Skip to main content

Skeletal Muscle Fatty Acid Transport and Transporters

  • Chapter
Book cover Skeletal Muscle Metabolism in Exercise and Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Long-chain fatty acids (LCFAs) are an important energy source for many tissues. The dogma that LCFAs are freely diffusible has been challenged. It is now known that LCFAs are transported into many tissues. Our studies have shown that LCFAs are also transported into skeletal muscle and into the heart. In recent years a number of putative fatty acid transport proteins have been identified. These are known as plasma membrane fatty acid binding protein (FABPpm, 43 kDa), fatty acid translocase (FAT, 88 kDa) and fatty acid transporter protein (FATP, 63 kDa). All three proteins are present in skeletal muscle and in the heart. The existence of an LCFA transport system in muscle may be essential 1) to facilitate the rapid and regulatable transport of LCFA to meet the metabolic requirements of working muscles and 2) to cope with an increase in circulating LCFAs in some pathological conditions (e. g. diabetes). There is now some evidence that metabolic changes and chronically increased muscle activity can increase the transport of LCFAs and increase the expression of putative LCFA transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad, N. A., M. R. El-Maghrabi, E.-Z. Amri, E. Lopez, and P. Grimaldi. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J. Biol Chem. 268: 17665–17668, 1993.

    PubMed  CAS  Google Scholar 

  2. Abumrad, N. A., C. C. Forest, D. M. Regen, and S. Sanders. Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc. Natl. Acad. Sci. USA 88: 6008–6012, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Abumrad, N. A., C. R. Park, and R. R. Whitesell. Catecholamine activation of the membrane transport of long chain fatty acids in adipocytes is mediated by cyclic AMP and protein kinase. J. Biol. Chem. 261: 13082–13086, 1986.

    PubMed  CAS  Google Scholar 

  4. Abumrad, N. A., J. H. Park, and C. R. Park. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J. Biol. Chem. 259: 8945–8953, 1984.

    PubMed  CAS  Google Scholar 

  5. Abumrad, N. A., R. C. Perkins, J. H. Park, and C. R. Park. Mechanism of long chain fatty acid permeation in the isolated adipocyte. J. Biol. Chem. 256: 9183–9191, 1981.

    PubMed  CAS  Google Scholar 

  6. Abumrad, N. A., R. R. Perry, and R. R. Whitesell. Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte. J. Biol. Chem. 260: 9969–9971, 1985.

    PubMed  CAS  Google Scholar 

  7. Abumrad, N. A., H. M. Tepperman, and J. Tepperman. Control of endogenous triglyceride breakdown in the mouse diaphragm. J. Lipid Res. 21: 149–155, 1980.

    PubMed  CAS  Google Scholar 

  8. Amri, E. Z., F. Bonino, G. Ailhaud, N. A. Abumrad, and P. A. Grimaldi. Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J. Biol. Chem. 270: 2367–2371, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Bassingthwaighte, J. B., L. Noodleman, G. van der Vusse, and J. F. C. Glatz. Modeling of palmitate transport in the heart. Mol. Cell. Biochem. 88: 51–58, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Berk, P. D., M. Bradbury, S.-L. Zhou, D. Stump, and N.-I. Han. Characterization of membrane transport processes: lessons from the study of BSP, bilirubin, and fatty acid uptake. Seminars in Liver Disease 16: 107–120, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Berk, P. D., S.-L. Zhou, C.-L. Kiang, D. Stump, M. Bradbury, and L. Isola. Uptake of long chain fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus. J. Biol Chem. 272: 8830–8835, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Black, P. N., S. F. Kianian, C. C. DiRusso, and W. D. Nunn. Long-chain fatty acid transport in Escherichia coli. Cloning, mapping, and expression of the fadL gene. J. Biol Chem. 260: 1780–1789, 1985.

    PubMed  CAS  Google Scholar 

  13. Black, P. N., B. Said, C. R. Ghosn, J. V. Beach, and W. D. Nunn. Purification and characterization of an outer membrane-bound protein involved in long-chain fatty acid transport in Escherichia coli. J. Biol Chem. 262: 1412–1419, 1987.

    PubMed  CAS  Google Scholar 

  14. Bonen, A., A. Ibrahimi, S. Liu, D. J. Dyck, J. F. C. Glatz, G. J. van der Vusse, and N. A. Abumrad. Chronic muscle stimulation increases palmitate transport, FATP mRNA abundance and FAT expression. 3rd International Conference on Lipid Binding Proteins, Minneapolis, Minnesota, May 15–19, 1997.

    Google Scholar 

  15. Burczynski, F. J., Z. Cai, J. B. Moran, T. Geisbuhler, and M. Rovetto. Palmitate uptake by cardiac myocytes and endothelial cells. Am. J. Physiol. (Heart Circ. Physiol) 268: H1659–H1666, 1995.

