Calcium and Activity-Dependent Synaptic Plasticity

  • Eric Hanse
  • Arthur Konnerth


Synaptic plasticity is an essential aspect of synaptic transmission. Depending on the pattern of preceding activity, the gain of transmission can be increased or decreased on a time scale from milliseconds to weeks or more. This activity-dependent synaptic plasticity is believed to be the basis for storage of information in the nervous system. The initiating signal for this broad range of synaptic plasticity seems to be a rise in Ca2+ concentration.


NMDA Receptor Synaptic Plasticity Dendritic Spine NMDA Receptor Channel Synaptic Modification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham WC & Bear MF (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 19, 126–130.PubMedCrossRefGoogle Scholar
  2. Abraham WC & Huggett A (1997) Induction and reversal of long-term potentiation by repeated high-frequency stimulation in rat hippocampal slices. Hippocampus 7, 137–145.PubMedCrossRefGoogle Scholar
  3. Adler EM, Augustine GJ, Duffy SN & Charlton MP (1991) Alien intracellular calcium chelators attenuate neuro-transmitter release at the squid giant synapse. J Neurosci 11, 1496–1507.PubMedGoogle Scholar
  4. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A & Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94, 1488–1493.PubMedCrossRefGoogle Scholar
  5. Alford S, Frenguelli BG, Schofield JG & Collingridge GL (1993) Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol (Lond) 469, 693–716.Google Scholar
  6. Alger BE & Pitler TA (1995) Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci 18, 333–340.PubMedCrossRefGoogle Scholar
  7. Aniksztejn L & Ben Ari Y (1991) Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349, 67–69.PubMedCrossRefGoogle Scholar
  8. Aniksztejn L & Ben Ari Y (1995) Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus. J Neurophysiol 74, 2349–2357.PubMedGoogle Scholar
  9. Artola A & Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16, 480–487.PubMedCrossRefGoogle Scholar
  10. Atluri PP & Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16, 5661–5671.PubMedGoogle Scholar
  11. Bading H, Ginty DD & Greenberg ME (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181–186.PubMedCrossRefGoogle Scholar
  12. Bashir ZI & Collingridge GL (1994) An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp Brain Res 100, 437–443.PubMedCrossRefGoogle Scholar
  13. Bear MF (1995) Mechanism for a sliding synaptic modification threshold. Neuron 15, 1–4.PubMedCrossRefGoogle Scholar
  14. Behnisch T & Reymann KG (1995) Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci Lett 192, 185–188.PubMedCrossRefGoogle Scholar
  15. Bekkers JM & Stevens CF (1989) NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233.PubMedCrossRefGoogle Scholar
  16. Ben Ari Y, Aniksztejn L & Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15, 333–339.CrossRefGoogle Scholar
  17. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325.PubMedCrossRefGoogle Scholar
  18. Bezprozvanny I, Watras J & Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3-and calciumgated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754.PubMedCrossRefGoogle Scholar
  19. Bito H, Deisseroth K & Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca2+-and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.PubMedCrossRefGoogle Scholar
  20. Bito H, Deisseroth K & Tsien RW (1997) Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7, 419–429.PubMedCrossRefGoogle Scholar
  21. Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11, 438–443.PubMedCrossRefGoogle Scholar
  22. Bolshakov VY, Golan H, Kandel ER & Siegelbaum SA (1997) Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651.PubMedCrossRefGoogle Scholar
  23. Bolshakov VY & Siegelbaum SA (1994) Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1152.PubMedCrossRefGoogle Scholar
  24. Borst JG & Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434.PubMedCrossRefGoogle Scholar
  25. Bortolotto ZA, Bashir ZI, Davies CH & Collingridge GL (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740–743.PubMedCrossRefGoogle Scholar
  26. Bouron A & Reuter H (1996) A role of intracellular Na+ in the regulation of synaptic transmission and turnover of the vesicular pool in cultured hippocampal cells. Neuron 17, 969–978.PubMedCrossRefGoogle Scholar
  27. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G & Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.PubMedCrossRefGoogle Scholar
  28. Bradley J, Zhang Y, Bakin R, Lester HA, Ronnett GV & Zinn K (1997) Functional expression of the heteromeric “olfactory” cyclic nucleotide-gated channel in the hippocampus: a potential effector of synaptic plasticity in brain neurons. J Neurosci 17, 1993–2005.PubMedGoogle Scholar
  29. Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56, 395–433.PubMedCrossRefGoogle Scholar
  30. Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC & Nicoll RA (1997) Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388, 590–593.PubMedCrossRefGoogle Scholar
  31. Castillo PE, Weisskopf MG & Nicoll RA (1994) The role of Ca2+ channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12, 261–269.PubMedCrossRefGoogle Scholar
  32. Cavus I & Teyler T (1996) Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. J Neurophysiol 76, 3038–3047.PubMedGoogle Scholar
  33. Chen H-X, Hanse E, Pananceau M & Gustafsson B (1998) Distinct expressions for synaptic potentiation induced by calcium through voltage-gated calcium channels and NMDA receptor channels in the hippocampal CA1 region. Neuroscience (In Press).Google Scholar
  34. Christie BR, Eliot LS, Ito K, Miyakawa H & Johnston D (1995a) Different Ca2+ channels in soma and dendrites of hippocampal pyramidal neurons mediate spike-induced Ca2+ influx. J Neurophysiol 73, 2553–2557.PubMedGoogle Scholar
  35. Christie BR, Magee JC & Johnston D (1996) The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons. Learning & Memory 3, 160–169.CrossRefGoogle Scholar
  36. Christie BR, Schexnayder LK & Johnston D (1997) Contribution of voltage-gated Ca2+ channels to homosynaptic long-term depression in the CA1 region in vitro. J Neurophysiol 77, 1651–1655.PubMedGoogle Scholar
  37. Christie BR, Stellwagen D & Abraham WC (1995b) Evidence for common expression mechanisms underlying heterosynaptic and associative long-term depression in the dentate gyrus. J Neurophysiol 74, 1244–1247.PubMedGoogle Scholar
  38. Collingridge GL & Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18, 54–56.PubMedCrossRefGoogle Scholar
  39. Collingridge GL, Kehl SJ & McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol (Lond) 334, 33–46.Google Scholar
  40. Cowan AI, Stricker C, Reece LJ & Redman SJ (1998) Long-term plasticity at excitatory synapses on aspinous in-terneurons in area CA1 lacks synaptic specificity. J Neurophysiol 79, 13–20.PubMedGoogle Scholar
  41. Cummings JA, Mulkey RM, Nicoll RA & Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833.PubMedCrossRefGoogle Scholar
  42. Deadwyler SA, Dunwiddie T & Lynch G (1987) A critical level of protein synthesis is required for long-term potentiation. Synapse 1, 90–95.PubMedCrossRefGoogle Scholar
  43. Deisseroth K, Bito H & Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16, 89–101.PubMedCrossRefGoogle Scholar
  44. Delaney KR & Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J Neurosci 14, 5885–5902.PubMedGoogle Scholar
  45. Denk W, Delaney KR, Gelperin A, Kleinfeld D, Strowbridge BW, Tank DW & Yuste R (1994) Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J Neurosci Methods 54, 151–162.PubMedCrossRefGoogle Scholar
  46. Denk W, Sugimori M & Llinas R (1995) Two types of calcium response limited to single spines in cerebellar Purk-inje cells. Proc Natl Acad Sci USA 92, 8279–8282.PubMedCrossRefGoogle Scholar
  47. Denk W & Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357.PubMedCrossRefGoogle Scholar
  48. Denk W, Yuste R, Svoboda K & Tank DW (1996) Imaging calcium dynamics in dendritic spines. Curr Opin Neurobiol 6, 372–378.PubMedCrossRefGoogle Scholar
  49. Dickson RM, Cubitt AB, Tsien RY & Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358.PubMedCrossRefGoogle Scholar
  50. Dodge FA, Jr. & Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromus-cular junction. J Physiol (Lond) 193, 419–432.Google Scholar
  51. Dudek SM & Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci USA 89, 4363–4367.PubMedCrossRefGoogle Scholar
  52. Dunlap K, Luebke JI & Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18, 89–98.PubMedCrossRefGoogle Scholar
  53. Dunwiddie TV & Lynch G (1979) The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res 169, 103–110.PubMedCrossRefGoogle Scholar
  54. Durand GM, Kovalchuk Y & Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75.PubMedCrossRefGoogle Scholar
  55. Eilers J, Augustine GJ & Konnerth A (1995a) Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature 373, 155–158.PubMedCrossRefGoogle Scholar
  56. Eilers J & Konnerth A (1997) Dendritic signal integration. Curr Opin Neurobiol 7, 385–390.PubMedCrossRefGoogle Scholar
  57. Eilers J, Schneggenburger R & Konnerth A (1995b) Patch clamp and imaging in brain slices. In: Patch clamp and imaging in brain slices (Sakmann B and Neher E, eds), pp. 213–227. New york and London: Plenum Press.Google Scholar
  58. Eilers J, Takechi H, Finch EA, Augustine GJ & Konnerth A (1997) Local dendritic Ca2+ signaling induces cerebellar long-term depression. Learning & Memory 4, 130–158.CrossRefGoogle Scholar
  59. Fifkova E, Markham JA & Delay RJ (1983) Calcium in the spine apparatus of dendritic spines in the dentate molecular layer. Brain Res 266, 163–168.PubMedCrossRefGoogle Scholar
  60. Fisher SA, Fischer TM & Carew TJ (1997) Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20, 170–177.PubMedCrossRefGoogle Scholar
  61. Frenguelli BG, Irving AJ & Collingridge GL (1996) Ca2+ stores and hippocampal synaptic plasticity. Sem Neurosci 8, 301–309.CrossRefGoogle Scholar
  62. Frenguelli BG, Potier B, Slater NT, Alford S & Collingridge GL (1993) Metabotropic glutamate receptors and calcium signalling in dendrites of hippocampal CA1 neurones. Neuropharmacology 32, 1229–1237.PubMedCrossRefGoogle Scholar
  63. Frey U, Krug M, Reymann KG & Matthies H (1988) Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res 452, 57–65.PubMedCrossRefGoogle Scholar
  64. Frey U & Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385, 533–536.PubMedCrossRefGoogle Scholar
  65. Gabso M, Neher E & Spira ME (1997) Low mobility of the Ca2+ buffers in axons of cultured Aplysia neurons. Neuron 18, 473–481.PubMedCrossRefGoogle Scholar
  66. Garaschuk O, Schneggenburger R, Schirra C, Tempia F & Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol (Lond) 491, 757–772.Google Scholar
  67. Garaschuk O, Yaari Y & Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol (Lond) 502, 13–30.CrossRefGoogle Scholar
  68. Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF & Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727.PubMedCrossRefGoogle Scholar
  69. Ghosh A & Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268, 239–247.PubMedCrossRefGoogle Scholar
  70. Ginty DD (1997) Calcium regulation of gene expression: Isn’t that spatial? Neuron 18, 183–186.PubMedCrossRefGoogle Scholar
  71. Goda Y & Stevens CF (1994) Two components of transmitter release at a central synapse. Proc Natl Acad Sci USA 91, 12942–12946.PubMedCrossRefGoogle Scholar
  72. Grover LM & Teyler TJ (1990a) Differential effects of NMDA receptor antagonist APV on tetanic stimulation induced and calcium induced potentiation. Neurosci Lett 113, 309–314.PubMedCrossRefGoogle Scholar
  73. Grover LM & Teyler TJ (1990b) Effects of extracellular potassium concentration and postsynaptic membrane potential on calcium-induced potentiation in area CA1 of rat hippocampus. Brain Res 506, 53–61.PubMedCrossRefGoogle Scholar
  74. Grover LM & Teyler TJ (1990c) Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347, 477–479.PubMedCrossRefGoogle Scholar
  75. Grover LM & Teyler TJ (1992) N-methyl-D-aspartate receptor-independent long-term potentiation in area CA1 of rat hippocampus: input-specific induction and preclusion in a non-tetanized pathway. Neuroscience 49, 7–11.PubMedCrossRefGoogle Scholar
  76. Grover LM & Teyler TJ (1994) Activation of NMDA receptors in hippocampal area CA1 by low and high frequency orthodromic stimulation and their contribution to induction of long-term potentiation. Synapse 16, 66–75.PubMedCrossRefGoogle Scholar
  77. Grover LM & Teyler TJ (1995) Different mechanisms may be required for maintenance of NMDA receptor-dependent and independent forms of long-term potentiation. Synapse 19, 121–133.PubMedCrossRefGoogle Scholar
  78. Gu JG, Albuquerque C, Lee CJ & MacDermott AB (1996) Synaptic strengthening through activation of Ca2+-per-meable AMPA receptors. Nature 381, 793–796.PubMedCrossRefGoogle Scholar
  79. Gustafsson B, Asztely F, Hanse E & Wigström H (1989) Onset characteristics of long-term potentiation in the guinea-pig hippocampal CA1 region in vitro. Eur J Neurosci 1, 382–394.PubMedCrossRefGoogle Scholar
  80. Gustafsson B & Wigström H (1988) Physiological mechanisms underlying long-term potentiation. Trends Neurosci 11, 156–162.PubMedCrossRefGoogle Scholar
  81. Gustafsson B, Wigström H, Abraham WC & Huang YY (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J Neurosci 7, 774–780.PubMedGoogle Scholar
  82. Hanse E & Gustafsson B (1992) Postsynaptic, but not presynaptic, activity controls the early time course of long-term potentiation in the dentate gyrus. J Neurosci 12, 3226–3240.PubMedGoogle Scholar
  83. Hanse E & Gustafsson B (1994a) Onset and stabilization of NMDA receptor-dependent hippocampal long-term potentiation. Neurosci Res 20, 15–25.PubMedCrossRefGoogle Scholar
  84. Hanse E & Gustafsson B (1994b) TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice. J Neurosci 14, 5028–5034.PubMedGoogle Scholar
  85. Hanse E & Gustafsson B (1995) Long-term potentiation in the hippocampal CA1 region in the presence of N-methyl-D-aspartate receptor antagonists. Neuroscience 67, 531–539.PubMedCrossRefGoogle Scholar
  86. Harvey J & Collingridge GL (1992) Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 139, 197–200.PubMedCrossRefGoogle Scholar
  87. Heidelberger R, Heinemann C, Neher E & Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.PubMedCrossRefGoogle Scholar
  88. Helmchen F, Imoto K & Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70, 1069–1081.PubMedCrossRefGoogle Scholar
  89. Hempel CM, Vincent P, Adams SR, Tsien RY & Seiverston AI (1996) Spatio-temporal dynamics of cyclic AMP signals in an intact neural circuits. Nature 384, 166–169.PubMedCrossRefGoogle Scholar
  90. Holmes WR & Levy WB (1990) Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. J Neurophysiol 63, 1148–1168.PubMedGoogle Scholar
  91. Huang YY, Colino A, Selig DK & Malenka RC (1992) The influence of prior synaptic activity on the induction of long-term potentiation. Science 255, 730–733.PubMedCrossRefGoogle Scholar
  92. Huang YY & Malenka RC (1993) Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca2+ channels in the induction of’LTP. J Neurosci 13, 568–576.PubMedGoogle Scholar
  93. Huang YY, Wigström H & Gustafsson B (1987) Facilitated induction of hippocampal long-term potentiation in slices perfused with low concentrations of magnesium. Neuroscience 22, 9–16.PubMedCrossRefGoogle Scholar
  94. Huber KM, Mauk MD & Kelly PT (1995) Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. J Neurophysiol 73, 270–279.PubMedGoogle Scholar
  95. Huerta PT & Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15, 1053–1063.PubMedCrossRefGoogle Scholar
  96. Impey S, Mark M, Villacres EC, Poser S, Chavkin C & Storm DR (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.PubMedCrossRefGoogle Scholar
  97. Isaac JT, Nicoll RA & Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434.PubMedCrossRefGoogle Scholar
  98. Ito K, Miura M, Furuse H, Zhixiong C, Kato H, Yasutomi D, Inoue T, Mikoshiba K, Kimura T, Sakakibara S & et al. (1995) Voltage-gated Ca2+ channel blockers, omega-AgalVA and Ni2+, suppress the induction of theta-burst induced long-term potentiation in guinea-pig hippocampal CA1 neurons. Neurosci Lett 183, 112–115.PubMedCrossRefGoogle Scholar
  99. Jaffe DB & Brown TH (1994) Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites. J Neurophysiol 72, 471–474.PubMedGoogle Scholar
  100. Jaffe DB, Fisher SA & Brown TH (1994) Confocal laser scanning microscopy reveals voltage-gated calcium signals within hippocampal dendritic spines. J Neurobiol 25, 220–233.PubMedCrossRefGoogle Scholar
  101. Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow Newerly W & Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17, 945–956.PubMedCrossRefGoogle Scholar
  102. Jones KA & Baughman RW (1991) Both NMDA and non-NMDA subtypes of glutamate receptors are concentrated at synapses on cerebral cortical neurons in culture. Neuron 7, 593–603.PubMedCrossRefGoogle Scholar
  103. Kamiya H & Zucker RS (1994) Residual Ca2+ and short-term synaptic plasticity. Nature 371, 603–606.PubMedCrossRefGoogle Scholar
  104. Kano M, Garaschuk O, Verkhratsky A & Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol (Lond) 487, 1–16.Google Scholar
  105. Kano M, Rexhausen U, Dreessen J & Konnerth A (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356, 601–604.PubMedCrossRefGoogle Scholar
  106. Kasai H (1993) Cytosolic Ca2+ gradients, Ca2+ binding proteins and synaptic plasticity. Neurosci Res 16, 1–7.PubMedCrossRefGoogle Scholar
  107. Katz B & Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol (Lond) 195, 481–492.Google Scholar
  108. Kavalali ET, Zhuo M, Bito H & Tsien RW (1997) Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18, 651–663.PubMedCrossRefGoogle Scholar
  109. Kobayashi K, Manabe T & Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273, 648–650.PubMedCrossRefGoogle Scholar
  110. Kullmann DM, Perkel DJ, Manabe T & Nicoll RA (1992) Ca2+ entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Neuron 9, 1175–1183.PubMedCrossRefGoogle Scholar
  111. Lando L & Zucker RS (1994) Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. J Neurophysiol 72, 825–830.PubMedGoogle Scholar
  112. Lee WL, Anwyl R & Rowan M (1987) Caffeine inhibits post-tetanic potentiation but does not alter long-term potentiation in the rat hippocampal slice. Brain Res 426, 250–256.PubMedCrossRefGoogle Scholar
  113. Levy WB & Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175, 233–245.PubMedCrossRefGoogle Scholar
  114. Levy WB & Steward O (1983) Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797.PubMedCrossRefGoogle Scholar
  115. Li C, Davletov BA & Sudhof TC (1995) Distinct Ca2+ and Sr2+ binding properties of synaptotagmins. Definition of candidate Ca2+ sensors for the fast and slow components of neurotransmitter release. J Biol Chem 270, 24898–24902.PubMedCrossRefGoogle Scholar
  116. Liao D, Hessler NA & Malinow R (1995) Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404.PubMedCrossRefGoogle Scholar
  117. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci USA 86, 9574–9578.PubMedCrossRefGoogle Scholar
  118. Lisman J (1994) The CaM kinase II hypothesis for the storage of synaptic memory. Trends Neurosci 17, 406–412.PubMedCrossRefGoogle Scholar
  119. Llano I, DiPolo R & Marty A (1994) Calcium-induced calcium release in cerebellar Purkinje cells. Neuron 12, 663–673.PubMedCrossRefGoogle Scholar
  120. Lledo PM, Zhang X, Sudhof TC, Malenka RC & Nicoll RA (1998) Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403.PubMedCrossRefGoogle Scholar
  121. Llinas R, Sugimori M & Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.PubMedCrossRefGoogle Scholar
  122. Lynch G, Larson J, Kelso S, Barrionuevo G & Schottler F (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721.PubMedCrossRefGoogle Scholar
  123. Magee JC, Avery RB, Christie BR & Johnston D (1996) Dihydropyridine-sensitive, voltage-gated Ca2+ channels contribute to the resting intracellular Ca2+ concentration of hippocampal CA1 pyramidal neurons. J Neurophysiol 76, 3460–3470.PubMedGoogle Scholar
  124. Magee JC, Christofi G, Miyakawa H, Christie B, Lasser Ross N & Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons. J Neurophysiol 74, 1335–1342.PubMedGoogle Scholar
  125. Magee JC & Johnston D (1995a) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol (Lond) 487, 67–90.Google Scholar
  126. Magee JC & Johnston D (1995b) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268, 301–304.PubMedCrossRefGoogle Scholar
  127. Magee JC & Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213.PubMedCrossRefGoogle Scholar
  128. Magleby KL (1987) Short-term changes in synaptic efficacy. In: Short-term changes in synaptic efficacy (Edelamn GM, Gall VE and Cowan KM, eds), pp. 21–56. New York: John Wiley and sons.Google Scholar
  129. Malenka RC (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6, 53–60.PubMedCrossRefGoogle Scholar
  130. Malenka RC, Kauer JA, Zucker RS & Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81–84.PubMedCrossRefGoogle Scholar
  131. Malenka RC, Lancaster B & Zucker RS (1992) Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation. Neuron 9, 121–128.PubMedCrossRefGoogle Scholar
  132. Malenka RC & Nicoll RA(1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16, 521–527.PubMedCrossRefGoogle Scholar
  133. Malinow R, Otmakhov N, Blum KI & Lisman J (1994) Visualizing hippocampal synaptic function by optical detection of Ca2+ entry through the N-methyl-D-aspartate channel. Proc Natl Acad Sci USA 91, 8170–8174.PubMedCrossRefGoogle Scholar
  134. Manzoni OJ, Weisskopf MG & Nicoll RA (1994) MCPG antagonizes metabotropic glutamate receptors but not long-term potentiation in the hippocampus. Eur J Neurosci 6, 1050–1054.PubMedCrossRefGoogle Scholar
  135. Markram H, Helm PJ & Sakmann B (1995) Dendritic calcium transients evoked by single back-propagating action potentials in rat heocortical pyramidal neurons. J Physiol (Lond) 485, 1–20.Google Scholar
  136. Markram H & Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci USA 91, 5207–5211.PubMedCrossRefGoogle Scholar
  137. Martin SJ & Morris RGM (1997) (R, S)-alpha-methyl-4-carboxyphenylglycine (MCPG) fails to block long-term potentiation under urethane anaesthesia in vivo. Neuropharmacology 36, 1339–1354.PubMedCrossRefGoogle Scholar
  138. Matthews G (1996) Neurotransmitter release. Annu Rev Neurosci 19, 219–233.PubMedCrossRefGoogle Scholar
  139. Mayford M, Wang J, Kandel ER & TJ OD (1995) CaMKII regulates the frequency-response function of hippo-campal synapses for the production of both LTD and LTP. Cell 81, 891–904.PubMedCrossRefGoogle Scholar
  140. McBain C & Dingledine R (1992) Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons. J Neurophysiol 68, 16–27.PubMedGoogle Scholar
  141. McBain CJ & Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74, 723–760.PubMedCrossRefGoogle Scholar
  142. Mills LR, Niesen CE, So AP, Carlen PL, Spigelman I & Jones OT (1994) N-type Ca2+ channels are located on so-mata, dendrites, and a subpopulation of dendritic spines on live hippocampal pyramidal neurons. J Neurosci 14, 6815–6824.PubMedGoogle Scholar
  143. Mironov SL (1995) Plasmalemmal and intracellular Ca2+ pumps as main determinants of slow Ca2+ buffering in rat hippocampal neurones. Neuropharmacology 34, 1123–1132.PubMedCrossRefGoogle Scholar
  144. Miura M, Yoshioka M, Miyakawa H, Kato H & Ito K-I (1997) Properties of calcium spikes revealed during GABAA receptor antagonism in hippocampal CA1 neurons from guinea pigs. J Neurophysiol 78, 2269–2279.PubMedGoogle Scholar
  145. Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser Ross N, Lisman JE & Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9, 1163–1173.PubMedCrossRefGoogle Scholar
  146. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M & Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.PubMedCrossRefGoogle Scholar
  147. Molinari S, Battini R, Ferrari S, Pozzi L, Killcross AS, Robbins TW, Jouvenceau A, Billard JM, Dutar P, Lamour Y, Baker WA, Cox H & Emson PC (1996) Deficits in memory and hippocampal long-term potentiation in mice with reduced calbindin D28K expression. Proc Natl Acad Sci USA 93, 8028–8033.PubMedCrossRefGoogle Scholar
  148. Mulkey RM, Endo S, Shenolikar S & Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488.PubMedCrossRefGoogle Scholar
  149. Mulkey RM & Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975.PubMedCrossRefGoogle Scholar
  150. Muller W & Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354, 73–76.PubMedCrossRefGoogle Scholar
  151. Murphy DD & Segal M (1997) Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci USA 94, 1482–1487.PubMedCrossRefGoogle Scholar
  152. Neveu D & Zucker RS (1996) Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16, 619–629.PubMedCrossRefGoogle Scholar
  153. Obenaus A, Mody I & Baimbridge KG (1989) Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices. Neurosci Lett 98, 172–178.PubMedCrossRefGoogle Scholar
  154. Oliet SH, Malenka RC & Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982.PubMedCrossRefGoogle Scholar
  155. O’Mara SM, Rowan MJ & Anwyl R (1995) Metabotropic glutamate receptor-induced homosynaptic long-term depression and depotentiation in the dentate gyrus of the rat hippocampus in vitro. Neuropharmacology 34, 983–989.PubMedCrossRefGoogle Scholar
  156. Otani S, Connor JA & Levy WB (1995) Long-term potentiation and evidence for novel synaptic association in CA1 stratum oriens of rat hippocampus. Learning & Memory 2, 101–106.CrossRefGoogle Scholar
  157. Ouanounou A, Zhang L, Tymianski M, Charlton MP, Wallace MC & Carlen PL (1996) Accumulation and extrusion of permeant Ca2+ chelators in attenuation of synaptic transmission at hippocampal CA1 neurons. Neuroscience 75, 99–109.PubMedCrossRefGoogle Scholar
  158. Pananceau M & Gustafsson B (1997) NMDA receptor dependence of the input specific NMDA receptor-independent LTP in the hippocampal CA1 region. Brain Res 752, 255–260.PubMedCrossRefGoogle Scholar
  159. Perkel DJ, Petrozzino JJ, Nicoll RA & Connor JA (1993) The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation. Neuron 11, 817–823.PubMedCrossRefGoogle Scholar
  160. Petrozzino JJ & Connor JA (1994) Dendritic Ca2+ accumulations and metabotropic glutamate receptor activation associated with an N-methyl-D-aspartate receptor-independent long-term potentiation in hippocampal CA1 neurons. Hippocampus 4, 546–558.PubMedCrossRefGoogle Scholar
  161. Petrozzino JJ, Pozzo Miller LD & Connor JA (1995) Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice. Neuron 14, 1223–1231.PubMedCrossRefGoogle Scholar
  162. Pozzo-Miller LD, Petrozzino JJ, Golarai G & Connor JA (1996) Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. J Neurophysiol 76, 554–562.Google Scholar
  163. Pozzo-Miller LD, Pivovarova NB, Leapman RD, Buchanan RA, Reese TS & Andrews BS (1997) Activity-Dependent Calcium Sequestration in Dendrites of Hippocampal Neurons in Brain Slices. J Neurosci 17, 8729–8738.PubMedGoogle Scholar
  164. Regehr WG & Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68, 2156–2170.PubMedCrossRefGoogle Scholar
  165. Regehr WG, Delaney KR & Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14, 523–537.PubMedGoogle Scholar
  166. Regehr WG & Tank DW (1991) The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7, 451–459.PubMedCrossRefGoogle Scholar
  167. Regehr WG & Tank DW (1994) Dendritic calcium dynamics. Curr Opin Neurobiol 4, 373–382.PubMedCrossRefGoogle Scholar
  168. Rettig J, Heinemann C, Ashery U, Sheng ZH, Yokoyama CT, Catterall WA & Neher E (1997) Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 17, 6647–6656.PubMedGoogle Scholar
  169. Reuter H (1996) Diversity and function of presynaptic calcium channels in the brain. Curr Op Neurobiol 6, 331–337.PubMedCrossRefGoogle Scholar
  170. Reuter H & Porzig H (1995) Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15, 1077–1084.PubMedCrossRefGoogle Scholar
  171. Reyes M & Stanton PK (1996) Induction of hippocampal long-term depression requires release of Ca2+ from separate presynaptic and postsynaptic intracellular stores. J Neurosci 16, 5951–5960.PubMedGoogle Scholar
  172. Robitaille R, Adler EM & Charlton MP (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5, 773–779.PubMedCrossRefGoogle Scholar
  173. Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC & Sudhof TC (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670.PubMedCrossRefGoogle Scholar
  174. Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC & Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493.PubMedCrossRefGoogle Scholar
  175. Sabatini BL & Regehr WG (1996) Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172.PubMedCrossRefGoogle Scholar
  176. Sakmann G & Stuart G (1995) Patch-pipette recordings from the soma, dendrites, and axon of neurons in brain slices. In: Patch-pipette recordings from the soma, dendrites, and axon of neurons in brain slices (Sakmann B and Neher E, eds), pp. 199–211. New york and London: Plenum Press.Google Scholar
  177. Salin PA, Malenka RC & Nicoll RA (1996a) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16, 797–803.PubMedCrossRefGoogle Scholar
  178. Salin PA, Scanziani M, Malenka RC & Nicoll RA (1996b) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci USA 93, 13304–13309.PubMedCrossRefGoogle Scholar
  179. Scanziani M, Malenka RC & Nicoll RA (1996) Role of intercellular interactions in heterosynaptic long-term depression. Nature 380, 446–450.PubMedCrossRefGoogle Scholar
  180. Schiegg A, Gerstner W, Ritz R & van Hemmen JL (1995) Intracellular Ca2+ stores can account for the time course of LTP induction: a model of Ca2+ dynamics in dendritic spines. J Neurophysiol 74, 1046–1055.PubMedGoogle Scholar
  181. Schiller J, Schiller Y, Stuart G & Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol (Lond) 505, 605–616.CrossRefGoogle Scholar
  182. Schurmans S, Schiffmann SN, Gurden H, Lemaire M, Lipp HP, Schwam V, Pochet R, Imperato A, Bohme GA & Parmentier M (1997) Impaired long-term potentiation induction in dentate gyrus of calretinin-deficient mice. Proc Natl Acad Sci USA 94, 10415–10420.PubMedCrossRefGoogle Scholar
  183. Seeburg PH (1993) The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 16, 359–365.PubMedCrossRefGoogle Scholar
  184. Segal M (1995) Fast imaging of [Ca]i reveals presence of voltage-gated calcium channels in dendritic spines of cultured hippocampal neurons. J Neurophysiol 74, 484–488.PubMedGoogle Scholar
  185. Segal M & Manor D (1992) Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J Physiol (Lond) 448, 655–676.Google Scholar
  186. Selig DK, Hjelmstad GO, Herron C, Nicoll RA & Malenka RC (1995a) Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15, 417–426.PubMedCrossRefGoogle Scholar
  187. Selig DK, Lee HK, Bear MF & Malenka RC (1995b) Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. J Neurophysiol 74, 1075–1082.PubMedGoogle Scholar
  188. Seymour Laurent KJ & Barish ME (1995) Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine-and caffeine-induced calcium release in cultured mouse hippocampal neurons. J Neurosci 15, 2592–2608.PubMedGoogle Scholar
  189. Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP & Snyder SH (1993) Differential immunohisto-chemical localization of inositol 1,4,5-trisphosphate-and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13, 3051–3063.PubMedGoogle Scholar
  190. Sheng ZH, Rettig J, Cook T & Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454.PubMedCrossRefGoogle Scholar
  191. Sheng ZH, Yokoyama CT & Catterall WA (1997) Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 94, 5405–5410.PubMedCrossRefGoogle Scholar
  192. Silva AJ, Rosahl TW, Chapman PF, Marowitz Z, Friedman E, Frankland PW, Cestari V, Cioffi D, Sudhof TC & Bourtchuladze R (1996) Impaired learning in mice with abnormal short-lived plasticity. Curr Biol 6, 1509–1518.PubMedCrossRefGoogle Scholar
  193. Spacek J & Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17, 190–203.PubMedGoogle Scholar
  194. Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby Ø, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SGN, Eilers J, Konnerth A, Li J, McNamara JO & See-burg PH (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289.PubMedCrossRefGoogle Scholar
  195. Stanley EF (1997) The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci 20, 404–409.PubMedCrossRefGoogle Scholar
  196. Stanton PK & Sarvey JM (1984) Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci 4, 3080–3088.PubMedGoogle Scholar
  197. Steward O & Banker GA (1992) Getting the message from the gene to the synapse: sorting and intracellular transport of RNA in neurons. Trends Neurosci 15, 180–186.PubMedCrossRefGoogle Scholar
  198. Steward O & Falk PM (1991) Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyms. J Comp Neurol 314, 545–557.PubMedCrossRefGoogle Scholar
  199. Sudhof TC (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653.PubMedCrossRefGoogle Scholar
  200. Swandulla D, Hans M, Zipser K & Augustine GJ (1991) Role of residual calcium in synaptic depression and post-tetanic potentiation: fast and slow calcium signaling in nerve terminals. Neuron 7, 915–926.PubMedCrossRefGoogle Scholar
  201. Tang Y & Zucker RS (1997) Mitochondrial involvement in post-tetanic potentiation of synaptic transmission. Neuron 18, 483–491.PubMedCrossRefGoogle Scholar
  202. Taube JS & Schwartzkroin PA (1986) Ineffectiveness of organic calcium channel blockers in antagonizing long-term potentiation. Brain Res 379, 275–285.PubMedCrossRefGoogle Scholar
  203. Tekkok S & Krnjevic K (1996) Calcium dependence of LTP induced by 2-deoxyglucose in CA1 neurons. J Neurophysiol 76, 2343–2352.PubMedGoogle Scholar
  204. Thomas MJ, Moody TD, Makhinson M & O’Dell TJ (1996) Activity-dependent beta-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482.PubMedCrossRefGoogle Scholar
  205. Thomas MJ & O’Dell TJ (1995) The molecular switch hypothesis fails to explain the inconsistent effects of the metabotropic glutamate receptor antagonist MCPG on long-term potentiation. Brain Res 695, 45–52.PubMedCrossRefGoogle Scholar
  206. Tsien RW, Lipscombe D, Madison DV, Bley KR & Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11, 431–438.PubMedCrossRefGoogle Scholar
  207. Van der Kloot W (1994) Facilitation of transmission at the frog neuromuscular junction at O degrees C is not maximal at time zero. J Neurosci 14, 5722–5724.PubMedGoogle Scholar
  208. Wang SS & Augustine GJ (1995) Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 15, 755–760.PubMedCrossRefGoogle Scholar
  209. Wang Y, Rowan MJ & Anwyl R (1997a) Induction of LTD in the dentate gyrus in vitro is NMDA receptor independent, but dependent on Ca2+ influx via low-voltage-activated Ca2+ channels and release of Ca2+ from intracellular stores. J Neurophysiol 77, 812–825.PubMedGoogle Scholar
  210. Wang Y, Rowan MJ & Anwyl R (1997b) LTP induction dependent on activation of Ni2+-sensitive voltage-gated calcium channels, but not NMDA receptors, in the rat dentate gyrus in vitro. J Neurophysiol 78, 2574–2581.PubMedGoogle Scholar
  211. Wang Y, Wu J, Rowan MJ & Anwyl R (1997c) Conditions for the induction of long-term potentiation and long-term depression by conjunctive pairing in the dentate gyrus in vitro. J Neurophysiol 78, 2569–2573.PubMedGoogle Scholar
  212. Westenbroek RE, Ahlijanian MK & Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347, 281–284.PubMedCrossRefGoogle Scholar
  213. Wheeler DB, Randall A, Sather WA & Tsien RW (1995) Neuronal calcium channels encoded by the alpha 1A subunit and their contribution to excitatory synaptic transmission in the CNS. Prog Brain Res 105, 65–78.PubMedCrossRefGoogle Scholar
  214. Wigström H & Gustafsson B (1985) On long-lasting potentiation in the hippocampus: a proposed mechanism for its dependence on coincident pre-and postsynaptic activity. Acta Physiol Scand 123, 519–522.PubMedCrossRefGoogle Scholar
  215. Wigström H & Gustafsson B (1986) Postsynaptic control of hippocampal long-term potentiation. J Physiol (Lond) (Paris) 81, 228–236.Google Scholar
  216. Wilson MA & Tonegawa S (1997) Synaptic plasticity, place cells and spatial memory: study with second generation knockouts. Trends Neurosci 20, 102–106.PubMedCrossRefGoogle Scholar
  217. Xiao MY, Karpefors M, Gustafsson B & Wigstrom H (1995) On the linkage between AMPA and NMDA receptor-mediated EPSPs in homosynaptic long-term depression in the hippocampal CA1 region of young rats. J Neurosci 15, 4496–4506.PubMedGoogle Scholar
  218. Yoshioka N & Sakurai M (1995) Post-synaptic depolarization in induction of long-term potentiation in the CA1 hippocampus. Neuroreport 6, 333–336.PubMedCrossRefGoogle Scholar
  219. Yuste R & Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684.PubMedCrossRefGoogle Scholar
  220. Zador A, Koch C & Brown TH (1990) Biophysical model of a Hebbian synapse. Proc Natl Acad Sci USA 87, 6718–6722.PubMedCrossRefGoogle Scholar
  221. Ziff EB (1997) Enlightening the postsynaptic density. Neuron 19, 1163–1174.PubMedCrossRefGoogle Scholar
  222. Zucker RS (1996) Exocytosis: a molecular and physiological perspective. Neuron 17, 1049–1055.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Eric Hanse
    • 1
  • Arthur Konnerth
    • 2
  1. 1.Department of Physiology and PharmacolgyGöteborg UniversityGöteborgSweden
  2. 2.I. Physiologisches InstitutUniversität des SaarlandesHomburg/SaarGermany

Personalised recommendations