Skip to main content
  • 94 Accesses

Abstract

Substances destined for export from eukaryotic cells are packed into membrane vesicles (or granules). Exocytosis is the process of fusion of these vesicles with the plasma membrane whereby soluble components from the vesicle interior are released outside and the membrane of the vesicle is integrated into the plasma membrane. Thus, exocytosis acts not only as an outwardly directed activity of the cell, but also fulfils an important role in the intracellular exchange of membranes. Exocytosis increases the area of the plasma membrane. The opposite process, endocytosis involves a membrane invagination and fission of a vesicle into the cell with a consequent decrease in the plasma membrane area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aballay A, Arenas GN & Mayorga LS (1996) Calcium-and zinc-binding proteins in intracellular transport. Biocell 20, 339–342.

    PubMed  CAS  Google Scholar 

  • Alder J, Lu B, Valtorta F, Greengard P & Poo MM (1992a) Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin. Science 257, 657–661.

    Article  PubMed  CAS  Google Scholar 

  • Alder J, Xie ZP, Valtorta F, Greengard P & Poo M (1992b) Antibodies to synaptophysin interfere with transmitter secretion at neuromuscular synapses. Neuron 9, 759–768.

    Article  PubMed  CAS  Google Scholar 

  • Alder J, Kanki H, Valtorta F, Greengard P & Poo MM (1995) Overexpression of synaptophysin enhances neurotransmitter secretion at Xenopus neuromuscular synapses. J Neurosci 15, 511–519.

    PubMed  CAS  Google Scholar 

  • Allbritton NL, Meyer T & Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  • Almers W (1990) Exocytosis. Ann Rev Physiol 52, 607–624.

    Article  CAS  Google Scholar 

  • Aimers W & Tse FW (1990) Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? Neuron 4, 813–818.

    Article  Google Scholar 

  • Alvarez de Toledo G & Fernandez JM (1990) Patch-clamp measurements reveal multimodal distribution of granule sizes in rat mast cells. J Cell Biol 110, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Ann K, Kowalchyk JA, Loyet KM & Martin TF (1997) Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem 272, 19637–19640.

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Adams ME & Fox AP (1994) Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Henley JR, McNiven MA & Palfrey HC (1995) Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci USA 92, 8328–8332.

    Article  PubMed  CAS  Google Scholar 

  • Artalejo CR, Elhamdani A & Palfrey HC (1996) Calmodulin is the divalent cation receptor for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron 16, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Austin CD & Shields D (1996) Prosomatostatin processing in permeabilized cells. Calcium is required for prohormone cleavage but not formation of nascent secretory vesicles. J Biol Chem 271, 1194–1199.

    Article  PubMed  CAS  Google Scholar 

  • Balch WE (1990) Small GTP-binding proteins in vesicular transport. Trends Biochem Sci 15, 473–477.

    Article  PubMed  Google Scholar 

  • Banerjee A, Kowalchyk JA, DasGupta BR & Martin TFJ (1996) SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis. J Biol Chem 271, 20227–20230.

    Article  PubMed  CAS  Google Scholar 

  • Barton GJ, Newman RH, Freemont PS & Crumpton MJ (1991) Amino acid sequence analysis of the annexin super-gene family of proteins. EurJ Biochem 198, 749–760.

    Article  CAS  Google Scholar 

  • Baumert M, Maycox PR, Navone F, De Camilli P & Jahn R (1989) Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain. EMBO J 8, 379–384.

    PubMed  CAS  Google Scholar 

  • Beckers CJ, Plutner H, Davidson HW & Balch WE (1990) Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi. J Biol Chem 265, 18298–18310.

    PubMed  CAS  Google Scholar 

  • Beckers CJ & Balch WE (1989) Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J Cell Biol 108, 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  • Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P & Czernik AJ (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359, 417–420.

    Article  PubMed  CAS  Google Scholar 

  • Benfenati F & Valtorta F (1995) Neuroexocytosis. Curr Top Microbiol Immunol 195, 195–219.

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Calakos N & Serieller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Bental M, Lelkes PI, Scholma J, Hoekstra D & Wilschut J (1984) Ca2+-independent, protein-mediated fusion of chromaffm granule ghosts with liposomes. Biochim Biophys Acta 774, 296–300.

    Article  PubMed  CAS  Google Scholar 

  • Bentz J, Ellens H, Lai MZ & Szoka FC, Jr (1985) On the correlation between HII phase and the contact-induced destabilization of phosphatidylethanolamine-containing membranes. Proc Natl Acad Sci USA 82, 5742–5745.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol (Lond) 499, 291–306.

    CAS  Google Scholar 

  • Betz WJ & Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Bi GQ, Morris RL, Liao G, Alderton JM, Scholey JM & Steinhardt RA (1997) Kinesin-and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis. J Cell Biol 138, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  • Bittner MA & Holz RW (1992) A temperature-sensitive step in exocytosis. J Biol Chem 267, 16226–16229.

    PubMed  CAS  Google Scholar 

  • Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Südhof TC, Niemann H & Jahn R (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365, 160–163.

    Article  PubMed  CAS  Google Scholar 

  • Blatchford DR, Hendry KA, Turner MD, Burgoyne RD & Wilde CJ (1995) Vectorial secretion by constitutive and regulated secretory pathways in mammary epithelial cells. Epithelial Cell Biol 4, 8–16.

    PubMed  CAS  Google Scholar 

  • Bleackley RC, Atkinson EA, Burns K & Michalak M (1995) Calreticulin: A granule-protein by default or design? Curr Top Microbiol Immunol 198, 145–159.

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Bell GI & Seino S (1995) Inositol 1,4,5-trisphosphate receptors, secretory granules and secretion in endocrine and neuroendocrine cells. Trends Neurosci 18, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Bommert K, Charlton MP, DeBello WM, Chin GJ, Betz H & Augustine GJ (1993) Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature 363, 163–165.

    Article  PubMed  CAS  Google Scholar 

  • Bootman M & Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83, 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Bousted CM, Geisow MJ & Walker JH (1988) Isolation and characterization of two novel calcium-dependent phospholipid-binding proteins from bovine lung. FEBS Lett 233, 233–238.

    Article  Google Scholar 

  • Breckenridge LJ & Almers W (1987) Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814–817.

    Article  PubMed  CAS  Google Scholar 

  • Brose N, Petrenko AG, Südhof TC & Jahn R (1992) Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD & Morgan A (1993) Regulated exocytosis. Biochem J 293, 305–316.

    PubMed  CAS  Google Scholar 

  • Burgoyne RD & Morgan A (1995) Ca2+ and secretory-vesicle dynamics. Trends Neurosci 18, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Calakos N & Scheller RH (1994) Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle. J Biol Chem 269, 24534–24537.

    PubMed  CAS  Google Scholar 

  • Canaff L, Brechler V, Reudelhuber TL & Thibault G (1996) Secretory granule targeting of atrial natriuretic peptide correlates with its calcium-mediated aggregation. Proc Natl Acad Sci USA 93, 9483–9487.

    Article  PubMed  CAS  Google Scholar 

  • Ceccaldi PE, Grohovac F, Benfenati F, Chieregatti E, Greengard P & Valtorta F (1995) Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. J Cell Biol 128, 905–912.

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli B & Hurlbut WP (1980) Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction. J Cell Biol 87, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Chanat E & Huttner WB (1991) Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Cell Biol 115, 1505–1519.

    Article  PubMed  CAS  Google Scholar 

  • Chandler DE, Bennett JP & Gomperts B (1982) Freeze-fractue studies of chemotactic peptide-induced exocytosis in neutrophils: evidence for two patterns of secretory granule fusion. J Ultrastruct Res 82, 221–232.

    Article  Google Scholar 

  • Chapman ER, Hanson PI, An S & Jahn R (1995) Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem 270, 23667–23671.

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER & Jahn R (1994) Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J Biol Chem 269, 5735–5741.

    PubMed  CAS  Google Scholar 

  • Chow RH, von Rüden L & Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of secretory events in adrenal chromaffin cells. Nature 356, 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Chow RH, Klingauf J & Neher E (1994) Time course of Ca2+ concentration triggering exocytosis in neuroendo-crine cells. Proc Natl Acad Sci USA 91, 12765–12769.

    Article  PubMed  CAS  Google Scholar 

  • Chow RH, Klingauf J, Heinemann C, Zucker RS & Neher E (1996) Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Cockcroft S, Howell TW & Gomperts BD (1987) Two G-proteins act in series to control stimulus-secretion coupling in mast cells: Use of neomycin to distinguish between G-proteins controlling polyphosphoinositide phosphodiesterase and exocytosis. J Cell Biol 105, 2745–2750.

    Article  PubMed  CAS  Google Scholar 

  • Colomer V, Kicska GA & Rindler MJ (1996) Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem 271, 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE, Pazoles CJ & Pollard HB (1978) Identification and purification of an adrenal medullary protein (synexin) that causes calcium-dependent aggregation of isolated chromafifin granules. J Biol Chem 253, 2858–2866.

    PubMed  CAS  Google Scholar 

  • Creutz CE, Pazoles CJ & Pollard HB (1979) Self-association of synexin in the presence of calcium. Correlation with synexin-induced membrane fusion and examination of the structure of synexin aggregates. J Biol Chem 254, 553–558.

    PubMed  CAS  Google Scholar 

  • Creutz CE (1992) The annexins and exocytosis. Science 258, 924–931.

    Article  PubMed  CAS  Google Scholar 

  • Creutz CE & Sterner DC (1983) Calcium dependence of the binding of synexin to isolated chromaffin granules. Biochem Biophys Res Comm 114, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Davletov BA & Südhof TC (1993) A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem 268, 26386–26390.

    PubMed  CAS  Google Scholar 

  • DeBello WM, O’Connor V, Dresbach T, Whiteheart SW, Wang SS, Schweizer FE, Betz H, Rothman JE & Augustine GJ (1995) SNAP-mediated protein-protein interactions essential for neurotransmitter release. Nature 373, 626–630.

    Article  PubMed  CAS  Google Scholar 

  • Desnos C, Clift-O’Grady L & Kelly RB (1995) Biogenesis of synaptic vesicles in vitro. J Cell Biol 130, 1041–1049.

    Article  PubMed  CAS  Google Scholar 

  • Di Virgilio F, Salviati G & Pozzan T (1986) Is a guanine nucleotide-binding protein involved in excitation-contraction coupling in skeletal muscle? EMBO J 5, 259–262.

    PubMed  Google Scholar 

  • Ding WG & Gromada J (1997) Protein kinase A-dependent stimulation of exocytosis in mouse pancreatic beta-cells by glucose-dependent insulinotropic polypeptide. Diabetes 46, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Drust D & Creutz CE (1988) Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331, 88–91.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak AM, Galli SJ, Morgan E, Galli AS, Hammond ME & Dvorak HF (1981) Anaphylactic degranulation of guinea pig basophilic leukocytes. Lab Invest 44, 174–181.

    PubMed  CAS  Google Scholar 

  • Edelmann L, Hanson PI, Chapman ER & Jahn R (1995) Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine. EMBO J 14, 224–231.

    PubMed  CAS  Google Scholar 

  • Ekerdt R & Papahadjopoulos D (1982) Intermembrane contact affects calcium binding to phospholipid vesicles. Proc Natl Acad Sci USA 79, 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • el-Far O, Charvin N, Leveque C, Martin-Moutot N, Takahashi M & Seagar MJ (1995) Interaction of a synaptobrevin (VAMP)-syntaxin complex with presynaptic calcium channels. FEBS Lett 361, 101–105.

    Article  PubMed  Google Scholar 

  • Eliasson L, Renström E, Ammala C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gabel J, Gromada J, Larsson O, Lindstrom P, Rhodes CJ & Rorsman P (1996) PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells. Science 271, 813–815.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Chacon R & Alvarez de Toledo G (1995) Cytosolic calcium facilitates release of secretory products after exocytotic vesicle fusion. FEBS Lett 363, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Fesce R, Grohovac F, Valtorta F & Meldolesi J (1994) Neurotransmitter release: fusion or “kiss-and-run”? Trends in Cell Biology 4, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler K, Lafont F, Parton RG & Simons K (1995) Annexin XIIIb: A novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J Cell Biol 128, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Fischer von Mollard G, Mignery GA, Baumert M, Perin MS, Hanson TJ, Burger PM & Jahn R (1990) rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sci USA 87, 1988–1992.

    Article  PubMed  CAS  Google Scholar 

  • Fischer von Mollard G, Südhof TC & Jahn R (1991) A small GTP-binding protein dissociates from synaptic vesicles during exocytosis. Nature 349, 79–81.

    Article  PubMed  CAS  Google Scholar 

  • Floor E & Leeman SE (1985) Evidence that large synaptic vesicles containing substance P and small synaptic vesicles have a surface antigen in common in rat. Neurosci Lett 60, 231–237.

    Article  PubMed  CAS  Google Scholar 

  • Fournier S & Trifaro JM (1988) A similar calmodulin-binding protein expressed in chromaffin, synaptic, and neurohypophyseal secretory vesicles. J Neurochem 50, 21–31.

    Google Scholar 

  • Fujita H, Kurihara H & Miyagawa J (1983) Ultrastructural aspects of the effect of calcium ionophore A23187 on incubated anterior piuitary cells of rats. Cell Tissue Res 229, 1129–1136.

    Article  Google Scholar 

  • Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE & Südhof TC (1994) The role of Rab3 A in neurotransmitter release. Nature 369, 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Goda Y, Stevens CF & Südhof TC (1997) The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387, 810–814.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV & Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ri-bose-mediated release of Ca2+ from single isolated pancreatic zymogen granules. Cell 84, 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ & Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785.

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M & Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescent properties. J Biol Chem 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  • Gundersen CB & Umbach JA (1992) Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron 9, 527–537.

    Article  PubMed  CAS  Google Scholar 

  • Hammel I, Lagunoff D, Bauza M & Chi E (1983) Periodic, multimodal distribution of granule volumes in mast cells. Cell Tissue Res 228, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Hammel I, Lagunoff D & Krueger PG (1988) Studies on the growth of mast cells in rats. Lab Invest 59, 549–554.

    PubMed  CAS  Google Scholar 

  • Hartmann J, Scepek S & Lindau M (1995) Regulation of granule size in human and horse eosinophils by number of fusion events among unit granules. J Physiol (Lond) 483, 201–209.

    CAS  Google Scholar 

  • Hartmann J, Scepek S & Lindau M (1998) Differential regulation of exocytotic fusion and granule-granule fusion in eosinophils. J Physiol (Lond) 506P, 72P–73P.

    Google Scholar 

  • Hartmann J & Lindau M (1995) A novel Ca2+-dependent step in exocytosis subsequent to vesicle fusion. FEBS Lett 363, 217–220.

    Article  PubMed  CAS  Google Scholar 

  • Haruta T, Takami N, Ohmura M, Misumi Y & Ikehara Y (1997) Ca2+-dependent interaction of the growth-associated protein GAP-43 with the synaptic core complex. Biochem J 325, 455–463.

    PubMed  CAS  Google Scholar 

  • Hata Y, Davletov B, Petrenko AG, Jahn R & Südhof TC (1993) Interaction of synaptotagmin with the cytoplasmic domains of neurexins. Neuron 10, 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA & Martin TF (1995) ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374, 173–177.

    Article  PubMed  CAS  Google Scholar 

  • Hay JC & Martin TF (1992) Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol 119, 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Südhof TC & Niemann H (1994) Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J 13, 5051–5061.

    PubMed  CAS  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E & Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515.

    Article  PubMed  CAS  Google Scholar 

  • Heinemann C, Chow RH, Neher E & Zucker RS (1994) Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J 67, 2546–2557.

    Article  PubMed  CAS  Google Scholar 

  • Heldman E, Barg J, Vogel Z, Pollard HB & Zimlichman R (1996) Correlation between secretagogue-induced Ca2+ influx, intracellular Ca2+ levels and secretion of catecholamines in cultured adrenal chromaffin cells. Neurochem Int 28, 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Henkel AW & Betz WJ (1995) Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals. J Neurosci 15, 8246–8258.

    PubMed  CAS  Google Scholar 

  • Herskovits JS, Burgess CC, Obar RA & Vallee RB (1993) Effects of mutant rat dynamin on endocytosis. J Cell Biol 122, 565–578.

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw JE & Schmid SL (1995) Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192.

    Article  PubMed  CAS  Google Scholar 

  • Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ & Tsien RY (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239, 57–61.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Sobue K, Kanda K, Harada A & Yorifuji H (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 108, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Holz RW, Brondyk WH, Senter RA, Kuizon L & Macara IG (1994) Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffm cells. J Biol Chem 269, 10229–10234.

    PubMed  CAS  Google Scholar 

  • Hong RM, Mori H, Fukui T, Moriyama Y, Futai M, Yamamoto A, Tashiro Y & Tagaya M (1994) Association of N-ethylmaleimide-sensitive factor with synaptic vesicles. FEBS Lett 350, 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Howell TW, Cockroft S & Gomperts BD (1987) Essential synergy between Ca2+ and guanine nucleotides in exo-cytotic secretion from permeabilized rat mast cells. J Cell Biol 105, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Romisch J & Paques EP (1990) The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J 9, 3867–3874.

    PubMed  CAS  Google Scholar 

  • Hunt JM, Bommert K, Charlton MP, Kistner A, Habermann E, Augustine GJ & Betz H (1994) A post-docking role for synaptobrevin in synaptic vesicle fusion. Neuron 12, 1269–1279.

    Article  PubMed  CAS  Google Scholar 

  • Ikonen E, Tagaya M, Ullrich O, Montecucco C & Simons K (1995) Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81, 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Obata A & Akagawa K (1992) Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem 267, 10613–10619.

    PubMed  CAS  Google Scholar 

  • Jahn R, Schiebler W, Ouimet C & Greengard P (1985) A 38.000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci USA 82, 4137–4141.

    Article  PubMed  CAS  Google Scholar 

  • Jahn R & Südhof TC (1994) Synaptic vesicles and exocytosis. Annu Rev Neurosci 17, 219–246.

    Article  PubMed  CAS  Google Scholar 

  • Johannes L, Lledo PM, Roa M, Vincent JD, Henry JP & Darchen F (1994) The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J 13, 2029–2037.

    PubMed  CAS  Google Scholar 

  • Johnson RG, Carty SE & Scarpa A (1980) The internal pH of mast cell granules. FEBS Lett 120, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Johnston PA, Jahn R & Südhof TC (1989) Transmembrane topography and evolutionary conservation of synapto-physin. J Biol Chem 264, 1268–1273.

    PubMed  CAS  Google Scholar 

  • Johnston PA & Südhof TC (1990) The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization. J Biol Chem 265, 8869–8873.

    PubMed  CAS  Google Scholar 

  • Kato M, Sasaki T, Imazumi K, Takahashi K, Araki K, Shirataki H, Matsuura Y, Ishida A, Fujisawa H & Takai Y (1994) Phosphorylation of Rabphilin-3A by calmodulin-dependent protein kinase II. Biochem Biophys Res Comm 205, 1776–1784.

    Article  PubMed  CAS  Google Scholar 

  • Kelly RB (1993) Storage and release of neurotransmitters. Cell 72, 43–53.

    Article  PubMed  Google Scholar 

  • Klingauf J & Neher E (1997) Modeling buffered Ca2+ diffusion near the membrane: Implications for secretion in neuroendocrine cells. Biophys J 72, 674–690.

    Article  PubMed  CAS  Google Scholar 

  • Koenig JH, Yamaoka K & Ikeda K (1993) Calcium-induced translocation of synaptic vesicles to the active site. J Neurosci 13, 2313–2322.

    PubMed  CAS  Google Scholar 

  • Koenig JH & Ikeda K (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval. J Neurosci 9, 3844–3860.

    PubMed  CAS  Google Scholar 

  • Koter M, de-Kruijff B & van-Deenen LL (1978) Calcium-induced aggregation and fusion of mixed phosphatidyl-choline-phosphatidic acid vesicles as studied by 31P NMR. Biochim Biophys Acta 514, 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes H-H & Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18, 857–863.

    Article  PubMed  CAS  Google Scholar 

  • Leveque C, Hoshino T, David P, Shoji-Kasai Y, Leys K, Omori A, Lang B, el-Far O, Sato K, Martin-Moutot N & et al. (1992) The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthénic syndrome antigen. Proc Natl Acad Sci USA 89, 3625–3629.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N & Südhof TC (1995) Ca2+-dependent and-independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599.

    Article  PubMed  CAS  Google Scholar 

  • Lin HC, Südhof TC & Anderson RGW (1992) Annexin VI is required for budding of clathrin-coated pits. Cell 70, 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Lindau M, Nüsse O, Bennett J & Cromwell O (1993) The membrane fusion events in degranulating guinea pig eosinophils. J Cell Sci 104, 203–209.

    PubMed  CAS  Google Scholar 

  • Lindau M, Hartmann J & Scepek S (1994) Three distinct fusion processes during eosinophil degranukation. Ann. NY Acad. Sci 710, 232–247.

    Article  PubMed  CAS  Google Scholar 

  • Lindau M & Almers W (1995) Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. Curr Opin Cell Biol 7, 509–517.

    Article  PubMed  CAS  Google Scholar 

  • Littleton JT, Stern M, Schulze K, Perin MS & Bellen HJ (1993) Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca2+-activated neurotransmitter release. Cell 74, 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  • Littleton JT & Bellen HJ (1995) Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca2+-depend-ent manner. Trends Neurosci 18, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Liu JP, Powell KA, Südhof TC & Robinson PJ (1994) Dynamin I is a Ca2+-sensitive phospholipid-binding protein with very high affinity for protein kinase C. J Biol Chem 269, 21043–21050.

    PubMed  CAS  Google Scholar 

  • Liu JP, Zhang QX, Baldwin G & Robinson PJ (1996) Calcium binds dynamin I and inhibits its GTPase activity. J Neurochem 66, 2074–2081.

    Article  PubMed  CAS  Google Scholar 

  • Lledo PM, Vernier P, Vincent JD, Mason WT & Zorec R (1993) Inhibition of Rab3B expression attenuates Ca2+-dependent exocytosis in rat anterior pituitary cells. Nature 364, 540–544.

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M & Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Lollike K, Borregaard N & Lindau M (1995) The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J Cell Biol 129, 99–104.

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Nakata T, Noda Y, Sato-Yoshitake R & Hirokawa N (1992) Interaction of dynamin with microtubules: its structure and GTPase activity investigated by using highly purified dynamin. Mol Biol Cell 3, 1181–1194.

    PubMed  CAS  Google Scholar 

  • Martin TF & Kowalchyk JA (1997) Docked secretory vesicles undergo Ca2+-activated exocytosis in a cell-free system. J Biol Chem 272, 14447–14453.

    Article  PubMed  CAS  Google Scholar 

  • Mastrogiacomo A, Parsons SM, Zampighi GA, Jenden DJ, Umbach JA & Gundersen CB (1993) Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science 259, 780–785.

    Article  Google Scholar 

  • Mastrogiacomo A, Evans CJ & Gundersen CB (1994) Antipeptide antibodies against a Torpedo cysteine-string protein. J Neurochem 62, 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Haimann C, Torri-Tarelli F, Polak JM, Ceccarelli B & De Camilli P (1988) Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc Natl Acad Sci USA 85, 7366–7370.

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Takei K, Cameron R, Hurlbut P, Johnston PA, Südhof TC, Jahn R & De-Camilli P (1991) Association of Rab3A with synaptic vesicles at late stages of the secretory pathway. J Cell Biol 115, 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Takei K, Perin MS, Südhof TC & De Camilli P (1992) Exo-endocytotic recycling of synaptic vesicles. in developing processes of cultured hippocampal neurons. J Cell Biol 117, 849–861.

    Article  PubMed  CAS  Google Scholar 

  • Matthews G (1996) Neurotransmitter release. Annu Rev Neurosci 19, 219–233.

    Article  PubMed  CAS  Google Scholar 

  • McKiernan CJ, Stabila PF & Macara IG (1996) Role of the Rab3A-binding domain in targeting of rabphilin-3Ato vesicle membranes of PC12 cells. Mol Cell Biol 16, 4985–4995.

    PubMed  CAS  Google Scholar 

  • McLaughlin S, Mulrine N, Gresalfi T, Vaio G & McLaughlin A (1981) Adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J Gen Physiol 77, 445–473.

    Article  PubMed  CAS  Google Scholar 

  • Mennerick S & Matthews G (1996) Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 17, 1241–1249.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi A, Yano Y, Hamaguchi H, Yanagida H, Ide C, Zahraoui A, Shirataki H, Sasaki T & Takai Y (1994) Localization of Rabphilin-3A on the synaptic vesicle. Biochem Biophys Res Comm 202, 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  • Momayezi M, Lumpert CJ, Kersken H, Gras U, Plattner H, Krinks MH & Klee CB (1987) Exocytosis induction in Paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion. J Cell Biol 105, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Robinson IM, Escobar AL, Vergara JL & Fernandez JM (1994) Pulsed laser imaging of rapid Ca2+ gradients in excitable cells. Biophys J 67, 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Monck JR, Oberhauser AF & Fernandez JM (1995) The exocytotic fusion pore interface: a model of the site of neurotransmitter release. Molecular Membrane Biology 12, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Monck JR & Fernandez JM (1994) The exocytotic fusion pore and neurotransmitter release. Neuron 12, 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Morgan A, Wilkinson M & Burgoyne RD (1993) Identification of Exo as the catalytic subunit of protein kinase A reveals a role for cyclic AMP in Ca2+-dependent exocytosis in chromaffm cells. EMBO J 12, 3747–3752.

    PubMed  CAS  Google Scholar 

  • Morgan A (1995) Exocytosis. Essays in Biochemistry 30, 77–95.

    PubMed  CAS  Google Scholar 

  • Morgenstern E, Neumann K & Patscheke H (1987) The exocytosis of human blood platelets. A fast freezing and freeze-substitution analysis. Eur J Cell Biol 43, 273–282.

    PubMed  CAS  Google Scholar 

  • Nalefski EA, Slazas MM & Falke JJ (1997) Ca2+-signaling cycle of a membrane-docking C2 domain. Biochemistry 36, 12011–12018.

    Article  PubMed  CAS  Google Scholar 

  • Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P & De Camilli P (1986) Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103, 2511–2527.

    Article  PubMed  CAS  Google Scholar 

  • Neher E (1988) The influence of intracellular calcium concentration on degranulation of dialyzed mast cells from rat peritoneum. J Physiol (Lond) 395, 193–214.

    CAS  Google Scholar 

  • Neher E (1993) Secretion without full fusion. Nature 363, 497–498.

    Article  PubMed  CAS  Google Scholar 

  • Neher E & Almers W (1986) Fast calcium transients in rat peritoneal mast cells are not sufficient to trigger exocytosis. EMBO J 5, 51–53.

    PubMed  CAS  Google Scholar 

  • Neher E & Zucker RS (1993) Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron 10, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Suplick GR & Brown JM (1994) Calcineurin-mediated protein dephosphorylation in brain nerve terminals regulates the release of glutamate. J Biol Chem 269, 23817–23823.

    PubMed  CAS  Google Scholar 

  • Nonet ML, Grundahl K, Meyer BJ & Rand JB (1993) Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291–1305.

    Article  PubMed  CAS  Google Scholar 

  • Nordmann JJ & Stuenkel EL (1991) Ca2+-independent regulation of neurosecretion by intracellular Na+. FEBS Lett 292, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Numata S, Shirataki H, Hagi S, Yamamoto T & Takai Y (1994) Phosphorylation of Rabphilin-3A, a putative target protein for Rab3A, by cyclic AMP-dependent protein kinase. Biochem Biophys Res Comm 203, 1927–1934.

    Article  PubMed  CAS  Google Scholar 

  • Nüsse O & Lindau M (1988) The dynamics of exocytosis in human neutrophils. J Cell Biol 107, 2117–2123.

    Article  PubMed  Google Scholar 

  • Nüsse O & Lindau M (1990) GTPγ S-induced calcium transients and exocytosis in human neutrophils. Biosci Rep 10, 93–103.

    Article  PubMed  Google Scholar 

  • O’Connor V, Shamotienko O, Grishin E & Betz H (1993) On the structure of the’ synaptosecretosome’. Evidence for a neurexin/synaptotagmin/syntaxin/Ca2+ channel complex. FEBS Lett 326, 255–260.

    Article  PubMed  Google Scholar 

  • O’Sullivan AJ, Cheek TR, Moreton RB, Berridge MJ & Burgoyne RD (1989) Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J 8, 401–411.

    PubMed  Google Scholar 

  • Obar RA, Shpetner HS & Vallee RB (1991) Dynamin: a microtubule-associated GTP-binding protein. J Cell Sci Suppl 14, 143–145.

    Article  PubMed  CAS  Google Scholar 

  • Obendorf D, Schwarzenbrunner U, Fischer-Colbrie R, Laslop A & Winkler A (1988) In adrenal medulla synapto-physin (protein p38) is present in chromaffin granules and in a special vesicle population. J Neurochem 51, 1573–1580.

    Article  PubMed  CAS  Google Scholar 

  • Okano K, Monck JR & Fernandez JM (1993) GTPγ S stimulates exocytosis in patch-clamped rat melanotrophs. Neuron 11, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Parsons TD, Coorssen JR, Horstmann H, Lee AK, Tse FW & Almers W (1995) The last seconds in the life of a secretory vesicle. Cold Spring Harbor Symposia on Quantitative Biology LX, 389–396.

    Article  Google Scholar 

  • Peng YY & Zucker RS (1993) Release of LHRH is linearly related to the time integral of presynaptic Ca2+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10, 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Penner R, Neher E & Dreyer F (1986) Intracellularly injected tetanus toxin inhibits exocytosis in bovine adrenal chromaffin cells. Nature 324, 76–78.

    Article  PubMed  CAS  Google Scholar 

  • Penner R & Neher E (1988) Secretory responses of rat peritoneal mast cells to high intracellular calcium. FEBS Lett 226, 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Perin MS, Fried VA, Mignery GA, Jahn R & Südhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Perin MS (1994) The COOH terminus of synaptotagmin mediates interaction with the neurexins. J Biol Chem 269, 8576–8581.

    PubMed  CAS  Google Scholar 

  • Perney TM, Hirning LD, Leeman SE & Miller RJ (1986) Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci USA 83, 6656–6659.

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (1996) Can Ca2+ be released from secretory granules or synaptic vesicles? Trends Neurosci 19, 411–413.

    PubMed  CAS  Google Scholar 

  • Pind SN, Nuoffer C, McCaffery JM, Plutner H, Davidson HW, Farquhar MG & Balch WE (1994) Rabl and Ca2+ are required for the fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport. J Cell Biol 125, 239–252.

    Article  PubMed  CAS  Google Scholar 

  • Pley U & Parham P (1993) Clathrin: its role in receptor-mediated vesicular transport and specialized functions in neurons. Crit Rev Biochem Mol Biol 28, 431–464.

    Article  PubMed  CAS  Google Scholar 

  • Popov SV & Poo MM (1993) Synaptotagmin: a calcium-sensitive inhibitor of exocytosis? Cell 73, 1247–1249.

    Article  PubMed  CAS  Google Scholar 

  • Ramaswami M, Krishnan KS & Kelly RB (1994) Intermediates in synaptic vesicle recycling revealed by optical imaging of Drosophila neuromuscular junctions. Neuron 13, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Regazzi R, Sadoul K, Meda P, Kelly RB, Halban PA & Wollheim CB (1996) Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. EMBO J 15, 6951–6959.

    PubMed  CAS  Google Scholar 

  • Renström E, Ding WG, Bokvist K & Rorsman P (1996) Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron 17, 513–522.

    Article  PubMed  Google Scholar 

  • Rexach MF & Schekman RW (1991) Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. J Cell Biol 114, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Robinson MS (1994) The role of clathrin, adaptors and dynamin in endocytosis. Curr Opin Cell Biol 6, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Robinson PJ, Sontag JM, Liu JP, Fykse EM, Slaughter C, McMahon H & Sudhof TC (1993) Dynamin GTPase regulated by protein kinase C phosphorylation in nerve terminals. Nature 365, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC & Südhof TC (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670.

    Article  PubMed  CAS  Google Scholar 

  • Roth D & Burgoyne RD (1994) SNAP-25 is present in a SNARE complex in adrenal chromaffin cells. FEBS Lett 351, 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TA, Smith SJ & Reuter H (1996) The timing of synaptic vesicle endocytosis. Proc Natl Acad Sci USA 93, 5567–5571.

    Article  PubMed  CAS  Google Scholar 

  • Scepek S, Moqbel R & Lindau M (1994) Compound exocytosis and cumulative degranulation by osinophils and its role in parasite killing. Parasitol Today 10, 276–278.

    Article  PubMed  CAS  Google Scholar 

  • Scepek S & Lindau M (1993) Focal exocytosis by eosinophils: compound exocytosis and cumulative fusion. EMBOJ 12, 1811–1817.

    CAS  Google Scholar 

  • Schmidt A, Hannah MJ & Huttner WB (1997) Synaptic-like microvesicles of neuroendocrine cells originate from a novel compartment that is continous with the plasma membrane and devoid of transferrin receptor. J Cell Biol 137, 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder TJ, Jankowski JA, Senyshyn J, Holz RW & Wightman RM (1994) Zones of exocytotic release on bovine adrenal medullary cells in culture. J Biol Chem 269, 17215–17220.

    PubMed  CAS  Google Scholar 

  • Schroeder TJ, Borges R, Finnegan JM, Pihel K, Amatore C & Wightman RM (1996) Temporally resolved, independent stages of individual exocytotic secretion events. Biophys J 70, 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  • Scott JH, Creutz CE, Pollard HB & Ornberg R (1985) Synexin binds in a calcium-dependent fashion to oriented chromaffin cell plasma membranes. FEBS Lett 180, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Cook T & Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379, 451–454.

    Article  PubMed  CAS  Google Scholar 

  • Shirataki H, Kaibuchi K, Yamaguchi T, Wada K, Horiuchi H & Takai Y (1992) A possible target protein for smg-25A/rab3A small GTP-binding protein. J Biol Chem 267, 10946–10949.

    PubMed  CAS  Google Scholar 

  • Shirataki H, Kaibuchi K, Sakoda T, Kishida S, Yamaguchi T, Wada K, Miyazaki M & Takai Y (1993) Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol Cell Biol 13, 2061–2068.

    PubMed  CAS  Google Scholar 

  • Shpetner HS & Vallee RB (1992) Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735.

    Article  PubMed  CAS  Google Scholar 

  • Sihra TS, Nairn AC, Kloppenburg P, Lin Z & Pouzat C (1995) A role for calcineurin (protein phosphatase-2B) in the regulation of glutamate release. Biochem Biophys Res Comm 212, 609–616.

    Article  PubMed  CAS  Google Scholar 

  • Smith CB & Betz WJ (1996) Simultaneous independent measurement of endocytosis and exocytosis. Nature 380, 531–534.

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH & Rothman JE (1993a) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418.

    Article  PubMed  Google Scholar 

  • Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P & Rothman JE (1993b) SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.

    Article  PubMed  Google Scholar 

  • Sporn LA, Marder VJ & Wagner DD (1989) Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. J Cell Biol 108, 1283–1289.

    Article  PubMed  CAS  Google Scholar 

  • Spruce AE, Breckenridge LJ, Lee AK & Almers W (1990) Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Stegmann T, Doms RW & Helenius A (1989) Protein-mediated membrane fusion. Ann Rev Biophysiol 18, 187–211.

    Article  CAS  Google Scholar 

  • Sugimori M, Lang EJ, Silver RB & Llinas R (1994) High-resolution measurement of the time course of calcium-concentration microdomains at squid presynaptic terminals. Biol Bull 187, 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC, Lottspeich F, Greengard P, Mehl E & Jahn R (1987) A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions. Science 238, 1142–1144.

    Article  PubMed  Google Scholar 

  • Südhof TC & Jahn R (1991) Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 665-667.

    Google Scholar 

  • Takai Y, Takuya S, Shirataki H & Nakanishi H (1996) Rab3A small GTP-binding protein in Ca2+-dependent exocytosis. Genes to Cells 1, 615–632.

    Article  PubMed  CAS  Google Scholar 

  • Takei K, McPherson PS, Schmid SL & De Camilli P (1995) Tubular membrane invaginations coated by dynamin rings are induced by GTPγS in nerve terminals. Nature 374, 186–190.

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Mundigl O, Daniell L & De Camilli P (1996) The synaptic vesicle cycle. J Cell Biol 133, 1237–1250.

    Article  PubMed  CAS  Google Scholar 

  • Tapper H & Sundler R (1995) Protein kinase C and intracellular pH regulate zymosan-induced lysosomal enzyme secretion in macrophages. J Leukoc Biol 58, 485–494.

    PubMed  CAS  Google Scholar 

  • Tatham PER & Gomperts BD (1989) ATP inhibits onset of exocytosis in permeabilised mast cells. Biosci Rep 9, 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Thomas L, Härtung K, Langosch D, Rehm H, Bamberg E, Franke WW & Betz H (1988) Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science 242, 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  • Thomas L & Betz H (1990) Synaptophysin binds to physophilin, a putative synaptic plasma membrane protein. J Cell Biol 111, 2041–2052.

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Wong JG, Lee AK & Aimers W (1993) A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Lee AK, Wong JG & Almers W (1994) A triggered mechanism retrieves membrane in seconds after Ca2+-stimulated exocytosis in single pituitary cells. J Cell Biol 124, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Tooze SA & Stinchcombe JC (1992) Biogenesis of secretory granules. Sem Cell Biol 3, 357–366.

    Article  CAS  Google Scholar 

  • Torri-Tarelli F, Villa A, Valtorta F, De Camilli P, Greengard P & Ceccarelli B (1990) Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J Cell Biol 110, 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Trimble WS, Cowan DM & Serieller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA 85, 4538–4542.

    Article  PubMed  CAS  Google Scholar 

  • Tse A, Tse FW, Aimers W & Hille B (1993) Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260, 82–84.

    Article  PubMed  CAS  Google Scholar 

  • Tucker T & Fettiplace R (1995) Confocal imaging of calcium microdomains and calcium extrusion in turtle hair cells. Neuron 15, 1323–1335.

    Article  PubMed  CAS  Google Scholar 

  • Umbach JA, Zinsmaier KE, Eberle KK, Buchner E, Benzer S & Gundersen CB (1994) Presynaptic dysfunction in Drosophila csp mutants. Neuron 13, 899–907.

    Article  PubMed  CAS  Google Scholar 

  • Usukura J & Yamada E (1987) Ultrastructure of the synaptic ribbons in photoreceptor cells of Rana catesbeiana revealed by freeze-etching and freeze-substitution. Cell Tissue Res 247, 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Valtorta F, Benfenati F & Greengard P (1992) Structure and function of the synapsins. J Biol Chem 267, 7195–7198.

    PubMed  CAS  Google Scholar 

  • van de Put FH & Elliott AC (1996) Imaging of intracellular calcium stores in individual permeabilized pancreatic acinar cells. Apparent homogeneous cellular distribution of inositol 1,4,5-trisphosphate-sensitive stores in permeabilized pancreatic acinar cells. J Biol Chem 271, 4999–5006.

    Article  PubMed  Google Scholar 

  • van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meyerowitz EM & Schmid SL (1993) Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol 122, 553–563.

    Article  PubMed  Google Scholar 

  • Verhage M, McMahon HT, Ghijsen WE, Boomsma F, Scholten G, Wiegant VM & Nicholls DG (1991) Differential release of amino acids, neuropeptides, and catecholamines from isolated nerve terminals. Neuron 6, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Verhage M, de Vries KJ, Roshol H, Burbach JP, Gispen WH & Südhof TC (1997) DOC2 proteins in rat brain: complementary distribution and proposed function as vesicular adapter proteins in early stages of secretion. Neuron 18, 453–461.

    Article  PubMed  CAS  Google Scholar 

  • Victor RG, Thomas GD, Marban E & O’Rourke B (1995) Presynaptic modulation of cortical synaptic activity by calcineurin. Proc Natl Acad Sci USA 92, 6269–6273.

    Article  PubMed  CAS  Google Scholar 

  • Vogel S & Zimmerberg J (1992) Proteins on exocytotic vesicles mediate calcium-triggered fusion. Proc Natl Acad Sci USA 89, 4749–4753.

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H & Matthews G (1994a) Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature 370, 652–655.

    Article  Google Scholar 

  • von Gersdorff H & Matthews G (1994b) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367, 735–739.

    Article  Google Scholar 

  • von Rüden L & Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262, 1061–1065.

    Article  Google Scholar 

  • Walch-Solimena C, Takei K, Marek KL, Midyett K, Südhof TC, De Camilli P & Jahn R (1993) Synaptotagmin: a membrane constituent of neuropeptide-containing large dense-core vesicles. J Neurosci 13, 3895–3903.

    PubMed  CAS  Google Scholar 

  • Washbourne P, Schiavo G & Montecucco C (1995) Vesicle-associated membrane protein-2 (synaptobrevin-2) forms a complex with synaptophysin. Biochem J 305, 721–724.

    PubMed  CAS  Google Scholar 

  • Weber E, Jilling T & Kirk KL (1996) Distinct functional properties of Rab3A and Rab3B in PC12 neuroendocrine cells. J Biol Chem 271, 6963–6971.

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B, Rehm H, Knierim M & Becker CM (1988) Fractionation of synaptophysin-containing vesicles from rat brain and cultured PC12 pheochromocytoma cells. FEBS Lett 240, 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann B & Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41, 1017–1028.

    Article  PubMed  CAS  Google Scholar 

  • Wiley RG, Spencer C & Pysh JJ (1987) Time course and frequency dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia. J Neurocytol 16, 359–372.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut J, Nir S, Scholma J & Hoekstra D (1985) Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidyl-choline vesicles: correlation between vesicle aggregation, bilayer destabilization and fusion. Biochemistry 24, 4630–4636.

    Article  PubMed  CAS  Google Scholar 

  • Wilson DW, Whiteheart SW, Wiedmann M, Brunner M & Rothman JE (1992) A multisubunit particle implicated in membrane fusion. J Cell Biol 117, 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Shirataki H, Kishida S, Miyazaki M, Nishikawa J, Wada K, Numata S, Kaibuchi K & Takai Y (1993) Two functionally different domains of rabphilin-3A, Rab3A p25/smg p25A-binding and phos-pholipid-and Ca2+-binding domains. J Biol Chem 268, 27164–27170.

    PubMed  CAS  Google Scholar 

  • Yoshida A, Oho C, Omori A, Kuwahara R, Ito T & Takahashi M (1992) HPC-1 is associated with synaptotagmin and ω-conotoxin receptor. J Biol Chem 267, 24925–24928.

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Davletov BA, Südhof TC & Anderson RG (1994) Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1993) Calcium and transmitter release. J Physiol (Paris) 87, 25–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hartmann, J. (1998). Calcium and Exocytosis. In: Verkhratsky, A., Toescu, E.C. (eds) Integrative Aspects of Calcium Signalling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1901-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1901-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1903-8

  • Online ISBN: 978-1-4899-1901-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics