Skip to main content

Part of the book series: Pharmaceutical Biotechnology ((PBIO,volume 8))

Abstract

The alveolar region of the mammalian lung seems to offer a promising route for the systemic delivery of certain protein and peptide biopharmaceuticals which otherwise must be injected (Bensch et al., 1967; Byron, 1990; Dominquez et al., 1967; Patton and Platz, 1992). The absorption of these molecules into the systemic circulation is thought to occur by diffusion in the conducting airways (Taylor and Gaar, 1970) and by diffusion and transcytosis in the alveolar region of the lungs (Patton and Platz, 1992). Diffusion of lipid-soluble drugs approximately parallels the lipid/water partition coefficients of the compounds as measured at pH 7.4, which suggests that diffusion is occurring through lipid structures. Drugs with very low lipid solubilities are absorbed at rates inversely related to the size of the molecule. This absorption is driven by a concentration gradient, suggesting the presence of “aqueous pores.” The morphological correlate of aqueous pores is uncertain but may be tight junctions. Molecules greater than 2.3 nm in diameter, corresponding to molecular weights of 10 kDa, cannot diffuse through the tight junctions of the intestinal epithelial cells which are roughly similar to those in the airways (Madara, 1989; Taylor and Gaar, 1970). Transcytosis is a process where cells of the alveolar lining form endocytic sacs that carry fluid and solutes from the alveolar lumen into the interstitium. It is hypothesized that depending on the molecular size, molecules in the interstitium may transcytose through and/or diffuse between the capillary endothelial cells into the bloodstream. If the molecule is greater than 25–50 kDa in size, its transport across the capillary endothelium may be blocked by the basement membrane, and instead it will diffuse into the lymphatic system and eventually ends up in the circulation (Hubbard et al., 1989; Taylor and Gaar, 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bensch, K. G., Dominquez, E. A. M., and Liebow, A. A., 1967, Absorption of intact protein molecules across the pulmonary air—tissue barrier, Science 157:1204–1206.

    Article  PubMed  CAS  Google Scholar 

  • Brain, J. D., and Valberg, P. A., 1979, Deposition of aerosol in the respiratory tract, Am. Rev. Respir. Dis. 120:1325–1373.

    PubMed  CAS  Google Scholar 

  • Brain, J. D., Knudson, D. E., Sorokin, S. P., and Davis, M. A., 1976, Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation, Environ. Res. 11:13–33.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. A., Jr., and Schanker, L. S., 1983, Absorption of aerosolized drugs from the rat lung, Drug Metab. Dispos. 11:355–360.

    PubMed  CAS  Google Scholar 

  • Byron, P., 1990, Determinants of drug and polypeptide bioavailability from aerosols delivered to the lung, Adv. Drug Deliv. Rev. 5:107–132.

    Article  CAS  Google Scholar 

  • Byron, P. R., and Niven, R. W., 1988, A novel dosing method for drug administration to the airway of the isolated rat lung, J. Pharm. Sci. 77:693–695.

    Article  PubMed  CAS  Google Scholar 

  • Byron, P. R., Roberts, N. S. R., and Clark A. R., 1986, An isolated perfused rat lung preparation for the study of aerosolized drug deposition and absorption, J. Pharm. Sci. 75:168–171.

    Article  PubMed  CAS  Google Scholar 

  • Colthorpe, P., Farr, S. J., Taylor, G., Smith, I. J., and Wyatt, D., 1991, The pharmacokinetics of pulmonary-delivered insulin: A comparison of intratracheal and aerosol administration to the rabbit, Pharm. Research 9:764–768.

    Article  Google Scholar 

  • Dolovich, M., 1989, Physical principles underlying aerosol therapy. J. Aerosol Med. 2(2):171–186.

    Article  Google Scholar 

  • Dominquez, E. A. M., Liebow, A. A., and Bensch, K. G., 1967, Studies on the pulmonary air—tissue barrier. I. Absorption of albumin by the alveolar wall, Lab. Invest. 16:905–911.

    Google Scholar 

  • Eljamal, M., Wong, L. B., and Yeates, D. B., 1994, Capsaicin-activated bronchial and alveolar-initiated pathways regulating tracheal ciliary beat frequency, J. Appl. Physiol. 77(3):1239–1245.

    PubMed  CAS  Google Scholar 

  • Enna, S. J., and Schanker, L. S., 1972, Absorption of saccharides and urea from rat lung, Am. J. Physiol. 222:409–414.

    PubMed  CAS  Google Scholar 

  • Fisher, A. B., Dodia, C., and Linask, J., 1980, Perfusate composition and edema formation in isolated rat lungs, Exp. Lung Res. 1:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, R. C., Casolaro, M. A., Mitchell, M., Sellers, S. E., Arabia, F., Matthay, M. A., and Crystal, R. G., 1989, Fate of aerosolized recombinant DNA-producing al-antitrypsin: Use of the epithelial surface of the lower respiratory tract to administer proteins of therapeutic importance, Proc. Natl. Acad. Sci. USA 86:680–684.

    Article  PubMed  CAS  Google Scholar 

  • Ilowite, J. S., Baskin, M. I., Sheetz, M. S., and Abd, A. G., 1991, Delivered dose and regional distribution of aerosolized pentamidine using different delivery systems, Chest 99:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  • Levey, S., and Gast, R., 1966, Isolated perfused rat lung preparation, J. Appl. Physiol. 21:313–316.

    PubMed  CAS  Google Scholar 

  • Madara, J. L., 1989, Loosening tight junctions: Lessons from the intestine, J. Clin. Invest. 83:1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Niemeier, R. W., 1984, The isolated perfused lung, Environ. Health Perspect. 56:35–41.

    Article  PubMed  CAS  Google Scholar 

  • Niemeier, R. W., and Bingham, E., 1972, An isolated perfused lung preparation for metabolic studies, Life Sci. 11:807–820.

    Article  CAS  Google Scholar 

  • Niven, R. W., and Byron, P. R., 1987, Solute absorption from the airways of the isolated rat lung. I. The use of absorption data to quantify drug dissolution or release in the respiratory tract, Pharm. Research 5:574–579.

    Article  Google Scholar 

  • Niven, R. W., Whitcomb, L., Wilson, J. V., Kinstler, O., and Shaner, L., 1994, Intratracheal instillation vs aerosol administration of rhG-CSF and PEGylated rhG-CSF, Pharm. Res. 11:S289.

    Article  Google Scholar 

  • Patton, J. S., and Platz, R. M., 1992, Pulmonary delivery of peptide and proteins for systemic action, Adv. Drug Deliv. Rev. 8:179–196.

    Article  CAS  Google Scholar 

  • Pritchard, J. N., Holmes, A., Evans, N., Evans, R. J., and Morgan, A., 1985, The distribution of dust in the rat lung following administration by inhalation and by single intratracheal instillation, Environ. Res. 36:268–297.

    Article  PubMed  CAS  Google Scholar 

  • Smaldone, G. C., Fuhrer, J., Steigbigel, R. T., and McPeck, M., 1991, Factors determining pulmonary deposition of aerosolized pentamidine in patients with human immunodeficiency virus infection, Ann. Rev. Respir. Dis. 143:727–737.

    Article  CAS  Google Scholar 

  • Smith, R. M., Traber, L. D., Traber, D. L., and Spragg, R. G., 1989, Pulmonary deposition and clearance of aerosolized alpha-1-proteinase inhibitor administered to dogs and sheep, J. Clin. Invest. 84:1145–1154.

    Article  PubMed  CAS  Google Scholar 

  • Stahlhofen, W., Gebhart, J., and Heyder, J., 1980, Experimental determination of the regional deposition of aerosol particles in the human respiratory tract, Am. Ind. Hyg. Assoc. J. 41:385–398.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. E., and Gaar, K. A., Jr., 1970, Estimation of equivalent pore radii of pulmonary and alveolar membranes, Am. J. Physiol. 218:1133–1140.

    PubMed  CAS  Google Scholar 

  • Taylor, G., Colthorpe, P., and Farr, S. J., 1994, Human growth hormone pharmacokinetics in rabbits after selective regional pulmonary delivery, Pharm. Res. 11:S289.

    Google Scholar 

  • Timbrell, V., Hyett A. W., and Skidmore, J. W., 1968, A simple dispenser for generating dust clouds from standard reference samples of asbestos, Ann. Occup. Hyg. 11:273–281.

    Article  PubMed  CAS  Google Scholar 

  • Wright, B. M., 1950, A new dust-feed mechanism, J Sci. Inst. 27:12–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eljamal, M., Nagarajan, S., Patton, J.S. (1996). In Situ and in Vivo Methods for Pulmonary Delivery. In: Borchardt, R.T., Smith, P.L., Wilson, G. (eds) Models for Assessing Drug Absorption and Metabolism. Pharmaceutical Biotechnology, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1863-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1863-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1865-9

  • Online ISBN: 978-1-4899-1863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics