Self-Avoiding Random Manifolds

  • François David
Part of the NATO ASI Series book series (NSSB, volume 361)


Several important developments of theoretical physics in the last 15 years come from the extension of the concept of random walk to fluctuating extended objects. This has been very fruitful both in high energy physics, where the quantum fluctuations of strings (1 + 1-dimensional objects) and of p-branes (p + 1-dimensional) in Minkowski space are considered, and in condensed matter physics, where the thermal fluctuations of 2-dimensional films or membranes in Euclidean 3-dimensional space are a fascinating subject (see for instance [1]).


Renormalization Group Equation Renormalization Factor Local Field Theory Flat Phase Local Quantum Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Statistical Mechanics of Membranes and Surfaces, Proceedings of the Fifth Jerusalem Winter School for Theoretical Physics (1987), D. R. Nelson, T. Piran and S. Weinberg Eds., World Scientific, Singapore (1989).Google Scholar
  2. [2]
    L. Peliti and S. Leibler, Phys. Rev. Lett. 54 (1985) 1690.ADSCrossRefGoogle Scholar
  3. [3]
    A. M. Polyakov, Nucl. Phys. B268 (1986) 406.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Y. Kantor, M. Kardar and D. R. Nelson, Phys. Rev. Lett. 57 (1986) 791; Phys. Rev. A 35 (1987) 3056.ADSCrossRefGoogle Scholar
  5. [5]
    M. Paczuski, M. Kardar and D. R. Nelson, Phys. Rev. Lett. 60 (1988) 2639.ADSGoogle Scholar
  6. [6]
    F. David and E. Guitter, Europhys. Lett. 5 (1988) 709.ADSCrossRefGoogle Scholar
  7. [7]
    J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett. 60 (1988) 2634.ADSCrossRefGoogle Scholar
  8. [8]
    M. Paczuski and M. Kardar, Phys. Rev. A 39 (1989) 6086.ADSCrossRefGoogle Scholar
  9. [9]
    Y. Kantor and D. R. Nelson, Phys. Rev. Lett. 58 (1987) 2774; Phys. Rev. A 36 (1987) 4020.ADSCrossRefGoogle Scholar
  10. [10]
    P. Di Francesco and E. Guitter, Europhys. Lett. 26 (1994) 455; Phys. Rev. E50 (1994) 4418.ADSCrossRefGoogle Scholar
  11. [11]
    J. A. Aronowitz and T. C. Lubensky, Europhys. Lett. 4 (1987) 395.ADSCrossRefGoogle Scholar
  12. [12]
    M. Kardar and D. R. Nelson, Phys. Rev. Lett. 58 (1987) 1289.ADSCrossRefGoogle Scholar
  13. [13]
    P.-G. de Gennes, Phys. Lett. 38 A (1972) 339.CrossRefGoogle Scholar
  14. [14]
    J. des Cloizeaux, J. de Physique 42 (1981) 635.CrossRefGoogle Scholar
  15. [15]
    B. Duplantier, T. Hwa and M. Kardar, Phys. Rev. Lett. 64 (1990) 2022.ADSCrossRefGoogle Scholar
  16. [16]
    F. David, B. Duplantier and E. Guitter, Phys. Rev. Lett. 72 (1994) 311.MathSciNetADSCrossRefMATHGoogle Scholar
  17. [17]
    B. Duplantier, Phys. Rev. Lett. 58 (1987) 2733; and in [1].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Wiese and F. David, Nucl. Phys. B450 (1995) 495.MathSciNetADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • François David
    • 1
    • 2
  1. 1.Service de Physique ThéoriqueCEA SaclayGif-sur-Yvette CedexFrance
  2. 2.Physique Théorique CNRSFrance

Personalised recommendations