. Mantych, G. J., D. E. James, and S. U. Devasker. Jejunal/Kidney glucose transporter isoform (GLUT-5) is expressed in the human blood-brain barrier. Endocrinology 132: 35–40, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Marette, A., E. Burdett, A. Douen, M. Vranic, and A. Klip. Insulin induces the translocation of glut4 from a unique intracellular organelle to transverse tubules in rat skeletal-muscle. Diabetes 41: 1562–1569, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Marette, A., E. Burdett, A. G. Douen, M. Vranic, and A. Klip. Insulin stimulates the translocation of GLUT4 glucose transporters from a unique intracellular organelle to both the plasma membrane and transverse tubules in rat skeletal muscle. Diabetes 41: 1562–1569, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Marette, A., J. M. Richardson, T. Ramlal, T. W. Balon, M. Vranic, J. E. Pessin, and A. Klip. Abundance, localization and insulin-induced translocation of glucose transporters in red and white muscle. Am. J. Physiol. 263: C443–C452, 1992.

    PubMed  CAS  Google Scholar 

  29. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219: 713–725, 1994.

    Article  PubMed  CAS  Google Scholar 

  30. Pilegaard, H., C. Juel, and F. Wibrand. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am. J. Physiol. 254: E156–E160, 1993.

    Google Scholar 

  31. Rand, E. B., A. M. Depaoli, N. O. Davidson, G. I. Bell, and C. F. Burant. Sequence, tissue distribution, and functional characterization of the rat fructose transporter GLUT5. Am. J. Physiol. 264: Gl169–G1176, 1993.

    Google Scholar 

  32. Roy, D., A. Marette, E. Burdett, A. Douen, M. Vranic, and A. Klip. Exercise induces the translocation of glut4 to transverse tubules from an intracellular pool in rat skeletal-muscle. Biochem. Biophys. Res. Comm. 41: 1515–1562, 1992.

    Google Scholar 

  33. Shepard, P. R., E. M. Gibbs, C. Wesslau, G. W. Gould, and B. B. Kahn. Small intestine glucose transporter (GLUT5) is present in human muscle, adipocytes and brain: Biochemical characterization and translocation. Diabetes 41: 1360–1365, 1992.

    Article  Google Scholar 

  34. Wright, E. M., J. R. Hirsch, D. D. F. Loo, and G. A. Zampighi. Regulation of Na+/glucose cotransporters. J. Expt. Biol. 200: 287–293, 1997.

    CAS  Google Scholar 

  35. Wright, E. M., D. D. F. Loo, E. Turk, and B. A. Hirayama. Sodium cotransporters. Curr. Opin. Cell Biol. 8: 468–473, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Zierath, J. R., L. A. Nolte, E. Wahlstrom, D. Galuska, P. R. Shepherd, B. B. Kahn, and H. Wallberghenriksson. Carrier-mediated fructose uptake significantly contributes to carbohydrate-metabolism in human skeletal-muscle. Biochem. J. 311: 517–521, 1995.

    PubMed  CAS  Google Scholar 

  37. Zorzano, A., P. Munoz, M. Camps, C. Mora, X. Testar, and M. Palacin. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber: In search of GLUT4 trafficking pathways. Diabetes 45 (Suppl. 1): S70–S81, 1996.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hundal, H.S., Darakhshan, F., Kristiansen, S., Blakemore, S.J., Richter, E.A. (1998). GLUT5 Expression and Fructose Transport in Human Skeletal Muscle. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics