Skip to main content

Abstract

Historically, the role played by mitochondria in cellular Ca2+ homeostasis has been the subject of considerable controversy (Fiskum & Lehninger, 1982; Akerman & Nicholls, 1983). The view that mitochondria, by virtue of possessing a huge capacity for Ca2+ uptake (Lehninger, 1967) act in the cell as mobilizable stores of the ion (Exton, 1980) capable of regulating cytosolic Ca2+ (Nicholls, 1978) has seen a considerable revision of the past 10–15 years (Denton & McCormack, 1980; Hansford, 1994; Crompton, 1985; McCormack et al., 1990; Denton & McCormack, 1986). This resulted firstly from the recognition that Ca2+ cycles constantly across the inner mitochondrial inner membrane (Nicholls & Crompton, 1980), so that the concentration of Ca2+ within the mitochondrial matrix ([Ca2+]m) is related to cytosolic Ca2+ by the kinetic properties of the transporters, rather than purely thermodynamic considerations. Thus, intramitochondrial Ca2+ concentrations in the low micromolar range have become generally accepted, rather than earlier assumptions of [Ca2+]m levels in the millimolar range or higher. Secondly, mitochondria from all vertebrate sources studied so far, as well as certain plants, have been shown to possess three important intramitochondrial oxidative enzymes whose activity is controlled in the micromolar range of Ca2+ ions (Denton et al., 1972; Denton et al., 1978; McCormack & Denton, 1979; Rutter, 1990). These findings led to the model first proposed by Denton and McCormack (Denton & McCormack, 1980) that increases in intramitochondrial Ca2+ concentration ([Ca2+]m), triggered after stimulus-induced increases in cytosolic free calcium concentration ([Ca2+]c), could activate oxidative metabolism, generating NADH or the respiratory chain, and enhanced ATP synthesis. This would then fuel the Ca2+-activated ATP-requiring events in the cytosol, such as muscle contraction, secretion or gene expression, without requiring a drop in intracellular ATP levels. Considerable evidence supporting this model has accrued since its proposal. For reviews see (McCormack et al., 1990; Denton & McCormack, 1990). However, support for the model has been considered to be at odds with the view that mitochondria could play any significant role in controlling cytosolic [Ca2+].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerman, K. & Nicholls, D. (1983). Physiological and bioenergetic aspects of mitochondrial calcium transport Rev Physiol Biochem Pharmacol 95, 149–201.

    Article  Google Scholar 

  • Assimacopoulos JF, McCormack JG & Jeanrenaud B (1986) Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J Biol Chem 261, 8799–8804.

    Google Scholar 

  • Brand MD (1985). The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. Biochem J 229, 161–166.

    PubMed  CAS  Google Scholar 

  • Brini M, Marsault R, Bastianutto C, Alverez J, Pozzan T & Rizzuto R (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration ([Ca2+]). A critical evaluation: J Biol Chem 270, 9896–9903.

    Article  PubMed  CAS  Google Scholar 

  • Brown LJ, MacDonald MJ, Lehn DA & Moran SM (1994) Sequence of rat mitochondrial glycerol-3-phosphate dehydrogenase cDNA. Evidence for EF-hand calcium-binding domains. J Biol Chem 269, 14363–14366.

    PubMed  CAS  Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56, 395–433.

    Article  PubMed  CAS  Google Scholar 

  • Cobbold PH & Rink TJ (1987) Fluorescence and bioluminescence measurment of cytoplasmic free calcium. Biochem J 248, 313–328.

    PubMed  CAS  Google Scholar 

  • Corkey BE, Duszynski J, Rich TL, Matschinsky B & Williamson JR (1986) Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem 261, 2567–2574.

    PubMed  CAS  Google Scholar 

  • Crompton M (1985) The regulation of mitochondrial calcium transport in heart. Curr Top Membr Transport 25, 231–286.

    Article  CAS  Google Scholar 

  • Crompton M & Andreeva L (1993) On the involvement of a mitochondrial pore in reperfusion injury. Basic Res Cardiol 88, 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM & McCormack JG (1980) On the role of the calcium transport cycle in the heart and other mammalian mitochondria. FEBS Lett 119, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM & McCormack JG (1986) The calcium sensitive dehydrogenases of vertebrate mitochondria. Cell Calcium 7, 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM & McCormack JG (1990) Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu. Rev. Physiol. 52, 451–466.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ & Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase Biochem J 128, 161–163.

    PubMed  CAS  Google Scholar 

  • Denton RM, Richards DA & Chin JG (1978) Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase of rat heart and other tissues. Biochem J 176, 899–906.

    PubMed  CAS  Google Scholar 

  • Exton JH (1980) Mechanisms involved in alpha-adrenergic phenomena: role of calcium ions in actions of catecho-lamines in liver and other tissues. Amer J Physiol 238, E3–12.

    PubMed  CAS  Google Scholar 

  • Fiskum G & Lehninger AL (1982) Calcium and Cell Function (Cheung, W.Y., ed.), Academic Press, New York, pp. 39–89.

    Google Scholar 

  • Griffiths EJ & Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307, 93–98.

    PubMed  CAS  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford R, Stern MD & Silverman H (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovascular Res. (in press).

    Google Scholar 

  • Hajnoczky G, Robb-Gaspers LD, Seitz MB & Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82, 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Halestrap AP (1991) Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage. Biochem J 278, 715–719.

    PubMed  CAS  Google Scholar 

  • Hansford RG (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102, 1–72.

    Article  PubMed  CAS  Google Scholar 

  • Hansford RG (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr 26, 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Hansford RG & Chappell JB (1967) The effect of Ca2+ on the oxidation of glycerol phosphate by blowfly flight-muscle mitochondria. Biochem Biophys Res Commun 27, 686–692.

    Article  PubMed  CAS  Google Scholar 

  • Hems DA, McCormack JG & Denton RM (1978) Activation of pyruvate dehydrogenase by vasopressin. Biochem J 176, 627–629.

    PubMed  CAS  Google Scholar 

  • Hoth M, Fanger CM. & Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137, 633–648.

    Article  PubMed  CAS  Google Scholar 

  • Ichas F, Jouaville LS & Mazat JP (1997). Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Noguchi M, Sakaki Y, Takagi Y, Miyata T, Lwanaga S, Miyata T & Tsuji FI (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci USA 82, 3154–3158.

    Article  PubMed  CAS  Google Scholar 

  • Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P & Lechleiter JD (1995) Synchronisation of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Kapus A, Szaszi K, Kaldi K, Ligeti E & Fonyo A (1991) Is the mitochondrial Ca2+ uniporter a voltage-modulated transport pathway? FEBS Lett 282, 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1967) Energy-linked ion movements in mitochondrial systems. Adv Enzymol 29, 259–320.

    PubMed  CAS  Google Scholar 

  • Lukacs GL & Kapus A (1987) Measurement of matrix free Ca2+ concentration in heart mitochondria by entrapped fura-2 and quin-2. Biochem J 248, 609–613.

    PubMed  CAS  Google Scholar 

  • Maechler P, Kennedy ED, Pozzan T & Wollheim CB (1997) Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J 16, 3833–3841.

    Article  PubMed  CAS  Google Scholar 

  • McCormack JG, Browne HM & Dawes NJ (1989) Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria. Biochim Biophys Acta — Bioenerg 973, 420–427.

    Article  CAS  Google Scholar 

  • McCormack JG & Denton RM (1979) The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180, 533–544.

    PubMed  CAS  Google Scholar 

  • McCormack JG & England PJ (1983) Ruthenium Red inhibits the activation of pyruvate dehydrogenase caused by positive inotropic agents in the perfused rat heart. Biochem J 214, 581–585.

    PubMed  CAS  Google Scholar 

  • McCormack JG, Halestrap AP & Denton RM (1990) Role of calcium ions in regulation of mammalian intramito-chondrial metabolism. Physiol Rev 70, 391–425.

    PubMed  CAS  Google Scholar 

  • Minta A, Kao J & Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluo-rescein chronophores. J Biol Chem. 264, 8171–8178.

    PubMed  CAS  Google Scholar 

  • Mironova GD, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I & Saris NE (1994) Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr 26, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Miyata H, Silverman HS, Sollott SJ, Lakatta EG, Stern MD & Hansford RG (1991) Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. Amer J Physiol 261, H1123–H1134.

    PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M & Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176, 463–474.

    PubMed  CAS  Google Scholar 

  • Nicholls DG & Crompton M (1980) Mitochondrial calcium transport. FEBS Lett. 111, 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Nichols BJ & Denton RM (1995) Towards the molecular mechanism of Ca2+ regulation of intamitochondrial dehy-drogenases. Mol Cell Biochem 149–150: 203–212.

    Article  PubMed  Google Scholar 

  • Pouli AE, Karagenc N, Arden S, Bright N, Schofield GS, Hutton JC & Rutter GA (1998) A phogrin-aequorin chimaera to image Ca2+ in the vicinity of secretory granules. Biochem J (in press).

    Google Scholar 

  • Pralong WF, Spat A & Wollheim CB (1994) Dynamic pacing of cell metabolism by intercellular Ca2+ transients. J Biol Chem 269, 27310–27314.

    PubMed  CAS  Google Scholar 

  • Reed LJ & Yeaman SJ (1987) The Enzymes (Boyer PD. & Krebs EG, eds.), Academic Press, New York, pp. 77–93.

    Google Scholar 

  • Rizzuto R, Bastianutto C, Brini M, Murgia M & Pozzan T (1994) Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M & Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighbouring mitochondria. Science 262, 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Simpson AWM, Brini M & Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325–327.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA & Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science (in press).

    Google Scholar 

  • Rutter GA (1990) Ca2+-binding to citrate cycle enzymes. Int J Biochem 22, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  • Rutter GA, Osbaldeston NJ, McCormack JG & Denton RM (1990) Measurement of matrix Mg2+ concentration of rat heart mitochondria using entrapped fluorescent probes. Biochem J 271, 627–634.

    PubMed  CAS  Google Scholar 

  • Rutter GA (1998) Imaging Ca2+ in small mammalian cells with recombinant targeted aequorin. In Imaging living cells (Rizzuto, R. and Fasolato, C, eds.), R.G.Landes, Austin, TX.

    Google Scholar 

  • Rutter GA, Burnett P, Rizzuto R, Brini M, Murgia M, Pozzan T, Tavare JM & Denton RM (1996) Subcellular imaging of intramitochondrial Ca2+ with recombinant targeted aequorin: Significance for the regulation of pyruvate dehydrogenase activity. Proc Natl Acad Sci USA 93, 5489–5494.

    Article  PubMed  CAS  Google Scholar 

  • Rutter GA, Cirulli V, Tamarit-Rodriguez J, Gine E, Girotti M, Marie S, Regazzi R & Wollheim CB (1993) Glucose metabolism and the control of insulin secretion: a role for low lactate dehydrogenase levels in pancreatic islet b-cells and a novel b-cell line (INS-1). J Biol Chem 30, 22385–22390.

    Google Scholar 

  • Rutter GA & Denton RM (1988a) Rapid purification and properties of pig heart NAD+-isocitrate dehydrogenase. Biochem Soc Trans 16, 873–874.

    CAS  Google Scholar 

  • Rutter GA & Denton RM (1988b) Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J 252, 181–189.

    PubMed  CAS  Google Scholar 

  • Rutter GA & Denton RM (1989) The binding of Ca2+ ions to pig heart NAD+-isocitrate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. Biochem J 263, 453–462.

    PubMed  CAS  Google Scholar 

  • Rutter GA, Osbaldeston NJ, McCormack JG & Denton RM (1990) Measurement of matrix free Mg2+ concentration in rat heart mitochondria by using entrapped fluorescent probes. Biochem J 271, 627–634.

    PubMed  CAS  Google Scholar 

  • Rutter GA, Pralong W-F & Wollheim CB (1992) Regulation of mitochondrial glycerol phosphate dehydrogenase activity by Ca2+ within electropermeabilized insulin-secreting cells (INS1). Biochim Biophys Acta — Bioenerg 1175, 107–113.

    Article  CAS  Google Scholar 

  • Rutter GA, Theler J-M, Murta M, Wollheim CB, Pozzan T & Rizzuto R (1993) Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic b-cell line: possible role in glucose and agonist-induced insulin secretion. J Biol Chem 268, 22385–22390.

    PubMed  CAS  Google Scholar 

  • Somlyo AP & Somlyo AV (1986) Electron probe analysis of calcium content and movements in sarcoplasmic reticulum, endoplasmic reticulum, mitochondria, and cytoplasm. J Cardiovasc Pharmacol 8 Suppl 8, S42–S47.

    Article  PubMed  Google Scholar 

  • Thomas AP, Diggle TA & Denton RM (1986) Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J 238, 83–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rutter, G.A. et al. (1998). Mitochondrial Ca2+ Signalling. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics