Skip to main content

Ubiquitin-Dependent Degradation of Transcription Regulators

  • Chapter
Ubiquitin and the Biology of the Cell

Abstract

The intracellular level or activity of proteins can be regulated at numerous levels. In most cells, one of the principal mechanisms employed is the regulation of transcription initiation. Transcription regulators are therefore among the main regulatory proteins in the cell. As such, control of their concentration—as well as their activity—has to be tightly regulated. Rapid modulation of the concentration of a protein requires it to be relatively short-lived. It is not surprising, then, that the half-lives of many transcription factors are well below the average for cellular proteins. Half-lives as low as 1 min have been measured for some bacterial transcription factors, e. g., cII (Gottesman et al., 1981) and σ32 (Strauss et al., 1987). A number of yeast transcription factors are known to have half-lives of only 3–5 min, e. g., Matα2 (Hochstrasser and Varshavsky, 1990) and Gcn4 (Kornitzer et al., 1994). The mammalian transcription factors c-fos (Curran et al., 1984) and c-myc (Luscher and Eisenman, 1988) have half-lives of ∼ 20 min. In eukaryotes, most known cases of rapidly degraded transcription regulators involve the ubiquitin—proteasome pathway. In this chapter, we will review some of the best-studied examples of degradation of transcription factors by this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alkalay, I., Yaron, A., Hatzubai, A., Orian, A., Ciechanover, A., and Ben-Neriah, Y., 1995, Stimulation-dependent IKBα phosphorylation marks the NF-KB inhibitor for degradation via the ubiquitin-proteasome pathway, Proc. Natl. Acad. Sci. USA 92:10599–10603.

    Article  PubMed  CAS  Google Scholar 

  • Angel, P., and Karin, M., 1991, The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation, Biochim. Biophys. Acta 1072:129–157.

    PubMed  CAS  Google Scholar 

  • Baldi, L., Brown, K., Franzoso, G., and Siebenlist, U., 1996, Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of IKB-α, J. Biol. Chem. 271:376–379.

    Article  PubMed  CAS  Google Scholar 

  • Biederer, T., Volkwein, C., and Sommer, T., 1996, Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway, EMBO J. 15:2069–2076.

    PubMed  CAS  Google Scholar 

  • Brown, K., Gerstberger, S., Carlson, L., Franzoso, G., and Siebenlist, U., 1995, Control of IKB-α proteolysis by site-specific, signal-induced phosphorylation, Science 267:1485–1488.

    Article  PubMed  CAS  Google Scholar 

  • Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243:1576–1583.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P., and Hochstrasser, M., 1995, Biogenesis, structure and function of the yeast 20S proteasome, EMBO J. 14:2620–2630.

    PubMed  CAS  Google Scholar 

  • Chen, P., and Hochstrasser, M., 1996, Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly, Cell 86:961–972.

    Article  PubMed  CAS  Google Scholar 

  • Chen, P., Johnson, P., Sommer, T., Jentsch, S., and Hochstrasser, M., 1993, Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast Matα2 repressor, Cell 74:357–369.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Hagler, J., Palombella, V. J., Melandri, F., Scherer, D., Ballard, D., and Maniatis, T., 1995, Signal-induced site-specific phosphorylation targets IkBα to the ubiquitin-proteasome pathway, Genes Dev. 9:1586–1597.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. J., Parent, L., and Maniatis, T., 1996, Site-specific phosphorylation of IKBα by a novel ubiquitination-dependent protein kinase activity, Cell 84:853–862.

    Article  PubMed  CAS  Google Scholar 

  • Chowdary, D. R., Dermody, J. J., Jha, K. J., and Ozer, H. L., 1994, Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway, Mol. Cell. Biol. 14:1997–2003.

    PubMed  CAS  Google Scholar 

  • Ciechanover, A., Hod, Y., and Hershko, A., 1978, A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81:1100–1105.

    Article  Google Scholar 

  • Curran, T., Miller, A. D., Zokas, L., and Verma, I. M., 1984, Viral and cellular fos proteins: A comparative analysis, Cell 36:259–268.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. L., Weintraub, H., and Lassar, A. B., 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell 51:987–1000.

