Use of an Isolated Perfused Kidney to Assess Renal Clearance of Drugs

Information Obtained in Steady-State and Non-Steady-State Experimental Systems
  • Noriko Okudaira
  • Yuichi Sugiyama
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 8)


The kidney plays an important role in eliminating foreign compounds that enter the body as well as in regulating the body pool of endogenous substances. The appearance of drug in the urine is the net result of glomerular filtration, tubular secretion and reabsorption (Fig. 1).


Glomerular Filtration Rate Renal Clearance Mean Transit Time Tubular Secretion Urine Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acara, M., and Rennick, B., 1973, Regulation of plasma choline by the renal tubule: Bidirectional transport of choline, Am. J. Physiol. 225:1123–1128.PubMedGoogle Scholar
  2. Adolph, E. F., 1949, Quantitative relations in the physiological constitutions of mammals, Science 109:579.PubMedCrossRefGoogle Scholar
  3. Chinard, F. P., Enns, T., and Nolan, M. F., 1964, Arterial hematocrit and separation of cells and plasma in the dog kidney, Am. J. Physiol. 207:128–132.PubMedGoogle Scholar
  4. Chinard, F. P., Enns, T., Goresky, C. A., and Nolan, M. F., 1965a, Renal transit times and distribution volumes of T-1824, creatinine and water, Am. J. Physiol. 209:243–252.PubMedGoogle Scholar
  5. Chinard, F. P., Goresky, C. A., Enns, T., Nolan, M. F, and House, R. W., 1965b, Trapping of urea by red cells in the kidney, Am. J. Physiol. 209:253–263.PubMedGoogle Scholar
  6. Crone, C., 1963, The permeability of capillaries in various organs as determined by use of the indicator diffusion methods, Acta Physiol. Scand. 58:292–305.PubMedCrossRefGoogle Scholar
  7. Fisher, D., Salido, E., and Barajas, L., 1989, Epidermal growth factor and the kidney, Annu. Rev. Physiol. 51:67–80.PubMedCrossRefGoogle Scholar
  8. Giacomini, K. M., Hsyu, P. H., and Gisclon, L. G., 1988, Renal transport of drugs: An overview of methodology with application to cimetidine, Pharm. Res. 5:465–471.PubMedCrossRefGoogle Scholar
  9. Gisclon, L., Wong, F. M., and Giacomini, K. M., 1987, Cimetidine transport in isolated luminal membrane vesicles from rabbit kidney, Am. J. Physiol. 253:F141–F150.PubMedGoogle Scholar
  10. Goresky, C. A., 1963, A linear method for determining liver sinusoidal and extravascular volumes, Am. J. Physiol. 204:626–640.PubMedGoogle Scholar
  11. Goresky, C. A., Ziegler, W. H., and Bach, G. G., 1970, Capillary exchange modeling: Barrier-limited and flow-limited distribution, Circ. Res. 27:739–764.PubMedCrossRefGoogle Scholar
  12. Goresky, C. A., Bach, G. G., and Nadeau, B. E., 1973, On the uptake of materials by the intact liver: The transport and net removal of galactose, J. Clin. Invest. 52:991–1009.PubMedCrossRefGoogle Scholar
  13. Goresky, C. A., Huet, P. M., and Villeneuve, J. P., 1982, Blood-tissue exchange and blood flow in the liver, in: Hepatology: A Textbook of Liver Disease (D. Zakin and T. Boyer, eds.), W. B. Saunders, Philadelphia, pp. 32–63.Google Scholar
  14. Goresky, C. A., Bach, G. G., and Rose, C. P., 1983, Effects of saturating metabolic uptake on space profiles and tracer kinetics, Am. J. Physiol. 244:G215–G232.PubMedGoogle Scholar
  15. Hall, S., and Rowland, M., 1983, Relationship between renal clearance, protein binding and urine flow for digitoxin, a compound of low clearance in the isolated perfused rat kidney, J. Pharmacol. Exp. Ther. 227:174–179.Google Scholar
  16. Hall, S., and Rowland, M., 1985, Influence of fraction unbound upon the renal clearance of furosemide in the isolated perfused rat kidney, J. Pharmacol. Exp. Ther. 232:263–268.PubMedGoogle Scholar
  17. Hori, R., Tanigawara, Y., Saito, Y., Hayashi, Y., Aiba, T., Okumura, K., and Kamiya, A., 1988, Moment analysis of drug disposition in kidney: Transcellular transport kinetics of p-aminohippurate in the isolated perfused rat kidney, J. Pharm. Sci. 77:471–476.PubMedCrossRefGoogle Scholar
  18. Iga, T., Sawada, Y., and Sugiyama, Y., 1985, Physiological pharmacokinetics, in: Applied Pharmacokinetics—Theory and Experiments (M. Hanano, K. Umemura, and T. Iga, eds.), Soft Science, Inc., Tokyo, pp. 431–473.Google Scholar
  19. Itoh, N., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M., 1986a, Kinetic analysis of rat renal tubular transport based on multiple-indicator dilution method, Am. J. Physiol. 251:F103–F114.PubMedGoogle Scholar
  20. Itoh, N., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M., 1986b, Na+-dependent p-aminohippurate transport at the basolateral side of the isolated perfused rat kidney, Biochim. Biophys. Acta 860: 592–599.PubMedCrossRefGoogle Scholar
  21. Itoh-Okudaira, N., Sawada, Y., Sugiyama, Y., Iga, T., and Hanano, M., 1987, Effect of procainamide on renal transport of cimetidine in the isolated perfused kidney, Biochim. Biophys. Acta 981:1–7.Google Scholar
  22. Johnson, V., and Maack, T., 1977, Renal extraction, filtration, absorption and catabolism of growth hormone, Am. J. Physiol. 233:F185–F196.PubMedGoogle Scholar
  23. Kamiya, A., Tanigawara, Y., Saito, Y., Hayashi, Y., Aiba, T., Inui, K., and Hori, R., 1990, Moment analysis of drug disposition in kidney: II: Urine pH-dependent tubular secretion, J. Pharm. Sci. 79:692–697.PubMedCrossRefGoogle Scholar
  24. Kau, S. T., 1978, Handling of triamterene by the isolated perfused rat kidney, J. Pharmacol. Exp. Ther. 206:701–709.PubMedGoogle Scholar
  25. Kau, S. T., and Maack, T., 1977, Transport and catabolism of parathyroid hormone in isolated rat kidney, Am. J. Physiol. 233:F445–F454.PubMedGoogle Scholar
  26. Kim, D. C., Sugiyama, Y., Sato, H., Fuwa, T., Iga, T., and Hanano, M., 1988, Kinetic analysis of in vivo receptor dependent binding of human epidermal growth factor by rat tissues, J. Pharm. Sci. 77: 200–207.PubMedCrossRefGoogle Scholar
  27. Kim, D. C., Sugiyama, Y., Fuwa, T., Sakamoto, S., Iga, T., and Hanano, M., 1989, Kinetic analysis of the elimination process of human epidermal growth factor (hEGF) in rats, Biochem. Pharmacol. 38: 241–249.PubMedCrossRefGoogle Scholar
  28. Kim, D. C., Hanano, M., Sawada, Y., Iga, T., and Sugiyama, Y., 1991, Kinetic analysis of clearance of epidermal growth factor in isolated perfused kidney, Am. J. Physiol. 261:F988–F997.PubMedGoogle Scholar
  29. Kim, D. C., Hanano, M., Yanai, Y., Ohnuma, N., and Sugiyama, Y., 1992a, Localization of binding sites for epidermal growth factor (EGF) in rat kidney: Evidence for the existence of low affinity EGF binding sites on the brush border membrane, Pharm. Res. 9:1394–1401.PubMedCrossRefGoogle Scholar
  30. Kim, D. C., Sugiyama, Y., Sawada, Y., and Hanano, M., 1992b, Renal tubular handling of p-aminohippurate and epidermal growth factor (EGF) in filtering and nonfiltering perfused rat kidneys, Pharm. Res. 9:271–275.PubMedCrossRefGoogle Scholar
  31. Lauritsen, K., Laursen, L. S., and Rask-Madsen, J., 1990, Clinical pharmacokinetics of drugs used in the treatment of gastrointestinal disease (Part 1), Clin. Pharmacokinet. 19:11–31.PubMedCrossRefGoogle Scholar
  32. Lin, J. H., Los, L. E., Ulm, E. H., and Duggan, D. E., 1988, Kinetic studies on the competition between famotidine and cimetidine in rats: Evidence of multiple secretory systems for organic cations, Drug Metab. Dispos. 16:52–56.PubMedGoogle Scholar
  33. Lumsden, B. J., and Silverman, M., 1990, Multiple indicator dilution and the kidney: Kinetics, permeation and transport in vivo, Methods Enzymol. 191:34–72.PubMedCrossRefGoogle Scholar
  34. Maack, T., 1980, Physiological evaluation of the isolated perfused rat kidney, Am. J. Physiol. 238:F71–F78.PubMedGoogle Scholar
  35. Maack, T., 1986, Renal clearance and isolated kidney perfusion techniques, Kidney Int. 30:142–151.PubMedCrossRefGoogle Scholar
  36. Muirhead, M. R., and Somogyi, A. A., 1991, Effect of H2 antagonists on the differential secretion of triamterene and its sulfate conjugate metabolite by the isolated perfused rat kidney, Drug Metab. Dispos. 19:312–316.PubMedGoogle Scholar
  37. Nishitsutsuji-Uwo, J. M., Ross, B. D., and Krebs, H. A., 1967, Metabolic activities of the isolated perfused rat kidney, Biochem. J. 103:852–862.Google Scholar
  38. Pang, K. S., and Rowland, M., 1977, Hepatic clearance of drugs: I. Theoretical considerations of a “well-stirred” model and a “parallel-tube” model. Influence of hepatic blood flow, plasma and blood cell binding and the hepatocellular enzymatic activity on hepatic drug clearance, J. Pharmacokinet. Biopharm. 5:625–653.PubMedCrossRefGoogle Scholar
  39. Petersen, J., Kitaji, J., Duckworth, W. C., and Rabkin, R., 1982, Fate of 125I-insulin from the peritubular circulation of isolated perfused rat kidney, Am. J. Physiol. 243:F126–F132.PubMedGoogle Scholar
  40. Pritchard, J. B., and Miller, D. S., 1993, Mechanisms mediating renal secretion of organic anions and cations, Physiol. Rev. 73:765–796.PubMedGoogle Scholar
  41. Saito, Y., Tanigawara, Y., Okumura, K., Shimizu, H., Kamiya, A., and Hori, R., 1991, Moment analysis of drug disposition in rat kidney: Role of basolateral membrane transport of p-aminohippurate, J. Pharm. Pharmacol. 43:311–316.PubMedCrossRefGoogle Scholar
  42. Sawada, Y., Itoh, N., Sugiyama, Y., Iga, T. and Hanano, M., 1985, Analysis of multiple indicator dilution curves for estimation of renal tubular transport parameters, Comput. Prog. Biomed. 20:51–61.CrossRefGoogle Scholar
  43. Scoggins, B. A., Butkus, A., Coghlan, J. P., Fei, D. T. W., McDougall, J. G., Niall, H. D., Walsh, J. R., and Wang, X., 1984, in vivo cardiovascular renal and endocrine effects of epidermal growth factor in sheep, in: Endocrinology (F. Labrie and L. Prouix, eds.), Elsevier, New York, pp. 573–575.Google Scholar
  44. Silva, P., 1990, Isolated perfused and nonfiltering kidney, Methods Enzymol. 191:31–34.PubMedCrossRefGoogle Scholar
  45. Silverman, M., Aganon, M. A., and Chinard, F. P., 1970a, D-Glucose interactions with renal tubule cell surfaces, Am. J. Physiol. 218:735–742.PubMedGoogle Scholar
  46. Silverman, M., Aganon, M. A., and Chinard, F. P., 1970b, Specificity of monosaccharide transport in dog kidney, Am. J. Physiol. 218:743–750.PubMedGoogle Scholar
  47. Silverman, M., Vinary, P., Shinobu, L., Gougoux, A., and Lemieux, G., 1981, Luminal and antiluminal transport of glutamine in dog kidney, Kidney Int. 20:359–365.PubMedCrossRefGoogle Scholar
  48. Silverman, M., Whiteside, C., and Trainor, C., 1989a, Glomerular and postglomerular transcapillary exchange in dog kidney, Fed. Proc. 43:171–179.Google Scholar
  49. Silverman, M., Whiteside, C., Lumsden, C. J., and Steinhart, H., 1989b, in vivo indicator dilution kinetics of PAH transport in dog kidney, Am. J. Physiol. 256:F255–F265.PubMedGoogle Scholar
  50. Sugiyama, Y., 1991, Kinetics of receptor-mediated endocytosis of polypeptide hormones that governs the overall hormone disposition in the body: Analysis of the uptake process of epidermal growth factor by the liver and kidney, Yakugaku Zasshi 111:709–736.PubMedGoogle Scholar
  51. Sugiyama, Y., Kim, D. C., Sato, H., Yanai, S., Satoh, H., Iga, T., and Hanano, M., 1990, Receptor-mediated disposition of polypeptides: Kinetic analysis of the isolated perfused organs and in vivo system, J. Controlled Release 13:157–174.CrossRefGoogle Scholar
  52. Suzuki, M., Almeida, F. A., Nussenzveig, D. R., Sawyer, D., and Maack, T., 1987, Binding and functional effect of atrial natriuretic factor in isolated rat kidney, Am. J. Physiol. 353:F917–F928.Google Scholar
  53. Tanigawara, Y., 1991, Moment analysis, in: Modern Biopharmaceutics (S. Awazu and T. Koizumi, eds.), Nanko-do, Tokyo, pp. 257–282.Google Scholar
  54. Tanigawara, Y., Saito, Y., Aiba, T., Ohoka, K., Kamiya, A., and Hori, R., 1990, Moment analysis of drug disposition in kidney. III: Transport of p-aminohippurate and tetraethylammonium in the perfused kidney isolated from uranyl nitrate-induced acute renal failure rats, J. Pharm. Sci. 79:249–256.PubMedCrossRefGoogle Scholar
  55. Trainor, C., and Silverman, M., 1982, Transcapillary exchange of molecular weight markers in the postglomerular circulation: Application of a barrier-limited model, Am. J. Physiol. 242:F436–F446.PubMedGoogle Scholar
  56. Weiner, I. M., and Roth, L., 1981, Renal excretion of cimetidine, J. Pharmacol. Exp. Ther. 216:516–520.PubMedGoogle Scholar
  57. Whiteside, C., and Silverman, M., 1983, Determination of glomerular permselectivity to neutral dextrans in the dog, Am. J. Physiol. 245:F485–F495.PubMedGoogle Scholar
  58. Wright, S. H., Wunz, T. M., and Wunz, T. P., 1992, A choline transporter in renal brush-border membrane vesicles: Energetics and structural specificity, J. Membr. Biol. 126:51–65.PubMedGoogle Scholar
  59. Yamaoka, K., and Nakagawa, T., 1983, A nonlinear least squares program based on differential equations, Multi (Runge), for microcomputers, J. Pharmacobio.-Dyn. 6:595–606.PubMedCrossRefGoogle Scholar
  60. Zins, G. R., and Weiner, I. M., 1968, Bidirectional urate transport limited to the proximal tubule in dogs, Am. J. Physiol. 215:411–422.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Noriko Okudaira
    • 1
  • Yuichi Sugiyama
    • 2
  1. 1.Pharmaceutical Research CenterMeiji Seika Kaisha, Ltd.Yokohama 222Japan
  2. 2.Faculty of Pharmaceutical SciencesUniversity of TokyoTokyo 113Japan

Personalised recommendations