    CAS  Google Scholar 

  16. Burczynski, F. J., and B. A. Luxon. Is there facilitated uptake of fatty acids by the liver? Interpretation and analysis of experimental data. Can. J. Physiol. Pharmacol. 73: 409–420, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. DeGrella, R. F., and R. J. Light. Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. J. Biol. Chem. 255: 9731–9738, 1980.

    PubMed  CAS  Google Scholar 

  18. Diede, H. E., E. Rodilla-Sala, J. Gunawan, M. Manns, and W. Stremmel. Identification and characterization of a monoclonal antibody to the membrane fatty acid binding protein. Biochim. Biophys. Acta 1125: 13–20, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Distel, R. J., G. S. Robinson, and B. M. Spiegelman. Fatty acid regulation of gene expression. J. Biol. Chem. 267: 5937–5941, 1992.

    PubMed  CAS  Google Scholar 

  20. Dyck, D. J., and A. Bonen. Synthesis and degradation of endogenous lipid pools in contracting soleus muscles. Int’l Society for Biochemistry of Exercise, Sydney, Australia, 1997, Abstract (#2.43).

    Google Scholar 

  21. Dyck, D. J., S. J. Peters, J. Glatz, J. Gorski, H. Keizer, B. Kiens, S. Liu, E. A. Richter, L. L. Spriet, G. J. van der Vusse, and A. Bonen. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types. Am. J. Physiol. (Endocrinol. Metab.) 272: E340–E351, 1997.

    CAS  Google Scholar 

  22. Dyck, D. J., S. J. Peters, S. Liu, B. Keins, E. A. Richter, J. Gorski, G. van der Vusse, H. Keizer, J. Glatz, L. L. Spriet, and A. Bonen. Effects of muscle activity on palmitate transport in skeletal muscle giant sarcolemmal vesicles. The Physiologist 39: A–13, 1996.

    Google Scholar 

  23. Endeman, G., L. W. Stanton, K. S. Madden, C. M. Bryant, R. T. White, and A. A. Protter. CD36 is a receptor for the oxidized low density lipoprotein. J. Biol. Chem. 268: 11811–11816, 1993.

    Google Scholar 

  24. Friedberg, S. J., P. B. Sher, M. D. Bogdonoff, and E. H. Estes. The dynamics of plasma free fatty acid metabolism during exercise. J. Lipid Res. 4: 34–38, 1963.

    PubMed  CAS  Google Scholar 

  25. Glatz, J. F., T. Borchers, F. Spener, and G. van der Vusse. Fatty acids in cell signalling: modulation by lipid binding proteins. Prostaglandins Leukot Essent Fatty Acids 52: 121–127, 1995.

    Article  PubMed  CAS  Google Scholar 

  26. Glatz, J. F. C., and van der Vusse, G.J. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res. 35: 243–282, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Gore, L., and C. Hoinard. Linolenic acid transport in hamster intestinal cells is carrier-mediated. J. Nutr. 123: 66–73, 1993.

    PubMed  CAS  Google Scholar 

  28. Greenwalt, D. E., R. H. Lipsky, H. Ikeda, N. N. Tandon, and G. A. Jamieson. Mebrane glycoprotein CD36: A review of its role in adherence, signal transduction and transfusion medicine. Blood 80: 1105–1115, 1992.

    PubMed  CAS  Google Scholar 

  29. Hagenfeldt, L. Metabolism of free fatty acids and ketone bodies during exercise in normal and diabetic man. Diabetes 28 (Suppl 1): 68–70, 1979.

    Google Scholar 

  30. Harmon, C. M., and N. A. Abumrad. Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: isolation and amino-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. J. Membr. Biol. 133: 43–49, 1993.

    PubMed  CAS  Google Scholar 

  31. Harmon, C. M., P. Luce, and N. A. Abumrad. Labelling of an 88 kDa adipocyte membrane protein by sulpho-N-succinimidyl long-chain fatty acids: inhibition of fatty acid transport. Biochem. Soc. Trans. 20: 811–813, 1992.

    PubMed  CAS  Google Scholar 

  32. Harmon, C. M., P. Luce, A. H. Beth, and N. A. Abumrad. Labelling of adipocyte membranes by sulfo-N-succinimidyl derivatives of long-chain fatty acids: inhibition of fatty acid transport. J. Membr. Biol. 121: 261–268, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Havel, R. J., L. S. Carlson, L.-G. Ekelund, and A. Holmgren. Turnover rate and oxidation of different free fatty acids in man during exercise. J. Appl. Physiol. 19: 613–618, 1964.

    PubMed  CAS  Google Scholar 

  34. Ibrahimi, A., Z. Sfeir, H. Magharaine, E. Z. Amri, P. Grimaldi, and N. A. Abumrad. Expression of the CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc. Natl Acad. Sci. USA 93: 2646–2651, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Isola, L. M., S. L. Zhou, C. L. Klang, D. D. Stump, M. W. Bradbury, and P. D. Berk. 3T3 fibroblasts trans-fected with a cDNA for mitochondrial aspartate aminotransferase express plasma menbrane fatty acid-binding protein and saturable fatty acid uptake. Proc. Natl Acad. Sci. USA 92: 9866–9870, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Johannsson, E., K. J. A. McCullagh, X. Han, P. K. Fernando, J. Jensen, H. A. Dahl, and A. Bonen. Effect of overexpressing GLUT-1 and GLUT-4 on insulin-and contraction stimulated glucose transport in muscle. Am. J. Physiol. (Endocrinol Metab.) 271: E547–E555, 1996.

    CAS  Google Scholar 

  37. Juel, C. Muscle lactate transport studied in sarcolemmal giant vesicles. Biochim. Biophys. Acta 1065: 15–20, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. Kameda, K. Partial purification and characterization of fatty acid-binding protein(s) in Escherichia coli membranes and reconstitution of fatty acid transport system. Biochemistry International 13: 343–350, 1986.

    PubMed  CAS  Google Scholar 

  39. Kamp, F., and J. A. Hamilton. Movement of fatty acids, fatty acid analogues, and bile acids across phos-pholipid bilayers. Biochem. J. 32: 11074–11084, 1993.

    Article  CAS  Google Scholar 

  40. Kristiansen, S., J. F. Wojtaszewski, C. Juel, and E. A. Richter. Effect of glucose-6-phosphate and pH on glucose transport in skeletal muscle plasma membrane giant vesicles. Acta Physiol Scand. 150: 227–233, 1994.

    Article  PubMed  CAS  Google Scholar 

  41. McCullagh, K. J. A., C. Juel, M. O’Brien, and A. Bonen. Chronic muscle stimulation increases lactate transport in rat skeletal muscle. Mol. Cell. Biochem. 156: 51–57, 1996.

    Article  PubMed  CAS  Google Scholar 

  42. McCullagh, K. J. A., R. C. Poole, A. P. Halestrap, M. O’Brien, and A. Bonen. Role of the lactate transporter (MCT1) in skeletal muscles. Am. J. Physiol. (Endocrinol. Metab) 271: E143–E150, 1996.

    CAS  Google Scholar 

  43. McCullagh, K. J. A., R. C. Poole, A. P. Halestrap, K. F. Tipton, M. O’Brien, and A. Bonen. Chronic electrical stimulation increases MCT1 and lactate uptake in red and white skeletal muscle. Am. J. Physiol. (Endocrinol. Metab) 273: E239–E246, 1997.

    CAS  Google Scholar 

  44. Megeney, L. A., P. D. Neufer, G. L. Dohm, M. H. Tan, C. A. Blewett, G. C. B. Elder, and A. Bonen. Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am. J. Physiol. (Endocrinol Metab) 264: E583–E593, 1993.

    CAS  Google Scholar 

  45. Neely, J. R., M. J. Rovetto, and J. F. Oram. Myocardial utilization of carbohydrate and lipids. Progress in Cardiovas. Dis. XV: 289–329, 1972.

    Article  Google Scholar 

  46. Newsholme, E. A., P. Calder, and P. Yaqoob. The regulatory, informational, and immunomodulatory roles of fat fuels. Am. J. Clin. Nutr. 57 (Suppl): 738S–751S, 1993.

    PubMed  CAS  Google Scholar 

  47. Paul, P. Uptake and oxidation of substrates in the intact animal during exercise. In: Muscle Metabolism During Exercise., edited by B. Saltin. New York: Plenum, 1971, p. 225-247.

    Google Scholar 

  48. Pearce, S. F., J. Wu, and R. L. Silverstein. A carboxyl terminal truncation mutant of CD36 is secreted and binds thrombospondin: evidence for a single transmembrane domain. Blood 84: 384–389, 1994.

    PubMed  CAS  Google Scholar 

  49. Ploug, T., J. Wojtaszewski, S. Kristiansen, P. Hespel, H. Galbo, and E. A. Richter. Glucose transport in muscle giant vesicles: differential effects of insulin and contractions. Am. J. Physiol. (Endocrinol. Metab.) 264: E270–E278, 1993.

    CAS  Google Scholar 

  50. Popov, D., M. Hasu, N. Ghinea, N. Simionescu, and M. Simionescu. Cardiomyocytes express albumin binding proteins. J. Mol. Cell. Cardiol. 24: 989–1002, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Schaffer, J. E., and H. F. Lodish. Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell 79: 427–436, 1994.

    Article  PubMed  CAS  Google Scholar 

  52. Schaffer, J. E., and H. F. Lodish. Molecular mechanism of long-chain fatty acid uptake. Trends Cardiovasc. Med. 5: 218–224, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Schwieterman, W., D. Sorrentino, B. J. Potter, J. Rand, C.-L. Kiang, D. Stump, and P. D. Berk. Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to that in liver and gut. Proc. Natl. Acad. Sci. USA. 85: 359–363, 1988.

    Article  PubMed  CAS  Google Scholar 

  54. Sorrentino, D., R. B. Robinson, C.-L. Kiang, and P. Berk, D. At physiologic albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J. Clin. Invest. 84: 1325–1333, 1989

    Article  PubMed  CAS  Google Scholar 

  55. Sorrentino, D., D. Stump, B. J. Potter, R. B. Robinson, R. White, C.-L. Kiang, and P. Berk. D. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kDa plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J. Clin. Invest. 82: 928–935, 1988.

    Article  PubMed  CAS  Google Scholar 

  56. Spector, A. A. Fatty acid binding to plasma albumin. J. Lipid Res. 16: 165–179, 1975.

    PubMed  CAS  Google Scholar 

  57. Spector, A. A., J. E. Fletcher, and J. D. Ashbrook. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of step-wise equilibrium constants. Biochemistry 10: 3229–3234, 1971.

    Article  PubMed  CAS  Google Scholar 

  58. Spector, A. A., J. K., and J. E. Fletcher. Binding of long-chain fatty acids to bovine serum albumin. J. Lipid Res. 10: 56–67, 1969.

    PubMed  CAS  Google Scholar 

  59. Storch, J., C. Lechene, and A. M. Kleinfeld. Direct determination of free fatty acid transport across the adipocyte plasma membrane using quantitative fluoresence microscopy. J. Biol. Chem. 266: 13473–13476, 1991.

    PubMed  CAS  Google Scholar 

  60. Stremmel, W. Fatty acid uptake by isolated heart myocytes represents a carier-mediated transport process. J. Clin. Invest. 81: 844–852, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. Stremmel, W. Transmembrane transport of fatty acids in the heart. Mol. Cell. Biochem. 88: 23–29, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Stremmel, W., and P. D. Berk. Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. Proc. Natl Acad. Sci. USA 83: 3086–3090, 1986.

    Article  PubMed  CAS  Google Scholar 

  63. Stremmel, W., G. Strohmeyer, and P. D. Berk. Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc. Natl. Acad. Sci. USA 83: 3584–3588, 1986.

    Article  PubMed  CAS  Google Scholar 

  64. Stremmel, W., G. Strohmeyer, F. Borchard, S. Kochwa, and P. D. Berk. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc. Natl Acad. Sci. USA 82: 4–8, 1985.

    Article  PubMed  CAS  Google Scholar 

  65. Stump, D. D., S.-L. Zhou, and P. D. Berk. Comparison of plasma membrane FABP and mitochondrial isoform of aspartate aminotransferase from rat liver. Am. J. Physiol. 265: G894–G902, 1993.

    PubMed  CAS  Google Scholar 

  66. Trigatti, B. L., and G. E. Gerber. A direct role for serum albumin in the cellular uptake of long-chain fatty acids. Biochem. J. 308: 155–159, 1995.

    PubMed  CAS  Google Scholar 

  67. Trimble, M. E. Mediated transport of long-chain fatty acids by rat renal basolateral membranes. Am. J. Physiol. 257: F539–F546, 1989.

    PubMed  CAS  Google Scholar 

  68. Trotter, P. J., S. Y. Ho, and J. Storch. Fatty acid uptake by Caco-2 human intestinal cells. J. Lipid Res. 7: 336–346, 1996.

    Google Scholar 

  69. Turcotte, L. P., B. Kiens, and E. A. Richter. Saturation kinetics of palmitate uptake in perfused skeletal muscle. FEBS Lett 279: 327–329, 1991.

    Article  PubMed  CAS  Google Scholar 

  70. Turcotte, L. P., A. K. Srivastava, and J.-L. Chiasson. Fasting increases plasma membrane fatty acid binding (FABPpm) in red skeletal muscle. Mol. Cell. Biochem. 166: 153–158, 1997.

    Article  PubMed  CAS  Google Scholar 

  71. van der Vusse, G. J., and R. S. Reneman. Lipid metabolism in muscle. Handbook of Physiology. In: Integration of motor, circulatory, respiratory and metabolic control during exercise, edited by L. B. Rowell and J. T. Shepherd. New York: Oxford Press, 1996, p. 952–994.

    Google Scholar 

  72. Veerkamp, J. H., R. G. H. Maatman, and C. F. M. Prinsen. Lipid-binding proteins: form and function in cellular processes. Biochem. Soc. Trans. 20: 801–805, 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bonen, A., Dyck, D.J., Luiken, J.J.F.P. (1998). Skeletal Muscle Fatty Acid Transport and Transporters. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics