Leukotriene D4-Induced Signalling Events in Human Epithelial Cells: Gαi3 Activation and Translocation

  • John F. Öhd
  • Jonas L. P. Adolfsson
  • Anita Sjölander
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 433)


Leukotrienes (LTs) are arachidonic acid derivatives that are known to mediate inflammatory reactions1, 2. LTs have been recognized as potent mediators of vaso- and bronchoconstriction, mucus secretion and smooth muscle contraction3, and they have been implicated in the pathogenesis of several conditions, e. g. chron’s disease, ulcerative colitis and bronchial asthma3–5. LTs exert their effects by binding to receptors on the plasma membranes of their target cells1, 2, 6. Radioligand experiments6 and functional analyses using specific inhibitors have revealed the presence of LT receptors on a large number of cell types. The functional analyses have indicated the existence of at least two subsets of cysteinyl leukotriene receptors (CysLT receptors), for which a classification was quite recently published7. It has been shown that LTD4 induces a rise in the cytosolic free Ca2+ concentration in different types of cells8, 9, and we found that that effect can be blocked by pretreating cells with ICI-198,615 (unpublished data). The G-protein responsible for the influx of Ca2+ is sensitive to pertussis toxin (PTX), whereas the one responsible for mobilisation of intracellular Ca2+ is rho dependent10.


Pertussis Toxin Human Epithelial Cell Guanosine Triphosphate CysLT Receptor Guanosine Diphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Samuelsson, S.-E. Dahlén, J.Å. Lindgren, C.A. Rouzer, and C.N. Serhan, Leukotrienes and lipoxins: structures biosynthesis and biological effects, Science 237: 1171 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    C.N. Serhan, J.Z. Haeggström, and C.C. Leslie, Lipid mediator networks in cell signaling: update and impact of cytokines, FASEB J. 10: 1147 (1996).PubMedGoogle Scholar
  3. 3.
    Z. Marom, J.H. Shelhamer, M.K. Bach, D.R. Morton, and M. Kaliner, Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro, Am. Rev. Respir. Dis. 126: 449 (1982).PubMedGoogle Scholar
  4. 4.
    D.M. Hammerbeck, and D.R. Brown, Presence of Immunocytes and sulfidopeptide leukotrienes in the inflamed guinea pig distal colon, Inflammation 20: 413 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    T.D. Wardle, L. Hall, and L.A. Turnberg, Use of coculture of colonic mucosa biopsies to investigate the release of eicisanoids by inflamed and uninflamed mucosa from patients with inflammatory bowel disease, Gut 33: 1644 (1992).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Rochette, D.W. Nicholson, and K.M. Mettere, Identification and target-size analysis of the leukotriene D4 recptor in the human THP-cell line, Biochim. Biophys. Acta 1177: 283 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    R.A. Coleman, R.M. Eglen, R.L. Jones, S. Narumiya, T. Shimizu, W.L. Smith, S.-E. Dahlén, J.M. Drazen, P.J. Gardiner, W.T. Jackson, T.R. Jones, R.D. Krell, and S. Nicosia, Prostanoid and leukotriene receptors: A progress report from the IUPHAR working parties on classification and nomenclature, Adv. Prostaglandin Thromboxane Leukotriene Res. 23: 283 (1995).Google Scholar
  8. 8.
    A. Sjölander, E. Grönroos, S. Hammarström, and T. Andersson, Leukotriene D4 and E4 induce transmembrane signaling in human epithelial cells, J. Biol. Chem. 265: 20976 (1990).PubMedGoogle Scholar
  9. 9.
    S.T. Crooke, M. Mattern, H.M. Sarau, J.D. Winkler, J. Balcarek, A. Wong, and C.F. Bennett, The signal transduction system of the leukotriene D4 receptor, Trends Pharmacol. Sci. 10: 103 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Grönroos, T. Andersson, Å. Schippert, L. Zheng, and A. Sjölander, Leukotriene D4-inducedmobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho, Biochem. J. 316: 239 (1996).PubMedGoogle Scholar
  11. 11.
    J.R. Hepler, and A.G. Gilman, G-proteins, Trends Biochem. Sci. 17: 383 (1992).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Hall, Small GTP-binding proteins and the regulation of the actin cytoskeleton, Annu. Rev. Cell. Biol. 10: 31 (1994).PubMedCrossRefGoogle Scholar
  13. 13.
    D.E. Logothetis, Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clapham, The β/γ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart, Nature 325: 321 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    D.E. Clapham, and E.J. Neer, New roles for G-protein β/γ-dimers in transmembrane signalling, Nature 365: 403 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    J.L.P. Adolfsson, J.F. Öhd, and A. Sjölander, Leukotriene D4-induced activation and translocation of the G-protein (α3-subunit in human epithelial cells, Biochem. Biophys. Res. Com. 226: 413 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    T.M. Moriarty, E. Padrell, D.J. Carty, G. Omri, E.M. Landau, and R. Iyengar, Go protein as signal transducer in the pertussis toxin-sensitive phosphatidyl inositol pathway, Nature 343: 79 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    D.A. Ewald, I.-H. Pang, P.C. Sternweis, and R.J. Miller, Differential G-protein mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro, Neuron 2: 1185 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    S.R. Ikeda, Voltage-dependent modulation of N-type calcium channels by G-protein β/γ subunits, Nature 380: 255 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Herlitze, D.E. Garcia, K. Mackie, B. Hille, T. Scheuer, and W.A. Catterall, Modulation of Ca2+ channels by G-protein β/γ subunits, Nature 380: 258 (1996).PubMedCrossRefGoogle Scholar
  20. 20.
    E. Grönroos, and A. Sjölander, Leukotriene D4 induces a rapid increase in cAMP in human epithelial cells: a potential role for this signal in the regulation of calcium influx through the plasma membrane, submitted (1997).Google Scholar
  21. 21.
    E. Grönroos, Å. Schippert, M. Engström, and A. Sjölander, The regulation of leukotriene D4-induced calcium influx in human epithelial cells involves protein tyrosine phosphorylation, Cell Calcium 17: 177 (1995).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Särndahl, G.M. Bokoch, O. Stendahl, and T. Andersson, Stimulus-induced dissociation of α subunits of heterotrimeric GTP-binding proteins from the cytoskeleton of human neutrophils, Proc. Natl. Acad. Sci. (USA) 90: 6552 (1993).CrossRefGoogle Scholar
  23. 23.
    L.J. Yang, S.G. Rhee, and J.R. Williamson, Epidermal growth factor-induced activation and translocation of phospholipase Cγ 1 to the cytoskeleton in rat hepatocytes, J. Biol. Chem. 269: 7156 (1994).PubMedGoogle Scholar
  24. 24.
    A. Sjölander, Å. Schippert, and S. Hammarström, A human epithelial cell line, Intestine 407, can produce 5-hydroxyeicosatetraenoic acid and leukotriene B4, Prostaglandins 45: 85 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • John F. Öhd
    • 1
  • Jonas L. P. Adolfsson
    • 1
  • Anita Sjölander
    • 1
  1. 1.Department of Laboratory Medicine, Division of Experimental PathologyLund University, Wallenberg Laboratory, UMASMalmöSweden

Personalised recommendations