Immunoaffinity Purification of Organelles

  • Peter J. Richardson
  • J. Paul Luzio

Abstract

The vast majority of subcellular fractionation techniques exploit physical differences between organelles, that is, size, density, charge or hydrophobicity. The most widely used methods are density-gradient centrifugation, free-flow electrophoresis, and polymer-phase partitioning. These approaches are of limited use when organelles with similar physical properties are to be fractionated. In such situations, procedures based on biological differences are required. Of these, methods based on immunological techniques have probably the greatest potential since they rely solely on the presence of specific antigens on the organelles of interest. In 1975, de Duve postulated that each biochemical marker is restricted to a single subcellular site (e. g., cytochrome oxidase in mitochondria). This remains the basis on which the purity of many isolated organelles is assessed, although it has become apparent that subcellular organelles previously thought to be homogeneous may differ in their composition (Reijnierse et al., 1975), while formerly “specific” markers may be found in a variety of subcellular compartments, an example being 5′-nucleotidase (Stanley et al., 1982). Consequently, organelles are now frequently identified by their function (e. g., transport vesicle, synaptic vesicle, transcytotic carrier vesicle) as much as by their composition and appearance under electron microscopes. Since the function of organelles will be reflected in their composition, it is now generally accepted that each functionally distinct organelle has a distinct antigenic pattern. Immunological techniques ought therefore to be capable of isolating any defined organelle, with the proviso that a specific antigen is expressed on the organelle’s surface.

Keywords

Cellulose Adenosine Fractionation Polyacrylamide Polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addison, G. M., 1971, Preparation and Properties of Labelled Antibodies, Ph.D. Thesis, University of Cambridge.Google Scholar
  2. Albertson, P.-A., 1986, Partition of Cell Particles and Macromolecules, John Wiley & Sons, New York.Google Scholar
  3. Biher, J. W., and Lienhard, G. E., 1986, Isolation of vesicles containing insulin responsive intracellular glucose transports from 3T3-Li adipocytes, J. Biol. Chem. 261:16180–16184.Google Scholar
  4. Brake, B., Braghetta, P., Banting, G., Luzio, J. P., and Stanley, K. K., 1990, A new recombinant DNA strategy for the molecular cloning of rare membrane proteins, Biochem. J. 267:631–637.PubMedGoogle Scholar
  5. Breitfeld, P. P., Casanova, J. E., Simister, N. E., Ross, S. A., McKinnon, W. C., and Mostov, K. E., 1989, Sorting signals, Curr. Opin. Cell Biol. 1:617–623.PubMedCrossRefGoogle Scholar
  6. Brown, S. J., James, S., Reddington, M., and Richardson, P. J., 1990, Both A1 and A2a receptors regulate striatal acetylcholine release, J. Neurochem. 55:31–38.PubMedCrossRefGoogle Scholar
  7. Burger, P. M., Mehl, E., Cameron, P. L., Maycox, P.R., Baumert, M., Lottspeich, F., DeCamilli, P., and Jahn, R., 1989, Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate, Neuron 3: 715–720.PubMedCrossRefGoogle Scholar
  8. Casanova, J. E., Breitfeld, P. P., Ross, S. A., and Mostov, K. E., 1990, Phosphorylation of the polymeric immunoglobulin receptor required for its efficient transcytosis, Science 248:742–745.PubMedCrossRefGoogle Scholar
  9. Debanne, M. T., Bolyos, M., Gauldie, J., and Regoeczi, E., 1984, Two populations of prelysosomal structures transporting asialoglycoproteins in rat liver, Proc. Natl. Acad. Sci. U.S.A. 81:2995–2999.PubMedCrossRefGoogle Scholar
  10. deCurtis, I., and Simons, K., 1989, Isolation of exocytic carrier vesicles from BHK cells, Cell 58:719–727.CrossRefGoogle Scholar
  11. deCurtis, I., Howell, K. E., and Simons, K., 1988, Isolation of a fraction enriched in the trans-Golgi network from BHK cells, Exp. Cell Res. 175:248–265.CrossRefGoogle Scholar
  12. de Duve, C., 1975, Exploring cells with a centrifuge, Science 189:186–194.PubMedCrossRefGoogle Scholar
  13. Devaney, E., and Howell, K. E., 1985, Immunoisolation of a plasma membrane fraction from the Fao cell, EMBO J. 4:3123–3130.PubMedGoogle Scholar
  14. Docherty, M., Bradford, H. F., and Wu, J.-Y., 1987, Corelease of glutamate and aspartate from cholinergic and GABAergic synaptosomes, Nature (London) 330:64–66.CrossRefGoogle Scholar
  15. Floor, E., and Feist, B. E., 1989, Most synaptic vesicles isolated from rat brain carry three membrane proteins, SV2, synaptophysin and p65, J. Neurochem. 52:1433–1437.PubMedCrossRefGoogle Scholar
  16. Floor, E., and Leeman, S. E., 1985, Evidence that large synaptic vesicles containing Substance P and small synaptic vesicles have a surface antigen in common in rat, Neurosci. Lett. 60:231–237.PubMedCrossRefGoogle Scholar
  17. Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Peppard, J., von Figura, K., Hasalik, A., and Schwartz, A. L., 1984, Intracellular receptor sorting during endocytosis: Comparative immunoelectronmicroscopy of multiple receptors in rat liver, Cell 37:195–204.PubMedCrossRefGoogle Scholar
  18. Ghetie, V., Mota, A., and Sjoquist, J., 1978, Separation of cells by affinity chromatography on SpA-Sepharose 6MB, J. Immunol. Methods 21:133–141.PubMedCrossRefGoogle Scholar
  19. Gorvel, J.-P., and Maroux, S., 1988, Characterization of intestinal membrane vesicles with flow cytometry, in: Cell Free Analysis of Membrane Traffic (J. Moore, ed.), Alan R. Liss, New York, pp. 195–210.Google Scholar
  20. Gray, E. G., and Whittaker, V. P., 1962, The isolation of nerve endings from brain: An electronmicroscopic study of all fragments derived by homogenization and centrifugation, J. Anat. 96:79–87.PubMedGoogle Scholar
  21. Griffiths, G., and Gruenberg, J., 1991, The arguments for pre-existing early and late endosomes, Trends Cell Biol. 1:5–9.PubMedCrossRefGoogle Scholar
  22. Gruenberg, J., and Howell, K. E., 1985, Immunoisolation of vesicles using antigenic sites either located on the cytoplasmic or exoplasmic domain of an implanted viral protein. A quantitative analysis, Eur. J. Cell Biol. 38: 312–321.PubMedGoogle Scholar
  23. Gruenberg, J., and Howell, K. E., 1986, Reconstitution of vesicle fusions occurring in endocytosis with a cell-free system, EMBO J. 5:3091–3101.PubMedGoogle Scholar
  24. Gruenberg, J., and Howell, K. E., 1987, An internalized transmembrane protein resides in a fusion-competent endosome for less than 5 minutes, Proc. Natl. Acad. Sci. U.S.A. 84:5758–5762.PubMedCrossRefGoogle Scholar
  25. Gruenberg, J., and Howell, K. E., 1989, Membrane traffic in endocytosis: Insights from cell-free assays, Annu. Rev. Cell Biol. 5-453–481.PubMedCrossRefGoogle Scholar
  26. Gruenberg, J., Griffiths, G., and Howell, K. E., 1989, Characterization of the early endosome and putative endocytic carrier vesicles in vivo with an assay of vesicle fusion in vitro, J. Cell Biol. 108:1301–1316.PubMedCrossRefGoogle Scholar
  27. Hales, C. N., 1972, Immunological techniques in diabetes research, Diabetologia 8:229–235.PubMedCrossRefGoogle Scholar
  28. Hales, C. N., and Woodhead, J. S., 1980, Labelled antibodies and their use in the immunoradiometric assay, Methods Enzymol. 70:334–355.PubMedCrossRefGoogle Scholar
  29. Howell, K. E., Ansorge, W., and Gruenberg, J., 1985, Immunoisolation system using beads maintained in free flow within a magnetic field, in: Microspheres: Medical and Biological Applications (A. Rembaum and Z. Tokes, eds.), CRC Press, Boca Raton, Florida, pp. 33–52.Google Scholar
  30. Howell, K. E., Devaney, E., and Gruenberg, J., 1989, Subcellular fractionation of tissue culture cells, Trends Biochem. Soc. 14:41–44.CrossRefGoogle Scholar
  31. Ito, A., and Palade, G. E., 1978, Presence of NADPH-cytochrome P-450 reductase in rat liver Golgi membranes. Evidence obtained by immunoadsorption method, J. Cell Biol. 79:590–597.PubMedCrossRefGoogle Scholar
  32. Jones, R. T., Walker, J. H., Richardson, P. F., Fox, G. W., and Whittaker, V. P., 1981, Immunohistochemical localization of cholinergic nerve terminals, Cell Tissue Res. 218:355–373.PubMedCrossRefGoogle Scholar
  33. Kawajiri, K., Ito, A., and Omura, T., 1977, Subfractionation of rat liver microsomes by immunoprecipitation and immunoadsorption methods, J. Biochem. 81:779–789.PubMedGoogle Scholar
  34. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256:495–497.CrossRefGoogle Scholar
  35. Krassig, H., 1985, Structure of cellulose and its relation to properties of cellulose fibres, in: Cellulose and Its Derivatives: Chemistry, Biochemistry and Applications (J. F Kennedy, G. O. Phillips, D. J. Wedlock, and P. A. Williams, eds.,), Ellis Horwood, Chichester, U.K., pp. 3–25.Google Scholar
  36. Kronvall, G., Seal, V. S., Finstad, J., and Williams, R. C., 1970, Phylogenetic insight into evolution of mammalian Fc fragment of γG globulin using staphylococcal protein A, J. Immunol. 104:140–147.PubMedGoogle Scholar
  37. Lowe, A. W., Madeddie, L., and Kelly, R. B., 1988, Endocrine secretory granules and neuronal synaptic vesicles have three integral membranes in common, J. Cell Biol. 106:51–59.PubMedCrossRefGoogle Scholar
  38. Luzio, J. P., 1977, Immunological approaches to the study of membrane features in adipocytes, in: Methodological Surveys in Biochemistry, Vol. 6 (E. Reid, ed.), Ellis Horwood, Chichester, U.K., pp. 131–142.Google Scholar
  39. Luzio, J. P., and Stanley, K. K., 1983, The isolation of endosome derived vesicles from rat hepatocytes, Biochem. J. 216:27–36.PubMedGoogle Scholar
  40. Luzio, J. P., Newby, A. C., and Hales, C. N., 1974, Immunological isolation of rat fat cell plasma membranes, Biochem. Soc. Trans. 2:1385–1386.Google Scholar
  41. Luzio, J. P., Newby, A. C., and Hales, C. N., 1976, A rapid immunological procedure for the isolation of hormonally sensitive rat fat cell plasma membrane, Biochem. J. 154:11–21.PubMedGoogle Scholar
  42. Luzio, J. P., Brake, B., Banting, G., Howell, K. E., Braghetta, P., and Stanley, K. K., 1990, Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38), Biochem. J. 270:97–102.PubMedGoogle Scholar
  43. Matthew, W. D., Tsavaler, L., and Reichardt, L. F., 1981, Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue, J. Cell Biol. 91:257–269.PubMedCrossRefGoogle Scholar
  44. Merisko, E. M., Farquhar, M. G., and Palade, G. E., 1982, Coated vesicle isolation by immunoadsorption on Staphylococcus aureus cells, J. Cell Biol. 92:846–857.PubMedCrossRefGoogle Scholar
  45. Miljanich, G. P., Brasier, A. R., and Kelly, R. B., 1982, Partial purification of presynaptic plasma membrane by immunoadsorption, J. Cell Biol. 84:88–96.CrossRefGoogle Scholar
  46. Molday, R. A., and Molday, L. L., 1984, Separation of cells labelled with immunospecific iron dextran microspheres using high gradient magnetic chromatography, FEBS Lett. 170:232–238.PubMedCrossRefGoogle Scholar
  47. Mueller, S. C., and Hubbard, A. L., 1986, Receptor-mediated endocytosis of asialoglycoproteins by rat hepatocytes: Receptor-positive and receptor-negative endosomes, J. Cell Biol. 102:932–942.PubMedCrossRefGoogle Scholar
  48. Murphy, R. F., 1991, Maturation models for endosome and lysosome biogenesis, Trends Cell Biol. 1:77–82.PubMedCrossRefGoogle Scholar
  49. Obrocki, J., and Borroni, E., 1988, Immunocytochemical evaluation of a putative cholinergic specific ganglioside antigen (Chol-1) in the central nervous system of the rat, Exp. Brain Res. 72:71–82.PubMedCrossRefGoogle Scholar
  50. Pfeffer, S. R., and Kelly, R. B., 1985, The subpopulation of brain coated vesicles that carries synaptic vesicle proteins contains two unique polypeptides, Cell 40:949–957.PubMedCrossRefGoogle Scholar
  51. Pontremoli, S., Diamine, G., Michetti, M., Salamino, F., Sparatore, B., and Honecker, B. L., 1984, Binding of monoclonal antibody to Cathepsin M located on the external surface of rabbit lysosomes, Arch. Biochem. Biophys. 233:267–271.PubMedCrossRefGoogle Scholar
  52. Reijnierse, L. A., Velstra, H., and Van den Berg, C. J., 1975, Subcellular localization of γ-aminobutyrate transaminase and glutamate dehydrogenase in adult rat brain, Biochem. J. 152:469–475.PubMedGoogle Scholar
  53. Richardson, P. J., and Brown, S. J., 1987, ATP release from affinity purified cholinergic nerve terminals, J. Neurochem. 48:622–630.PubMedCrossRefGoogle Scholar
  54. Richardson, P. J., Siddle, K., and Luzio, J. P., 1984, Immunoaffinity purification of intact metabolically active, cholinergic nerve terminals from mammalian brain, Biochem. J. 219:647–654.PubMedGoogle Scholar
  55. Richardson, P. J., Brown, S. J., Bailyes, E. M., and Luzio, J. P., 1987, Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses, Nature (London) 327:232–234.CrossRefGoogle Scholar
  56. Roman, L. R., and Hubbard, A. L., 1984, A domain specific marker for the hepatocyte plasma membrane. III. Isolation of bile canalicular membrane by immunoadsorption, J. Cell Biol. 98:1497–1504.PubMedCrossRefGoogle Scholar
  57. Salamero, J., Sztul, E. S., and Howell, K. E., 1990, Exocytic transport vesicles generated in vitro from the trans-Golgi network carry secretory and plasma membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 87:7717–7721.PubMedCrossRefGoogle Scholar
  58. Shimkus, M., Levy, T., and Herman, T., 1985, A chemically cleavable biotinylated nucleotide: Usefulness in the recovery of protein-DNA complexes from avidin affinity columns, Proc. Natl. Acad. Sci. U.S.A. 82:2593–2597.PubMedCrossRefGoogle Scholar
  59. Schneider, C., Newman, R. A., Sutherland, D. R., Asser, V., and Greaves, M. F., 1982, A one step purification of membrane proteins using a high efficiency immunomatrix, J. Biol. Chem. 257:10766–10769.PubMedGoogle Scholar
  60. Sharp, K. A., Yalpani, M., Howard, S. J., and Brooks, D. E., 1986, Synthesis and application of a polyethyleneglycol-antibody affinity ligand for cell separations in aqueous two phase systems, Anal. Biochem. 154: 110–117.PubMedCrossRefGoogle Scholar
  61. Stanley, K. K., Newby, A. C., and Luzio, J. P., 1982, What do ectoenzymes do? Trends Biochem. Sci. 7:145–147.CrossRefGoogle Scholar
  62. Sztul, E., Kaplin, A., Saucan, L., and Palade, G., 1991, Protein traffic between distinct plasma membrane domains: Isolation and characterization of vesicular carriers involved in transcytosis, Cell 64:81–89.PubMedCrossRefGoogle Scholar
  63. Ugelstadt, J., Soderberg, L., Berge, A, and Bergstrom, J., 1983, Monodisperse polymer particles—a step forward for chromatography, Nature (London) 303:95–96.CrossRefGoogle Scholar
  64. Volknandt, W., Henkel, A., and Zimmermann, H., 1988, Heterogeneous distribution of synaptophysin and protein 65 in synaptic vesicles isolated from rat cerebral cortex, Neurochem. Int. 12:337–345.PubMedCrossRefGoogle Scholar
  65. Wandinger-Ness, A., Bennett, M. K., Antony, C., and Simons, K., 1990, Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells, J. Cell Biol. 111: 987–1000.PubMedCrossRefGoogle Scholar
  66. Westwood, S. A., Luzio, J. P., Flockhart, D. A., and Siddle, K., 1979, Investigation of the subcellular distribution of cyclic AMP phosphodiesterase in rat hepatocytes, using a rapid immunological procedure for the isolation of plasma membrane, Biochim. Biophys. Acta 583:454–466.PubMedCrossRefGoogle Scholar
  67. Whittaker, V. P., Michaelson, I. A., and Kirkland, R. J. A., 1964, The separation of synaptic vesicles from disrupted nerve ending particles, Biochem. J. 90:293–303.PubMedGoogle Scholar
  68. Zorzano, A., Wilkinson, W., Kotliar, N., Thoidis, G., Wadzinski, B. E., Ruoho, A. E., and Pilch, P. F., 1989, Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations, J. Biol. Chem. 264:12358–12363.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Peter J. Richardson
    • 1
  • J. Paul Luzio
    • 2
  1. 1.Department of PharmacologyUniversity of CambridgeCambridgeEngland
  2. 2.Department of Clinical BiochemistryUniversity of Cambridge, Addenbrooke’s HospitalCambridgeEngland

Personalised recommendations