Fermentation and Growth Response of a Primary Poultry Isolate of Salmonella Typhimurium Grown under Strict Anaerobic Conditions in Continuous Culture and Amino Acid-Limited Batch Culture

  • K. G. Maciorowski
  • D. J. Nisbet
  • S. D. Ha
  • D. E. Corrier
  • J. R. DeLoach
  • S. C. Ricke
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 412)


Salmonella typhimurium is a significant hazard to consumer health that is carried asymptomatically in poultry gastrointestinal tracts. Nurmi cultures may prevent Salmonella colonization in young chicks, but the mechanism of competitive exclusion is unclear. Modeling Salmonella’s metabolism in pure culture may allow for greater definition in choosing strains for Nurmi cultures. The growth rates and affinity constants of S. typhimurium growing in amino acid-limited conditions were determined in batch culture and compared to primary poultry isolates of cecal strains. Serine and NH4Cl were the best N sources for growth of all organisms tested in this study. The fermentation response of S. typhimurium was also monitored in continuous culture at a slow dilution rate of 0.021 h−1. S. typhimurium was found to adapt to VL media, with trends in protein disappearance, Yglucose,and Yprotein. This may show that amino acid or protein concentrations may be an integral component of the initial establishment of S. typhimurium in the cecum.


Volatile Fatty Acid Affinity Constant Broiler Chick Young Chick Citrobacter Freundii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, D.J., and Bird, T.P., 1966, Urea and volatile base in the cecae and colon of the domestic fowl: the problem of their origin, Comp. Biochem. Physiol. 18: 735–744.CrossRefPubMedGoogle Scholar
  2. Bryant, M.P., 1972, Commentary on the Hungate technique for culture of anaerobic bacteria., Amer. J. Clin. Nutr. 25: 1329–1334.Google Scholar
  3. Carroll, J.J, Smith, N., and Babson, A.L., 1970, A colorimetric serum glucose determination using hexokinase and glucose-6-phosphate dehydrogenase, Biochem. Med. 4: 171–180.CrossRefGoogle Scholar
  4. Chaplin, S.B., 1989, Effect of cecectomy on water and nutrient absorption of birds, J. Exp. Zool. Suppl. 3: 81–86.CrossRefPubMedGoogle Scholar
  5. Cornier, D.E., Hinton, Jr., A., Ziprin, R.L., Beier, R.C., and DeLoach, J.R., 1990, Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella typhimurium colonization in broiler chicks, Avian Dis. 34: 617–625.CrossRefGoogle Scholar
  6. Draper, N.R., and Smith, H., 1966, Applied regression analysis, John Wiley and Sons, Inc., New York, NY.Google Scholar
  7. Goldstein, D.L., 1989, Absorption by the cecum of wild birds: is there interspecific variation?, J. Exp. Zool. Suppl. 3: 103–110.CrossRefPubMedGoogle Scholar
  8. Gutnick, D.J., Calvo, M., Klopotowski, T., and Ames, B.N., 1969, Compounds which serve as the sole source of carbon and nitrogen for Salmonella typhimurium LT2, J. Bacteriol. 100: 215–219.PubMedGoogle Scholar
  9. Ha, S.D., Ricke, S.C., Nisbet, D.J., Cornier, D.E., and DeLoach, J.R., 1994, Serine utilization as a potential competition mechanism between Salmonella and a chicken cecal bacterium, J. Food Prot. 57: 1074–1079.Google Scholar
  10. Harder, W., and Dijkhuizen, L., 1983, Physiological responses to nutrient limitation, Ann. Rev. Microbiol. 37: 1–23.CrossRefGoogle Scholar
  11. Hinton, Jr., A., Cornier, D.E., Spates, G.E., Norman, J.O., Ziprin, R.L., Beier, R.C., and DeLoach, J.R., 1990, Biological control of Salmonella typhimurium in young chickens, Avian Dis. 34: 626–633.CrossRefPubMedGoogle Scholar
  12. Hungate, R.E., 1950, The anaerobic mesophilic rumen bacteria, Bacteriol. Rev. 14: 1–49.PubMedGoogle Scholar
  13. Jeter, R.M., Olivera, B.M., and Roth, J.R., 1984, Salmonella typhimurium synthesizes cobalamin (vitamin Big) de novo under anaerobic growth conditions, J. Bacteriol. 159: 206–213.Google Scholar
  14. Krivan, H.C., Franklin, D.P., W. Wang, Laux, D.C., and Cohen, P.S., 1992, Phosphatidylserine found in intestinal mucus serves as a sole source of carbon and nitrogen for salmonellae and Escherichia coli, Infect. Immun. 60: 3943–3946.PubMedGoogle Scholar
  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., 1951, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  16. Magasanik, B., 1982, Genetic control of nitrogen assimilation in bacteria, Ann. Rev. Genet. 16: 135–168.CrossRefPubMedGoogle Scholar
  17. Mead, G.C., and Impey, C.S., 1987, Present status of the Nurmi concept for reducing carriage of food poisoning Salmonellas and other pathogens in live poultry, In: Elimination of pathogenic organisms from meat and poultry, Smulders, F.J.M., ed., Elsevier Applied Science Publishers, Amsterdam, The Netherlands. pp. 57–77.Google Scholar
  18. Nisbet, D.J., Cornier, D.E., Scanlan, C.M., Hollister, A.G., Beier, R.C., and DeLoach, J.R., 1993, Effect of a defined continuous-flow derived bacterial culture and dietary lactose on Salmonella typhimurium colonization in broiler chickens, Avian Dis. 37: 1017–1025.CrossRefPubMedGoogle Scholar
  19. Nisbet, D.J., Ricke, S.C., Scanlan, C.M., Cornier, D.E., Hollister, A.G., and DeLoach, J.R., 1994, Inoculation of broiler chicks with a continuous-flow derived bacterial culture facilitates early cecal bacterial colonization and increases resistance to Salmonella typhimurium, J. Food Prot. 57: 12–15.Google Scholar
  20. Nurmi, E., and Rantala, K., 1973, New aspects of Salmonella infection in broiler production, Nature 241: 210–211.CrossRefPubMedGoogle Scholar
  21. Pint, S.J., 1975, Principles of microbe and cell cultivation, Blackwell Scientific Publications, London, England. Pivnik, H., and Nurmi, E., 1982, The Nurmi concept and its role in the control of salmonellae in poultry, In Davies, R. (eds), Developments in Food Microbiology. vol.!, Applied Science, Barking, UK. pp. 41–70.Google Scholar
  22. Ricke, S.C., and Schaefer, D.M., 1991, Growth inhibition of the rumen bacterium Selenomonas ruminantium by ammonium salts, Appl. Microbiol. Biotechnol. 36: 394–399.CrossRefGoogle Scholar
  23. Russell, J. B., 1984, Factors influencing competition and composition of the rumen bacterial flora, In F. M.C. Gilchrist and R.I. Mackie (Eds.), Herbivore Nutrition in the Subtropics and Tropics, The Science Press (PTY) Ltd., Craighall, South Africa. pp. 313–345.Google Scholar
  24. Schaefer, D.M, Davis, C.L., and Bryant, M.P., 1980, Ammonia saturation constants for predominant species of rumen bacteria, J. Dairy Sci. 63: 1248–1263.CrossRefPubMedGoogle Scholar
  25. Skadhauge, E., 1968, The cloacal storage of urine in the rooster, Comp. Biochem. Physiol. 24: 7–18.CrossRefPubMedGoogle Scholar
  26. Stavric, S., 1992, Defined cultures and prospects, Int. J. Food Microbiol. 55: 245–263.CrossRefGoogle Scholar
  27. Tannock, G.W., 1987, Demonstration of mucosa-associated microbial populations in the colons of mice, Appl. Environ. Microbiol. 53: 1965–1968.PubMedGoogle Scholar
  28. Tauxe, R.V., 1991, Salmonella: a postmortem pathogen, J. Food Prot. 54: 563–568.Google Scholar
  29. Thomas, D.H., 1982, Salt and water excretion by birds: the lower intestine as an integrator of renal and intestinal excretion, Comp. Biochem. Physiol. 71: 527–535.CrossRefGoogle Scholar
  30. Todd, E.C.D., 1989, Preliminary estimates of costs of foodborne disease in the United States, J. Food Prot. 52: 595–601.Google Scholar
  31. Ushijima, T., and Seto, A., 1991, Selected faecal bacteria and nutrients essential for antagonism of Salmonella typhimurium in anaerobic continuous flow cultures, J. Med. Microbiol. 35: 111–117.CrossRefPubMedGoogle Scholar
  32. Yamamoto, N., and Droffner, M.L., 1985, Mechanisms determining aerobic or anaerobic growth in the facultative anaerobe Salmonella typhimurium, Proc. Natl. Acad. Sci. 82: 2077–2081.CrossRefPubMedGoogle Scholar
  33. Ziprin, R.L., Cornier, D.E., Hinton, Jr., A., Beier, R.C., Spates, G.E., DeLoach, J.R., and Elissalde, M.H., 1990, Intracloacal Salmonella typhimurium infection of broiler chickens: reduction of colonization with anaerobic organisms and dietary lactose, Avian Dis. 34: 749–753.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. G. Maciorowski
    • 1
  • D. J. Nisbet
    • 2
  • S. D. Ha
    • 3
  • D. E. Corrier
    • 2
  • J. R. DeLoach
    • 2
  • S. C. Ricke
    • 1
  1. 1.Texas A&M University Poultry Science DepartmentCollege StationUSA
  2. 2.USDA-ARS Food Animal Protection LaboratoryCollege StationUSA
  3. 3.Natural Products Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations