Affinity Chromatography Using Immobilized Antisense-Family Peptides

  • Irwin Chaiken

Abstract

Antisense peptides are sequences of amino acids encoded in the antisense strand of DNA. These peptides normally are not expressed in cells. Nonetheless, as proposed originally by Mekler (1969), such peptides can bind to the corresponding sense peptides, the sequences encoded in the DNA complementary to the antisense strand (Fig. 1A). This was first shown experimentally by Bost et al. (1985) with adrenocorticotropin and the corresponding chemically synthesized antisense peptide. Subsequently, many other experimental observations of antisense peptide recognition of sense peptides have been reported [for reviews, see Brentani (1988), Blalock (1990), Chaiken (1992), and Tropsha et al. (1992); see also several recently published papers (Bajpai et al., 1991; Gartner et al., 1991; Fassina and Cassani, 1992; Fassina et al., 1992a,b,c)].

Keywords

HPLC Codon Amide Electrophoresis Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajpai, A., Hooper, K. P., and Ebner, K. E., 1991, Interaction of antisense peptides with prolactin, Biochem. Biophys. Res. Commun. 180:1312–1317.PubMedCrossRefGoogle Scholar
  2. Blalock, J. E., 1990, Complementarity of peptides specified by’ sense’ and ‘antisense’ strands of DNA, Trends Biotechnol. 8:140–144.PubMedCrossRefGoogle Scholar
  3. Blalock, J. E., and Smith, E. M., 1984, Hydropathic anti-complementarity of amino acids based on the genetic code, Biochem. Biophys. Res. Commun. 131:203–207.CrossRefGoogle Scholar
  4. Boer, R., and Fahrenholz, F., 1985, Photoaffinity labelling of the V1, vasopressin receptor in plasma membranes from rat liver, J. Biol. Chem. 260:15051–15054.PubMedGoogle Scholar
  5. Bost, K. L., Smith, E. M., and Blalock, J. E., 1985, Similarities between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA, Proc. Natl. Acad. Sci. U.S.A. 82:1372–1375.PubMedCrossRefGoogle Scholar
  6. Brentani, R. B., 1988, Biological implications of complementary hydropathy of amino acids, J. Theor. Biol. 135:495–499.PubMedCrossRefGoogle Scholar
  7. Chaiken, I., 1988, The design of peptide and protein recognition mimics using ideas from sequence simplification and antisense peptides, in: Molecular Mimicry in Health and Disease (A. Lernmark, T. Dyrberg, L. Terenius, and B. Hokfelt, eds.), Elsevier, Amsterdam, pp. 351–367.Google Scholar
  8. Chaiken, I., 1992, Interactions and uses of antisense peptides in affinity technology, J. Chromatogr. 597:29–36.PubMedCrossRefGoogle Scholar
  9. Fassina, G., and Cassani, G., 1992, Design and recognition properties of a hydropathically complementary peptide to human interleukin 1 beta, Biochem. J. 282:773–779.PubMedGoogle Scholar
  10. Fassina, G., Zamai, M., Brigham-Burke, M., and Chaiken, I. M., 1989a, Recognition properties of antisense peptides to Arg8-vasopressin/bovine neurophysin II biosynthetic precursor sequences, Biochemistry 28: 8811–8818.PubMedCrossRefGoogle Scholar
  11. Fassina, G., Roller, P. P., Olson, A. D, Thorgeirsson, S. S., and Omichinski, J. G., 1989b, Recognition properties of peptides hydropathically complementary to residues 356-375 of the c-raf protein, J. Biol. Chem. 264: 11252–11257.PubMedGoogle Scholar
  12. Fassina, G., Cassani, G., and Corti, A., 1992a, Binding of human tumor necrosis factor alpha to multimeric complementary peptides, Arch. Biochem. Biophys. 196:137–143.CrossRefGoogle Scholar
  13. Fassina, G., Consonni, R., Zetta, L., and Cassani, G., 1992b, Design of a hydropathically complementary peptide for Big Endothelin affinity purification, Int. J. Pept. Protein Res. 39:540–548.PubMedCrossRefGoogle Scholar
  14. Fassina, G., Corti, A., and Cassani, G., 1992c, Affinity enhancement of complementary peptide recognition, Int. J. Pept. Protein Res. 39:549–556.PubMedCrossRefGoogle Scholar
  15. Gartner, T. K., Loudon, R., and Taylor, D. B., 1991, The peptides APPLHK, EHIPA and GAPL are hydropathically equivalent peptide mimics of a fibrinogen binding domain of glycoprotein IIb/IIIa, Biochem. Biophys. Res. Commun. 180:1446–1452.PubMedCrossRefGoogle Scholar
  16. Lu, F. X., Aiyar, N., and Chaiken, I., 1991, Affinity capture of Arg8-vasopressin-receptor complex using immobilized antisense peptide, Proc. Natl. Acad. Sci. U.S.A. 88:3637–3641.CrossRefGoogle Scholar
  17. Mekler, L. B., 1969, Specific selective interaction between amino acid residues of the polypeptide chains, Biofizika 14:581–584 [in Russian]; Engl. version: Biophys. USSR 14:613-617 (1970).PubMedGoogle Scholar
  18. Shai, Y., Flashner, M., and Chaiken, I. M., 1987, Antisense peptide recognition of sense peptides: Direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography, Biochemistry 26:669–675.PubMedCrossRefGoogle Scholar
  19. Shai, Y., Brunck, T. K., and Chaiken, I. M., 1989, Antisense peptide recognition of sense peptides: Sequence simplification and evaluation of forces underlying the interaction, Biochemistry 28:8804–8811.PubMedCrossRefGoogle Scholar
  20. Tropsha, A., Kizer, J. S., and Chaiken, I. M., 1992, Making sense from antisense: A review of experimental data and developing ideas on sense-antisense peptide recognition, J. Mol. Recog. 5:43–54.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Irwin Chaiken
    • 1
  1. 1.SmithKline BeechamKing of PrussiaUSA

Personalised recommendations