    Article  PubMed  CAS  Google Scholar 

  • DeMarini, D. J., Papa, F. R., Swaminathan, S., Ursic, D., Rasmussen, T. P., Culbertson, M. R., and Hochstrasser, M., 1995, The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo, Mol. Cell. Biol. 15:6311–6321.

    PubMed  CAS  Google Scholar 

  • Ellison, M. J., and Hochstrasser, M., 1991, Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function, J. Biol. Chem. 266:21150–21157.

    PubMed  CAS  Google Scholar 

  • Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., and Schreiber, S. L., 1995, Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science 268:726–731.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D., Crooke, S. T., and Chau, V., 1994, Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant, Mol. Cell. Biol. 14:5501–5509.

    PubMed  CAS  Google Scholar 

  • Gill, G., and Ptashne, M., 1988, Negative effect of the transcriptional activator GAL4, Nature 334:721–724.

    Article  PubMed  CAS  Google Scholar 

  • Gonen, H., Stancovski, L., Shkedy, D., Hadari, T., Bercovich, B., Bengal, E., Mesilati, S., Abu-Hatoum, O., Schwartz, A. L., and Ciechanover, A., 1996, Isolation, characterization, and partial purification of a novel ubiquitin-protein ligase, E3, J. Biol. Chem. 271:302–310.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, S., Gottesman, M. E., Shaw, J. E., and Pearson, M. L., 1981, Protein degradation in E. coli: The lon mutation and bacteriophage λN and cII protein stability, Cell 24:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A., 1980, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. USA 77:1365–1368.

    Article  PubMed  Google Scholar 

  • Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H., 1984, ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl. Acad. Sci. USA 81:1619–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R. E., and Cohen, L. H., 1991, Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts, J. Biol. Chem. 266:16376–16379.

    PubMed  CAS  Google Scholar 

  • Herskowitz, I., Rine, J., and Strathern, J., 1992, Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, in The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae, Vol. 2 (E. W. Jones, J. R. Pringle, and J. R. Broach, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 583–656.

    Google Scholar 

  • Hiller, M. M., Finger, A., Schweiger, M., and Wolf, D. H., 1996, ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway, Science 273:1725–1728.

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch, A. G., 1992, General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae, in The Molecular and Cellular Biology of the Yeast Saccharomyces, Vol. 2 (E. W. Jones, J. R. Pringle, and J. R. Broach, eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 319–414.

    Google Scholar 

  • Hirai, S., Kawasaki, H., Yaniv, M., and Suzuki, K., 1991, Degradation of transcription factors, c-Jun and c-Fos, by calpain, FEBS Lett. 287:57–61.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., and Varshavsky, A., 1990, In vivo degradation of a transcriptional regulator: The yeast α2 repressor, Cell 61:697–708.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., Ellison, M. J., Chau, V., and Varshavsky, A., 1991, The short-lived MATα2 transcriptional regulator is ubiquitinated in vivo, Proc. Natl. Acad. Sci. USA 88:4606–4610.

    Article  PubMed  CAS  Google Scholar 

  • Jaffray, E., Wood, K. M., and Hay, R. T., 1995, Domain organization of IKBα and sites of interaction with NF-KB p65, Mol. Cell. Biol. 15:2166–2172.

    PubMed  CAS  Google Scholar 

  • Jariel-Encontre, L., Pariat, M., Martin, F., Carillo, S., Salvat, C., and Piechaczyk, M., 1995, Ubiqui-tinylation is not an absolute requirement for degradation of c-Jun protein by the 26S proteasome, J. Biol. Chem. 270:11623–11627.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman, K. A., Mattson, D. M., and Duncan, I., 1990, Mutations affecting the stability of the fushi tarazu protein of Drosophila, Genes Dev. 4:1936–1950.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., Maurizi, M. R., Kim, B., Kocsis, E., Trus, B. L., Singh, S. K., and Steven, A. C., 1995, Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome, J. Mol. Biol. 250:587–594.

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer, D., Raboy, B., Kulka, R. G., and Fink, G. R., 1994, Regulated degradation of the transcription factor Gcn4, EMBO J. 13:6021–6030.

    PubMed  CAS  Google Scholar 

  • Kulka, R. G., Raboy, B., Schuster, R., Parag, H. A., Diamond, G., Ciechanover, A., and Marcus, M., 1988, A Chinese hamster cell cycle mutant arrested at G2 phase has a temperature-sensitive ubiquitin-activating enzyme E1, J. Biol. Chem. 263:15726–15731.

    PubMed  CAS  Google Scholar 

  • Lanker, S., Valdivieso, M. H., and Wittenberg, C., 1996, Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation, Science 271:1597–1601.

    Article  PubMed  CAS  Google Scholar 

  • Lassar, A. B., Buskin, J. N., Lockshon, D., Davis, R. L., Apone, S., Hauschka, S. D., and Weintraub, H., 1989, MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer, Cell 58:823–831.

    Article  PubMed  CAS  Google Scholar 

  • Luscher, B., and Eisenman, R. N., 1988, c-myc and c-myb protein degradation: Effect of metabolic inhibitors and heat shock, Mol. Cell. Biol. 8:2504–2512.

    PubMed  CAS  Google Scholar 

  • McKinney, J. D., Chang, F., Heintz, N., and Cross, F. R., 1993, Negative regulation of FAR1 at the start of the yeast cell cycle, Genes Dev. 7:833–843.

    Article  PubMed  CAS  Google Scholar 

  • Miao, G. G., and Curran, T., 1994, Cell transformation by c-fos requires an extended period of expression and is independent of the cell cycle, Mol. Cell. Biol. 14:4295–4310.

    PubMed  CAS  Google Scholar 

  • Molinari, M., and Milner, J., 1995, p53 in complex with DNA is resistant to ubiquitin-dependent proteolysis in the presence of HPV-16 E6, Oncogene 10:1849–1854.

    PubMed  CAS  Google Scholar 

  • Muffler, A., Fischer, D., Altuvia, S., Storz, G., and Hengge-Aronis, R., 1996, The response regulator RssB controls stability of the σS subunit of RNA polymerase in Escherichia coli, EMBO J. 15:1333–1339.

    PubMed  CAS  Google Scholar 

  • Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., Tamura, T., Tanaka, K., and Ichihara, A., 1992, Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination, Nature 360:597–599.

    Article  PubMed  CAS  Google Scholar 

  • Murre, C., McCaw, P. S., and Baltimore, D., 1989, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins, Cell 56:777–783.

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa, M., Okazaki, K., Furuno, N., Watanabe, N., and Sagata, N., 1992, The’ second-codon rule’ and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes, EMBO J. 11:2433–2446.

    PubMed  CAS  Google Scholar 

  • Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., and Sagata, N., 1993, Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: Possible significance of natural selection for Pro2 in Mos, EMBO J. 12:4021–4027.

    PubMed  CAS  Google Scholar 

  • Okazaki, K., and Sagata, N., 1995, The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells, EMBO J. 14:5048–5059.

    PubMed  CAS  Google Scholar 

  • Papa, F., and Hochstrasser, M., 1993, The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene, Nature 366:313–319.

    Article  PubMed  CAS  Google Scholar 

  • Papavassiliou, A. G., Treier, M., Chavrier, C., and Bohmann, D., 1992, Targeted degradation of c-Fos, but not v-Fos, by a phosphorylation-dependent signal on c-Jun, Science 258:1941–1944.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M., 1987, Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell Biol. 3:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Reihsaus, E., Kohler, M., Kraiss, S., Oren, M., and Montenarh, M., 1990, Regulation of the level of the oncoprotein p53 in non-transformed and transformed cells, Oncogene 5:137–145.

    PubMed  CAS  Google Scholar 

  • Richter-Ruoff, B., Wolf, D. H., and Hochstrasser, M., 1994, Degradation of the yeast MATα2 transcriptional regulator is mediated by the proteasome, FEBS Lett. 354:50–52.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Michalopoulos, I., Arenzana-Seisdedos, F., and Hay, R. T., 1995, Inducible degradation of IKBα in vitro and in vivo requires the acidic C-terminal domain of the protein, Mol. Cell. Biol. 15:2413–2419.

    PubMed  CAS  Google Scholar 

  • Rogers, S., Wells, R., and Rechsteiner, M., 1986, Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234:364–368.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman, J. V., 1993, MAP kinase and the activation of quiescent cells, Curr. Opin. Cell Biol. 5:207–213.

    Article  PubMed  CAS  Google Scholar 

  • Sadis, S., Atienza, C. J., and Finley, D., 1995, Synthetic signals for ubiquitin-dependent proteolysis, Mol. Cell. Biol. 15:2086–4094.

    Google Scholar 

  • Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M., 1990, The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell 63:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Huibregtse, J. M., Vierstra, R. D., and Howley, P. M., 1993, The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53, Cell 75:495–505.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, D. C., Brockman, J. A., Chen, Z., Maniatis, T., and Ballard, D. W., 1995, Signal-induced degradation of IKBα requires site-specific ubiquitination, Proc. Natl. Acad. Sci. USA 92:11259–11263.

    Article  PubMed  CAS  Google Scholar 

  • Schweder, T., Lee, K.-H., Lomovskaya, O., and Matin, A., 1996, Regulation of Escherichia coli starvation sigma factor (σS) by ClpPX protease, J. Bacteriol. 178:470–476.

    PubMed  CAS  Google Scholar 

  • Schwob, E., Böhm, T., Mendenhall, M. D., and Nasmyth, K., 1994, The B-type cyclin kinase inhibitor p40-SICl controls the Gl to S transition in S. cerevisiae, Cell 79:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Stancovski, I., Gonen, H., Orian, A., Schwartz, A. L., and Ciechanover, A., 1995, Degradation of the proto-oncogene product c-Fos by the ubiquitin proteolytic system in vivo and in vitro: Identification and characterization of the conjugating enzymes, Mol. Cell. Biol. 15:7106–7116.

    PubMed  CAS  Google Scholar 

  • Strauss, D. B., Walter, W A., and Gross, C. A., 1987, The heat shock response of E. coli is regulated by changes in the concentration of sigma 32, Nature 329:348–351.

    Article  Google Scholar 

  • Struhl, K., 1987, The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous, Cell 50:841–846.

    Article  PubMed  CAS  Google Scholar 

  • Thanos, D., and Maniatis, T., 1995, NF-KB: A lesson in family values, Cell 80:529–532.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, M. J., Tapscott, S. J., Davis, R. L., Wright, W. E., Lassar, A. B., and Weintraub, H., 1989, Positive autoregulation of the myogenic determination gene MyoD1, Cell 58:241–248.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, K., Spence, J., and Georgopoulos, C., 1989, Modulation of stability of the Escherichia coli heat shock regulatory factor sigma, J. Bacteriol. 171:1585–1589.

    PubMed  CAS  Google Scholar 

  • Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A. J., Oppenheim, A. B., Yura, T., Yamanaka, K., Niki, H., Hiraga, S., and Ogura, T., 1995, Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32, EMBO J. 14:2551–2560.

    PubMed  CAS  Google Scholar 

  • Treier, M., Staszewski, L. M., and Bohmann, D., 1994, Ubiquitin-dependent c-jun degradation in vivo is mediated by the δ domain, Cell 78:787–798.

    Article  PubMed  CAS  Google Scholar 

  • Tsurumi, C., Ishida, N., Tamura, T., Kakizuka, A., Nishida, E., Okumura, E., Kishimoto, T., Inagaki, M., Okazaki, K., Sagata, N., Ichihara, A., and Tanaka, K., 1995, Degradation of c-Fos by the 26S proteasome is accelerated by c-Jun and multiple protein kinases, Mol. Cell. Biol. 15:5682–5687.

    PubMed  CAS  Google Scholar 

  • Yaglom, J., Linskens, H. K., Sadis, S., Rubin, D. M., Futcher, B., and Finley, D., 1995, p34-Cdc28-mediated control of Cln3 degradation, Mol. Cell. Biol. 15:731–741.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hochstrasser, M., Kornitzer, D. (1998). Ubiquitin-Dependent Degradation of Transcription Regulators. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics