Advertisement

The Deubiquitinating Enzymes

  • Keith D. Wilkinson
  • Mark Hochstrasser

Abstract

As detailed elsewhere in this volume, modification of proteins by the 76-residue ubiquitin polypeptide is involved in many aspects of protein metabolism. Among the cellular processes affected by ubiquitin-dependent reactions are chromosome structure and segregation, cell-cycle progression, receptor-mediated signal transduction, gene expression, protein localization, organelle biogenesis, antigen presentation, viral pathogenesis, and the stress response (reviewed in Hochstrasser, 1995, 1996a; Rubin and Finley, 1995; Wilkinson, 1995; Ciechanover, 1994; Hershko and Ciechanover, 1992; Finley and Chau, 1991). One type of ubiquitination, attachment of a polyubiquitin chain(s) to a protein, targets the modified protein for proteolysis by the proteasome (see references above). The ubiquitin molecules in these polyubiquitin chains are most often linked to one another by isopeptide bonds between the C-terminus of one ubiquitin and the e-amino group of lysine 48 of the next ubiquitin (Chau et al., 1989; Gregori et al., 1990; Hochstrasser et al., 1991). There is also evidence that polyubiquitin chains can be formed with isopeptide linkages involving lysines 6, 11 (Baboshina and Haas, 1996), 29 (Arnason and Ellison, 1994), or 63 (Arnason and Ellison, 1994; Spence et al., 1995) of ubiquitin. In addition, a variety of ubiquitinlike proteins have been described (Toniolo et al., 1988; Banerji et al., 1990; Meyers et al., 1991; Kumar et al., 1993; Olvera and Wool, 1993; Linnen et al., 1993; Haas et al., 1996; Nakamura et al., 1996; Narasimhan et al., 1996; Biggins et al., 1996; Shen et al., 1996).

Keywords

Polyubiquitin Chain Ubiquitin Chain Isopeptide Bond Active Site Cysteine Position Effect Variegation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amerik, A. Y, Swaminathan, S., Krantz, B. A., Wilkinson, K. D., and Hochstrasser, M., 1997, In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16:4826–4838.PubMedCrossRefGoogle Scholar
  2. Anderson, M. W., Ballal, N. R., Goldknopf, I. L., and Busch, H., 1981, Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver releases histone 2A and ubiquitin from conjugated protein A24, Biochemistry 20:1100–1104.CrossRefGoogle Scholar
  3. Arnason, T., and Ellison, M. J., 1994, Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain, Mol. Cell. Biol. 14:7876–7883.PubMedGoogle Scholar
  4. Baboshina, O. V., and Haas, A. L., 1996, Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5, J. Biol. Chem. 271:2823–2831.PubMedCrossRefGoogle Scholar
  5. Bacci, B., Cochran, E., Nunzi, M. G., Izeki, E., Mizutani, T., Patton, A., Hite, S., Sayre, L. M., Autilio Gambetti, L., and Gambetti, P., 1994, Amyloid beta precursor protein and ubiquitin epitopes in human and experimental dystrophic axons. Ultrastructural localization, Am. J. Pathol. 144: 702–710.PubMedGoogle Scholar
  6. Baker, R. T., Tobias, J. W., and Varshavsky, A., 1992, Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family, J. Biol. Chem. 267:23364–23375.PubMedGoogle Scholar
  7. Banerjee, A., Gregori, L., Xu, Y., and Chau, V., 1993, The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein, J. Biol. Chem. 268:5668–5675.PubMedGoogle Scholar
  8. Banjerji, J., Sands, J., Strominger, J. L., and Spies, T., 1990, A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain, Proc. Natl. Acad. Sci. USA 87:2374–2378.CrossRefGoogle Scholar
  9. Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M., and Pickart, C., 1996, Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting, Proc. Natl. Acad. Sci. USA 93:861–866.PubMedCrossRefGoogle Scholar
  10. Biggins, S., Ivanovska, I., and Rose, M. D., 1996, Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center, J. Cell Biol. 133:1331–1346.PubMedCrossRefGoogle Scholar
  11. Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243:1576–1583.PubMedCrossRefGoogle Scholar
  12. Ciechanover, A., 1994, The ubiquitin-proteasome proteolytic pathway, Cell 79:13–21.PubMedCrossRefGoogle Scholar
  13. Cook, W. J., Jeffrey, L. C., Kasperek, E., and Pickart, C. M., 1994, Structure of tetraubiquitin shows how multiubiquitin chains can be formed, J. Mol. Biol. 236:601–609.PubMedCrossRefGoogle Scholar
  14. Cox, M. J., Haas, A. L., and Wilkinson, K. D., 1986, Role of ubiquitin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformation and activities, Arch. Biochem. Biophys. 250:400–409.PubMedCrossRefGoogle Scholar
  15. DeMartino, G. N., Moomaw, C. R., Zagnitko, O. P., Proske, R. J., Chu-Ping, M., Afendis, S. J., Swaffield, J. C., and Slaughter, C. A., 1994, PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family, J. Biol. Chem. 269:20878–20884.PubMedGoogle Scholar
  16. Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M., 1994, A 26 S protease subunit that binds ubiquitin conjugates, J. Biol. Chem. 269:7059–7061.PubMedGoogle Scholar
  17. Di Stefano, D. L., and Wand, A. J., 1987, Two-dimensional 1H NMR study of human ubiquitin: A main chain directed assignment and structure analysis, Biochemistry 26:7272–7281.PubMedCrossRefGoogle Scholar
  18. Duerksen-Hughes, P. J., Williamson, M. M., and Wilkinson, K. D., 1989, Affinity chromatography using protein immobilized via arginine residues: Purification of ubiquitin carboxyl-terminal hydrolases, Biochemistry 28:8530–8536.PubMedCrossRefGoogle Scholar
  19. Dunten, R. L., and Cohen, R. E., 1989, Recognition of modified forms of ribonuclease A by the ubiquitin system, J. Biol. Chem. 264:16739–16747.PubMedGoogle Scholar
  20. Ellison, M. J., and Hochstrasser, M., 1991, Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function, J. Biol. Chem. 266:21150–21157.PubMedGoogle Scholar
  21. Eytan, E., Armon, T., Heller, H., Beck, S., and Hershko, A., 1993, Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex, J. Biol. Chem. 268:4668–4674.PubMedGoogle Scholar
  22. Falquet, L., Paquet, N., Frutiger, S., Hughes, G. J., Hoang-Van, K., and Jaton, J. C., 1995, A human deubiquitinating enzyme with both isopeptidase and peptidase activities in vitro, FEBS Lett. 359:73–77.PubMedCrossRefGoogle Scholar
  23. Finley, D., and Chau, V., 1991, Ubiquitination, Annu. Rev. Cell Biol. 7:25–69.PubMedCrossRefGoogle Scholar
  24. Finley, D., Bartel, B., and Varshavsky, A., 1989, The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature 338:394–401.PubMedCrossRefGoogle Scholar
  25. Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Crooke, S. T., and Chau, V., 1994, Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant, Mol. Cell. Biol. 14:5501–5509.PubMedGoogle Scholar
  26. Fujiwara, Y, Hatano, K., Hirabayashi, T., and Miyazaki, J. I., 1994, Ubiquitin C-terminal hydrolase as a putative factor involved in sex differentiation of fish (temperate wrasse, Halichoeres poecilopterus), Differentiation 56:13–20.PubMedGoogle Scholar
  27. Gregori, L., Poosch, M. S., Cousins, G., and Chau, V., 1990, A uniform isopeptide-linked multiubi-quitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis, J. Biol. Chem. 265:8354–8357.PubMedGoogle Scholar
  28. Gwozd, C. S., Amason, T. G., Cook, W. J., Chau, V., and Ellison, M. J., 1995, The yeast UBC4 ubiquitin conjugating enzyme monoubiquitinates itself in vivo: Evidence for an E2-E2 homo-interaction, Biochemistry 34:6296–6302.PubMedCrossRefGoogle Scholar
  29. Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260:12464–12473.PubMedGoogle Scholar
  30. Haas, A. L., and Bright, P. M., 1987, The dynamics of ubiquitin pools within cultured human lung fibroblasts, J. Biol. Chem. 262:345–351.PubMedGoogle Scholar
  31. Haas, A. L., Ahrens, P., Bright, P. M, and Ankel, H., 1987, Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin, J. Biol. Chem. 262:11315–11323.PubMedGoogle Scholar
  32. Haas, A. L., Baboshina, O., Williams, B., and Schwartz, L. M., 1995, Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle, J. Biol. Chem. 270:9407–9412.PubMedCrossRefGoogle Scholar
  33. Haas, A. L., Katzung, D. J., Reback, P. M., and Guarino, L. A., 1996, Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica, Biochemistry 35:5385–5394.PubMedCrossRefGoogle Scholar
  34. Hadari, T., Warms, J. V., Rose, I. A., and Hershko, A., 1992, A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation, J. Biol. Chem. 267:719–727.PubMedGoogle Scholar
  35. Haldeman, M. T., Finley, D., and Pickart, C. M., 1995, Dynamics of ubiquitin conjugation during erythroid differentiation in vitro, J. Biol. Chem. 270:9507–9516.PubMedCrossRefGoogle Scholar
  36. Henchoz, S., De Rubertis, F., Pauli, D., and Spierer, P., 1996, The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster, Mol. Cell. Biol. 16:5717–5725.PubMedGoogle Scholar
  37. Hershko, A., and Ciechanover, A., 1992, The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61:761–807.PubMedCrossRefGoogle Scholar
  38. Hershko, A., and Rose, I. A., 1987, Ubiquitin-aldehyde: A general inhibitor of ubiquitin-recycling processes, Proc. Natl. Acad. Sci. USA 84:1829–1833.PubMedCrossRefGoogle Scholar
  39. Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins, J. Biol. Chem. 257:13964–13970.PubMedGoogle Scholar
  40. Hochstrasser, M., 1995, Ubiquitin, proteasomes, and the regulation of intracellular protein degradation, Curr. Opin. Cell Biol. 7:215–223.PubMedCrossRefGoogle Scholar
  41. Hochstrasser, M., 1996a, Protein degradation or regulation: Ub the judge, Cell 84:813–815.PubMedCrossRefGoogle Scholar
  42. Hochstrasser, M., 1996b, Ubiquitin-dependent protein degradation, Annu. Rev. Genet. 30:405–439.PubMedCrossRefGoogle Scholar
  43. Hochstrasser, M., Ellison, M. J., Chau, V., and Varshavsky, A., 1991, The short-lived Matα2 transcriptional regulator is ubiquitinated in vivo, Proc. Natl. Acad. Sci. USA 88:4606–4610.PubMedCrossRefGoogle Scholar
  44. Honore, B., Rasmussen, H. H., Vandekerckhove, J., and Celis, J. E., 1991, Neuronal protein gene product 9.5 (IEF SSP 6104) is expressed in cultured human MRC-5 fibroblasts of normal origin and is strongly down-regulated in their SV40 transformed counterparts, FEBS Lett. 280:235–240.PubMedCrossRefGoogle Scholar
  45. Huang, Y., Baker, R. T., and Fischer-Vize, J. A., 1995, Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene, Science 270:1828–1831.PubMedCrossRefGoogle Scholar
  46. Johnson, E. S., Ma, P. C. M., Ota, I. M., and Varshavsky, A., 1995, A proteolytic pathway that recognizes ubiquitin as a degradation signal, J. Biol. Chem. 270:17442–17456.PubMedCrossRefGoogle Scholar
  47. Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D., and Hill, C. P., 1997, Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796.PubMedCrossRefGoogle Scholar
  48. Kas, K., Michiels, L., and Merregaert, J., 1992, Genomic structure and expression of the human faugene: Encoding the ribosomal protein S30 fused to a ubiquitin-like protein, Biochem. Biophys. Res. Commun. 187:927–933.PubMedCrossRefGoogle Scholar
  49. Kumar, S., Yoshida, Y., and Noda, M., 1993, Cloning of a cDNA which encodes a novel ubiquitin-like protein, Biochem. Biophys. Res. Commun. 195:393–399.PubMedCrossRefGoogle Scholar
  50. Larsen, C. N., Price, J. S., and Wilkinson, K. D., 1996, Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues, Biochemistry 35:6735–6744.PubMedCrossRefGoogle Scholar
  51. Linnen, J. M., Bailey, C. P., and Weeks, D. L., 1993, Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins, Gene 128:181–188.PubMedCrossRefGoogle Scholar
  52. Liu, C. C., Miller, H. I., Kohr, W. J., and Silber, J. I., 1989, Purification of a ubiquitin protein peptidase from yeast with efficient in vitro assays, J. Biol. Chem. 264:20331–20338.PubMedGoogle Scholar
  53. Lowe, J., McDermott, H., Landon, M., Mayer, R. J., and Wilkinson, K. D., 1990, Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases, J. Pathol. 161:153–160.PubMedCrossRefGoogle Scholar
  54. Matsui, S., Sandberg, A. A., Negoro, S., Seon, B. K., and Goldstein, G., 1982, Isopeptidase: A novel eukaryotic enzyme that cleaves isopeptide bonds, Proc. Natl. Acad. Sci. USA 79:1535–1539.PubMedCrossRefGoogle Scholar
  55. Mayer, A. N., and Wilkinson, K. D., 1989, Detection, resolution, and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus, Biochemistry 28:166–172.PubMedCrossRefGoogle Scholar
  56. Medina, R., Wing, S. S., Haas, A., and Goldberg, A. L., 1991, Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy, Biomed. Biochim. Acta 50:347–356.PubMedGoogle Scholar
  57. Melandri, F., Grenier, L., Plamondon, L., Huskey, W. P., and Stein, R. L., 1996, Kinetic studies on the inhibition of isopeptidase T by ubiquitin aldehyde, Biochemistry 35:12893–12900.PubMedCrossRefGoogle Scholar
  58. Meyers, G., Tautz, N., Dubovi, E. J., and Thiel, H. J., 1991, Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences, Virology 180:602–616.PubMedCrossRefGoogle Scholar
  59. Miller, H. I., Henzel, W J., Ridgeway, J. B., Kuang, W., Chisholm, V., and Liu, C., 1989, Cloning and expression of a yeast ubiquitin-protein cleaving activity in Escherichia coli, Biotechnology 7:698–704.CrossRefGoogle Scholar
  60. Moazed, D., and Johnson, D., 1996, A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae, Cell 86:667–677.PubMedCrossRefGoogle Scholar
  61. Nakamura, M., Xavier, R. M., and Tanigawa, Y, 1996, Ubiquitin-like moiety of the monoclonal nonspecific suppressor factor beta is responsible for its activity, J. Immunol. 156:532–538.PubMedGoogle Scholar
  62. Narasimhan, J., Potter, J. L., and Haas, A. L., 1996, Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin, J. Biol. Chem. 271:324–330.PubMedCrossRefGoogle Scholar
  63. Olvera, J., and Wool, I. G., 1993, The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30, J. Biol. Chem. 268:17967–17974.PubMedGoogle Scholar
  64. Özkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312:663–666.PubMedCrossRefGoogle Scholar
  65. Özkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6:1429–1439.PubMedGoogle Scholar
  66. Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T., 1994, The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B, Cell 78:773–785.PubMedCrossRefGoogle Scholar
  67. Papa, F. R., and Hochstrasser, M., 1993, The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene, Nature 366:313–319.PubMedCrossRefGoogle Scholar
  68. Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260:7903–7910.PubMedGoogle Scholar
  69. Pickart, C. M., and Rose, I. A., 1986, Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactive in the presence of ubiquitin, J. Biol. Chem. 261:10210–10217.PubMedGoogle Scholar
  70. Rawlings, N. D., and Barrett, A. J., 1994, Families of cysteine peptidases, Methods Enzymol. 244: 461–485.PubMedCrossRefGoogle Scholar
  71. Reiss, Y., Heller, H., and Hershko, A., 1989, Binding sites of ubiquitin-protein ligase. Binding of ubiquitin-protein conjugates and of ubiquitin-carrier protein, J. Biol. Chem. 264:10378–10383.PubMedGoogle Scholar
  72. Riley, D. A., Bain, J. L., Ellis, S., and Haas, A. L., 1988, Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles, J. Histochem. Cytochem. 36:621–632.PubMedCrossRefGoogle Scholar
  73. Roff, M., Thompson, J., Rodriguez, M. S., Jacque, J. M., Baleux, F., Arenzana-Seisdedos, F., and Hay, R. T., 1996, Role of IKBα ubiquitination in signal-induced activation of NFKB in vivo, J. Biol. Chem. 271:7844–7850.PubMedCrossRefGoogle Scholar
  74. Rose, I. A., 1988, Ubiquitin carboxyl-terminal hydrolases, in Ubiquitin (M. Rechsteiner, ed.), pp. 135–155, Plenum Press, New York.CrossRefGoogle Scholar
  75. Rose, I. A., and Warms, J. V., 1983, An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes, Biochemistry 22:4234–4237.PubMedCrossRefGoogle Scholar
  76. Rubin, D. M., and Finley, D., 1995, Proteolysis. The proteasome: A protein-degrading organelle? Curr. Biol. 5:854–858.PubMedCrossRefGoogle Scholar
  77. Ryabova, L. V., Virtanen, I., Olink-Coux, M., Scherrer, K., and Vassetzky, S. G., 1994, Distribution of prosome proteins and their relationship with the cytoskeleton in oogenesis of Xenopus laevis, Mol. Reprod. Dev. 37:195–203.PubMedCrossRefGoogle Scholar
  78. Schaeffer, J. R., and Cohen, R. E., 1996, Differential effects of ubiquitin aldehyde on ubiquitin and ATP-dependent protein degradation, Biochemistry 35:10886–10893.CrossRefGoogle Scholar
  79. Scheffner, M., Nuber, U., and Huibregtse, J. M, 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade, Nature 373:81–83.PubMedCrossRefGoogle Scholar
  80. Schofield, J. N., Day, I. N., Thompson, R. J., and Edwards, Y. H., 1995, PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse, Brain Res. Dev. Brain Res. 85:229–238.PubMedCrossRefGoogle Scholar
  81. Shean, B. S., and Mykles, D. L., 1995, Polyubiquitin in crustacean striated muscle: Increased expression and conjugation during molt-induced claw muscle atrophy, Biochim. Biophys. Acta 1264: 312–322.PubMedCrossRefGoogle Scholar
  82. Shen, Z., Pardington-Purtymun, P. E., Cary, R. B., Peterson, S. R., Comeaux, J. C., and Chen, D. J., 1996, hRAP12, a human ubiquitin-like nuclear protein that associates with human RAD51/ RAD52 proteins, FASEB J. 10:A963.Google Scholar
  83. Singer, J. D., Manning, B. M., and Formosa, T., 1996, Coordinating DNA replication to produce one copy of the genome requires genes that act in ubiquitin metabolism, Mol. Cell. Biol. 16:1356–1366.PubMedGoogle Scholar
  84. Sokolik, C. W., and Cohen, R. E., 1991, The structures of ubiquitin conjugates of yeast iso-2-cytochrome c, J. Biol. Chem. 266:9100–9107.PubMedGoogle Scholar
  85. Spence, J., Sadis, S., Haas, A. L., and Finley, D., 1995, A ubiquitin mutant with specific defects in DNA repair and multiubiquitination, Mol. Cell. Biol. 15:1265–1273.PubMedGoogle Scholar
  86. Stein, R. L., Chen, Z., and Melandri, F., 1995, Kinetic studies of isopeptidase T: Modulation of peptidase activity by ubiquitin, Biochemistry 34:12616–12623.PubMedCrossRefGoogle Scholar
  87. Swindle, J., Ajioka, J., Eisen, H., Sanwal, B., Jacquemot, C., Browder, Z., and Buck, G., 1988, The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi, EMBO J. 7:1121–1127.PubMedGoogle Scholar
  88. Tautz, N., Meyers, G., and Thiel, H. J., 1993, Processing of poly-ubiquitin in the polyprotein of an RNA virus, Virology 197:74–85.PubMedCrossRefGoogle Scholar
  89. Tobias, J. W., and Varshavsky, A., 1991, Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae, J. Biol. Chem. 266:12021–12028.PubMedGoogle Scholar
  90. Toniolo, D., Persico, M., and Alcalay, M., 1988, A “housekeeping” gene on the X chromosome encodes a protein similar to ubiquitin, Proc. Natl. Acad. Sci. USA 85:851–855.PubMedCrossRefGoogle Scholar
  91. Van Nocker, S., and Vierstra, R. D., 1993, Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway, J. Biol. Chem. 268:24766–24773.PubMedGoogle Scholar
  92. Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., Vierstra, R. D., Hatfield, P. M., and Cook, W. J., 1987, Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin, J. Biol. Chem. 262:6396–6399.PubMedGoogle Scholar
  93. Weber, P. L., Brown, S. C., and Mueller, L., 1987, Sequential 1H NMR assignments and secondary structure identification of human ubiquitin, Biochemistry 26:7282–7290.PubMedCrossRefGoogle Scholar
  94. Wilkinson, K. D., 1988, Purification and structural properties of ubiquitin, in Ubiquitin (M. Rechsteiner, ed.), pp. 5–38, Plenum Press, New York.CrossRefGoogle Scholar
  95. Wilkinson, K. D., 1994, Cellular roles of ubiquitin, in Heat Shock Proteins in the Nervous System (R. J. Mayer and I. R. Brown, eds.), pp. 191–234, Academic Press, London.Google Scholar
  96. Wilkinson, K. D., 1995, Roles of ubiquitinylation in proteolysis and cellular regulation, Annu. Rev. Nutr. 15:161–189.PubMedCrossRefGoogle Scholar
  97. Wilkinson, K. D., and Audhya, T. K., 1981, Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH—terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256:9235–9241.PubMedGoogle Scholar
  98. Wilkinson, K. D., and Mayer, A. N., 1986, Alcohol-induced conformational changes of ubiquitin, Arch. Biochem. Biophys. 250:390–399.PubMedCrossRefGoogle Scholar
  99. Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P. J., Boss, J. M., and Pohl, J., 1989, The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase, Science 246: 670–673.PubMedCrossRefGoogle Scholar
  100. Wilkinson, K. D., Deshpande, S., and Larsen, C. N., 1992, Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases, Biochem. Soc. Trans. 20:631–637.PubMedGoogle Scholar
  101. Wilkinson, K. D., Tashayev, V. L., O’Connor, L. B., Larsen, C. N., Kasperek, E., and Pickart, C. M., 1995, Metabolism of the polyubiquitin degradation signal: Structure, mechanism, and role of isopeptidase T, Biochemistry 34:14535–14546.PubMedCrossRefGoogle Scholar
  102. Wing, S. S., Haas, A. L., and Goldberg, A. L., 1995, Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation, Biochem. J. 307:639–645.PubMedGoogle Scholar
  103. Wunsch, A. M., and Haas, A. L., 1995, Ubiquitin-protein conjugates selectively distribute during early chicken embryogenesis, Dev. Dyn. 204:118–132.PubMedCrossRefGoogle Scholar
  104. Zhang, N., Wilkinson, K. D., and Bownes, M., 1993, Cloning and analysis of expression of a ubiquitin carboxyl terminal hydrolase expressed during oogenesis in Drosophila melanogaster, Dev. Biol. 157:214–223.PubMedCrossRefGoogle Scholar
  105. Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M., and D’Andrea, A. D., 1996a, DUB-1, a novel deubiquitinating enzyme with growth-suppressing activity, Proc. Natl. Acad. Sci. USA 93:3275–3279.PubMedCrossRefGoogle Scholar
  106. Zhu, Y., Pless, M., Inhorn, R., Mathey-Prevot, B., and D’Andrea, A. D., 1996b, The murine DUB-1 gene is specifically induced by the beta-c subunit of the interleukin-3 receptor, Mol. Cell. Biol. 16:4808–4817.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Keith D. Wilkinson
    • 1
  • Mark Hochstrasser
    • 2
  1. 1.Department of BiochemistryEmory UniversityAtlantaUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of ChicagoChicagoUSA

Personalised recommendations