Advertisement

Nitric Oxide Rather than Superoxide or Peroxynitrite Inhibits Insulin Secretion and Causes DNA Damage in HIT-T15 Cells

  • C. A. Delaney
  • J. M. Cunningham
  • M. H. L. Green
  • I. C. Green
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 426)

Abstract

We have previously demonstrated that treatment of rat islets of Langerhans with the nitric oxide donors 3-morpholinosydnonimine (SIN-1) and S-nitrosoglutathione (GSNO) inhibits insulin secretion and increases cyclic GMP, thus mimicking the effects of the cytokine interleukin-lβ [1] and [2]. We have recently found that nitric oxide, derived exogenously from nitric oxide donors or endogenously by IL-lβ induction of nitric oxide synthase, causes DNA damage in islets of Langerhans and in HIT-T15 cells when measured by the ‘comet’ assay [3].

Keywords

Nitric Oxide Insulin Secretion Comet Tail Nitric Oxide Donor Inhibit Insulin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Green, I.C., C.A. Delaney, J.M. Cunningham, V. Karmins, and C. Southern. Diabetologia, 1993. 36: 9–16.PubMedCrossRefGoogle Scholar
  2. 2.
    Cunningham, J.M., J.G. Mabley, C.A. Delaney, and I.C. Green. Mol. Cell. Endocrinol., 1994. 102: 23–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Delaney, C.A., M.H.L. Green, J.E. Lowe, and I.C. Green. FEBS Lett, 1993. 333: 291–295.PubMedCrossRefGoogle Scholar
  4. 4.
    Feelisch, M., J. Ostrowski, and E. Noack. J. Cardiovasc. Pharmacol., 1989. 14 (suppl. 11): S13–S22.PubMedGoogle Scholar
  5. 5.
    Pou, S., W.S. Pou, D.S. Bredt, S.H. Snyder, and G.M. Rosen. J. Biol. Chem., 1992. 267(34): 24173–24176.PubMedGoogle Scholar
  6. 6.
    Beckman, J.S., T.W. Beckman, J. Chen, P.A. Marshall, and B.A. Freeman. Proc. Natl. Acad. Sci. USA, 1990.87: 1620–1624.PubMedCrossRefGoogle Scholar
  7. 7.
    Lipton, S.A., Y.B. Choi, Z.H. Pan, S.Z. Lei, H.S.V. Chen, N.J. Sucher, J. Loscalzo, D.J. Singel, and J.S. Stamler. Nature, 1993. 364: 626–632.PubMedCrossRefGoogle Scholar
  8. 8.
    Green, L., D. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. Anal. Biochem., 1982. 126: 131–138.PubMedCrossRefGoogle Scholar
  9. 9.
    Davison., W. and C. Woof. Analyst, 1979. 104: 385–390.CrossRefGoogle Scholar
  10. 10.
    Green, M.H.L., J.E. Lowe, S.A. Harcourt, P. Akinluyi, T. Rowe, J. Cole, A.V. Anstey, and C.F. Arlett. Mutat. Res., 1992.273:137–144.PubMedCrossRefGoogle Scholar
  11. 11.
    Hogg, N., V.M. Darley-Usmar, M.T. Wilson, and S. Moncada. Biochem. J., 1992. 281: 419–424.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • C. A. Delaney
    • 1
    • 2
  • J. M. Cunningham
    • 1
    • 2
  • M. H. L. Green
    • 1
    • 2
  • I. C. Green
    • 1
    • 2
  1. 1.Biochemistry Group, School of Biological SciencesUniversity of SussexFalmer, BrightonUK
  2. 2.MRC Cell Mutation UnitUniversity of SussexBrightonUK

Personalised recommendations