Crystallization, Impurity Diffusion, and Segregation in Polycrystalline Silicon

  • Victor E. Borisenko
  • Peter J. Hesketh
Part of the Microdevices book series (MDPF)

Abstract

Polycrystalline silicon is widely employed in semiconductor integrated circuits as a material for gates in MOS devices, emitters in bipolar transistors, and interconnections where low sheet resistivity is important [1,2]. Heavily doped layers are also attractive as diffusion sources for doping the underlying substrate [3]. Finally, polysilicon has been recrystallized successfully into device-quality material for three-dimensional integrated circuit devices [1]. The successful technological application of polysilicon requires precise control of the material parameters through appropriate choice of the material deposition conditions, doping, and annealing conditions. The prospect that polysilicon will find greater utility is increased considerably with the use of RTP [4].

Keywords

Entropy Crystallization Migration Phosphorus Furnace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Comparison of Thin Film Transistor and SOI Technologies, edited by H. W. Lam and M. J. Thompson (North-Holland, Amsterdam, 1984).Google Scholar
  2. 2.
    Poly crystalline Semiconductors. Physical Properties and Applications, edited by G. Harbeke (Springer-Verlag, Berlin, 1985).Google Scholar
  3. 3.
    M. J. M. J. Josquin, P. R. Boudewijn, and Y. Tammiaga, Effectiveness of polycrystalline silicon diffusion sources, Appl. Phys. Lett. 43(10), 960–962 (1983).CrossRefGoogle Scholar
  4. 4.
    V. E. Borisenko and V. A. Samujlov, Tverdofaznie processi v polikristallicheskom kremnii pri impulsnoii termoobrabotke nekogerentnim svetom, Zarubejnaya Elektronnaya Tekhnika 1, 45–68 (1987).Google Scholar
  5. 5.
    S. Solmi, M. Severy, and R. Angelucci, Electrical properties of thermally and laser annealed polycrystalline silicon films heavily doped with arsenic and phosphorus, J. Electrochem. Soc. 129(8), 1811–1818 (1982).CrossRefGoogle Scholar
  6. 6.
    J. Y. W. Seto, Annealing characteristics of boron-and phosphorus-implanted polycrystalline silicon, J. Appl. Phys. 47(12), 5167–5170 (1976).CrossRefGoogle Scholar
  7. 7.
    M. Kiselewicz, M. Zielinska-Szot, and W. Zuk, Ion implantation of impurities into polycrystalline silicon, Acta Phys. Pol. A 56(5), 609–618 (1979).Google Scholar
  8. 8.
    J. R. Monkowski, J. Bloem, L. J. Giling, and M. W. M. Graef, Comparison of dopant incorporation into polycrystalline and monocrystalline silicon, Appl. Phys. Lett. 35(5), 410–412 (1979).CrossRefGoogle Scholar
  9. 9.
    S. Hasegawa, T. Kasajima, and T. Shimizu, Electrical activation process of phosphorus atoms with annealing for doped CVD poly-Si, J. Appl. Phys. 50(11), 7256–7257 (1979).CrossRefGoogle Scholar
  10. 10.
    T. Makino and H. Nakamura, Resistivity changes of heavily-boron-doped CVD-prepared polycrystalline silicon caused by thermal annealing, Solid-State Electron. 24(1), 49–55 (1981).CrossRefGoogle Scholar
  11. 11.
    N. Lifshitz, Solubility of implanted dopants in polysilicon: Phosphorus and arsenic, J. Electrochem. Soc. 130(12), 2464–2467 (1983).CrossRefGoogle Scholar
  12. 12.
    J. Murota and T. Sawai, Electrical characteristics of heavily arsenic and phosphorus doped polycrystalline silicon, J. Appl. Phys. 53(5), 3702–3708 (1982).CrossRefGoogle Scholar
  13. 13.
    M. Mandurah, K. C. Saraswat, C. R. Helms, and T. I. Kamins, Dopant segregation in polysilicon, J. Appl. Phys. 51(11), 5755–5763 (1980).CrossRefGoogle Scholar
  14. 14.
    M. E. Cowher and T. O. Sedgwick, Chemical vapor deposited polycrystalline silicon, J. Electrochem. Soc. 119(11), 1565–1570 (1972).CrossRefGoogle Scholar
  15. 15.
    T. I. Kamins, Structure and properties of LPCVD silicon films, J. Electrochem. Soc. 127(3), 686–687 (1980).CrossRefGoogle Scholar
  16. 16.
    M. M. Mandurah, K. C. Saraswat, and T. I. Kamins, Arsenic segregation in polycrystalline silicon, Appl. Phys. Lett. 36(8), 683–685 (1980).CrossRefGoogle Scholar
  17. 17.
    L. L. Kazmerski, P. J. Ireland, and T. F. Ciszek, Evidence for the segregation of impurities to grain boundaries in multigrained silicon using Auger electron spectroscopy and secondary ion mass spectros-copy, Appl. Phys. Lett. 36(4), 323–325 (1980).CrossRefGoogle Scholar
  18. 18.
    B. Swaminathan, E. Demoulin, T. W. Sigmon, R. W. Dutton, and R. Reif, Segregation of arsenic to the grain boundaries in polycrystalline silicon, J. Electrochem. Soc. 127(10), 2227–2229 (1980).CrossRefGoogle Scholar
  19. 19.
    A. Carabelas, D. Nobili, and S. Solmi, Grain boundary segregation in silicon heavily doped with phosphorus and arsenic, J. Phys. (Paris) 43(10), cl/187–cl/192 (1982).Google Scholar
  20. 20.
    T. I. Kamins, J. Manolin, and R. N. Tucker, Diffusion of impurities in polycrystalline silicon, J. Appl. Phys. 43(1), 83–91 (1972).CrossRefGoogle Scholar
  21. 21.
    S. Horiuchi, Electrical characteristics of boron diffused polycrystalline silicon layers, Solid-State Electron. 18(7/8), 659–665 (1975).CrossRefGoogle Scholar
  22. 22.
    A. D. Buonaquisti, W. Carter, and P. H. Holloway, Diffusion characteristics of boron and phosphorus in polycrystalline silicon, Thin Solid Films 100(3), 235–248 (1983).CrossRefGoogle Scholar
  23. 23.
    P. H. Holloway, Grain boundary diffusion of phosphorus in polycrystalline silicon, J. Vac. Sci. Technol. 21(1), 19–22 (1982).CrossRefGoogle Scholar
  24. 24.
    H. F. Matare, Comments on: “Grain boundary diffusion of phosphorus in polycrystalline silicon,” J. Vac. Sci. Technol. B 1(1), 107 (1983).CrossRefGoogle Scholar
  25. 25.
    J. L. Liotard, R. Biberian, and J. Cabane, La diffusion intergranulaire dans le silicium, J. Phys. (Paris) 43(10), cl/213-cl/218 (1982).Google Scholar
  26. 26.
    H. Boumgart, H. J. Leamy, G. K. Celler, and L. E. Trimble, Grain boundary diffusion in polycrystalline silicon films on SiO2, J. Phys. (Paris) 43(10), cl/363–cl/369 (1982).Google Scholar
  27. 27.
    B. Swaminathan, K. C. Saraswat, R. W. Dutton, and T. I. Kamins, Diffusion of arsenic in polycrystalline silicon, Appl. Phys. Lett. 40(9), 795–798 (1982).CrossRefGoogle Scholar
  28. 28.
    Y. Sato, K. Murase, and H. Harada, A novel method to measure lateral diffusion length in polycrystalline silicon, J. Electrochem. Soc. 129(7), 1635–1638 (1982).CrossRefGoogle Scholar
  29. 29.
    M. Arienzo, Y. Komem, and A. E. Michel, Diffusion of arsenic in bilayer polycrystalline silicon films, J. Appl. Phys. 55(2), 365–369 (1984).CrossRefGoogle Scholar
  30. 30.
    H. Ryssel, H. Iberl, M. Bleier, G. Prinke, K. Haberger, and H. Kranz, Arsenic-implanted polysilicon layers, Appl. Phys. 24(3), 197–200 (1981).CrossRefGoogle Scholar
  31. 31.
    D. L. Losee, J. P. Lavine, E. A. Trabka, S.-T. Lee, and C. M. Jarman, Phosphorus diffusion in polycrystalline silicon, J. Appl. Phys. 55(4), 1218–1220 (1984).CrossRefGoogle Scholar
  32. 32.
    F. H. M. Spit, H. Albers, A. Lubbes, Q. J. A. Rijke, L. J. Van Ruijven, J. P. A. Westerveld, H. Bakker, and S. Radelaar, Diffusion of antimony (125Sb) in polycrystalline silicon, Phys. Status Solidi A 89(1), 105–115 (1985).CrossRefGoogle Scholar
  33. 33.
    M. Takai, M. Izumi, K. Matunaga, K. Gamo, S. Namba, T. Minamisono, M. Miyauchi, and T. Hirao, Backscattering study of implanted arsenic distribution in poly-silicon on insulator, Nucl. Instrum. Methods Phys. Res. B 19/20(1), 603–606 (1987).CrossRefGoogle Scholar
  34. 34.
    K. Tsukamoto, Y. Akasaka, and K. Horie, Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate, J. Appl. Phys. 48(5), 1815–1821 (1977).CrossRefGoogle Scholar
  35. 35.
    J. Murota and E. Arai, Relationship between total arsenic and electrically active arsenic concentrations in silicon produced by the diffusion process, J. Appl. Phys. 50(2), 804–808 (1979).CrossRefGoogle Scholar
  36. 36.
    H. C. De Graaff and J. G. De Groot, The SIS tunnel emitter: A theory for emitters with thin interface layers, IEEE Trans. Electron Devices 26(11), 1771–1776 (1979).CrossRefGoogle Scholar
  37. 37.
    P. Ashburn and B. Soerowirdjo, Arsenic profiles in bipolar transistors with polysilicon emitters, Solid-State Electron. 24(5), 475–476 (1981).CrossRefGoogle Scholar
  38. 38.
    W. J. M. J. Josquin, P. R. Boudewijn, and Y. Taminga, Effectiveness of polycrystalline silicon diffusion sources, Appl. Phys. Lett. 43(10), 960–962 (1983).CrossRefGoogle Scholar
  39. 39.
    S. P. Murarka, Phosphorus out-diffusion during high temperature anneal of phosphorus-doped polycrystalline silicon and SiO2, J. Appl. Phys. 56(8), 2225–2230 (1984).CrossRefGoogle Scholar
  40. 40.
    Y. Wada and S. Nishimatsu, Grain growth mechanism of heavily phosphorus-implanted polycrystalline silicon, J. Electrochem. Soc. 125(9), 1499–1504 (1978).CrossRefGoogle Scholar
  41. 41.
    J. P. Colinge, E. Demoulin, F. Delannay, M. Lobet, and J. M. Temerson, Grain size and resistivity of LPCVD polycrystalline silicon films, J. Electrochem. Soc. 128(9), 2009–2014 (1981).CrossRefGoogle Scholar
  42. 42.
    C. H. Lee, Heat-treatment effect on boron implantation in polycrystalline silicon, J. Electrochem. Soc. 129(7), 1604–1607 (1982).CrossRefGoogle Scholar
  43. 43.
    L. Mei, M. Rivier, Y. Kwark, and R. W. Dutton, Grain-growth mechanisms in polysilicon, J. Electrochem. Soc. 129(8), 1791–1795 (1982).CrossRefGoogle Scholar
  44. 44.
    C. V. Thompson and H. I. Smith, Surface-energy-driven secondary grain growth in ultrathin (< 100 nm) films on silicon, Appl. Phys. Lett. 44(6), 603–605 (1984).CrossRefGoogle Scholar
  45. 45.
    L. R. Zheng, L. S. Hang, and J. W. Mayer, Grain growth in arsenic-implanted polycrystalline Si, Appl. Phys. Lett. 51(25), 2139–2141 (1987).CrossRefGoogle Scholar
  46. 46.
    C. Hill and S. Jones, Recrystallization of poly-Si, in Properties of Silicon (INSPEC, London, 1988), pp. 964–986.Google Scholar
  47. 47.
    R. Klabes, J. Matthai, M. Voelskow, and S. Mutze, Pulsed incoherent light annealing of arsenic and phosphorus implanted polycrystalline silicon, Phys. Status Solidi A 47(1), K5–K7 (1982).CrossRefGoogle Scholar
  48. 48.
    K. B. Kadyrakunov, E. V. Nidaev, A. E. Plotnicov, L. S. Smirnov, I. G. Melnik, and M. V. Makeev, Flash lamp annealing of ion-implanted polycrystalline silicon, Phys. Status Solidi A 75(2), 483–488 (1983).CrossRefGoogle Scholar
  49. 49.
    V. E. Borisenko, V. V. Gribkovskii, V. A. Labunov, V. A. Samuilov, and K. D. Yashin, Incoherent light annealing of phosphorus-doped polycrystalline silicon, Phys. Status Solidi A 75(1), 117–120 (1983).CrossRefGoogle Scholar
  50. 50.
    V. E. Borisenko, V. A. Samuilov, V. F. Stelmakh, and K. D. Yashin, Electrical properties of phosphorus doped polycrystalline silicon subjected to transient heating, in Energy Pulse Modification of Semiconductors and Related Materials, edited by K. Hennig (Akademie der Wissenschaften der DDR, Dresden, 1985), pp. 331–336.Google Scholar
  51. 51.
    J. Matthai, M. Voelskow, and R. Klabes, Electrical and structural properties of light pulse and thermally annealed polycrystalline silicon films, in Energy Pulse Modification of Semiconductors and Related Materials, edited by K. Hennig (Akademie der Wissenschaften der DDR, Dresden, 1985), pp. 337–342.Google Scholar
  52. 52.
    M. Voelskow, J. Matthai, and R. Klabes, Electrical properties of ion implanted and short time annealed polycrystalline silicon, Phys. Status Solidi A 86(2), 781–788 (1984).CrossRefGoogle Scholar
  53. 53.
    K. Takebayashi, T. Yokoyama, M. Yoshida, and M. Inoue, Infrared radiation annealing of ion-implanted polycrystalline silicon using a graphite heater, J. Electrochem. Soc. 130(11), 2271–2274 (1983).CrossRefGoogle Scholar
  54. 54.
    S. R. Wilson, W. M. Paulson, R. B. Gregory, J. D. Gressett, A. H. Hamdi, and F. D. McDaniel, Fast diffusion of As in polycrystalline silicon during rapid thermal annealing, Appl. Phys. Lett. 45(4), 464–466 (1984).CrossRefGoogle Scholar
  55. 55.
    S. J. Krause, S. R. Wilson, W. M. Paulson, and R. B. Gregory, Grain growth during transient annealing of As-implanted polycrystalline silicon, Appl. Phys. Lett. 45(7), 778–780 (1984).CrossRefGoogle Scholar
  56. 56.
    S. J. Krause, S. R. Wilson, R. B. Gregory, W. M. Paulson, J. A. Leavitt, L. C. McIntyre, J. L. Seerveld, and P. Stoss, Structural changes during transient post-annealing of preannealed and arsenic implanted polycrystalline silicon films, in Rapid Thermal Processing, edited by T. O. Sedgwick, T. E. Seidel, and B.-Y. Tsaur (MRS, Pittsburgh, 1986), pp. 145–152.Google Scholar
  57. 57.
    R. A. Powell and R. Chow, Dopant activation and redistribution in As-implanted polycrystalline silicon by rapid thermal processing, J. Electrochem. Soc. 132(1), 194–198 (1985).CrossRefGoogle Scholar
  58. 58.
    R. Chow and R. A. Powell, Activation and redistribution of implanted P and B in polycrystalline silicon by rapid thermal processing, J. Vac. Sci. Technol. A 3(3), 892–895 (1985).CrossRefGoogle Scholar
  59. 59.
    V. E. Borisenko, V. V. Gribkovskii, V. A. Samuilov, V. F. Stelmakh, and K. D. Yashin, Elektrofizicheskie parametri implantirovannih fosforom sloev polikremniya na kremnii, podvergnutih impulsnoii termoo-brabotke, Elektronnaya Tekhnika, Ser. 6, Materiali 6, 21–25 (1985).Google Scholar
  60. 60.
    H. B. Harrison, A. P. Pogany, and Y. Komem, Properties of gallium implanted furnace and rapidly annealed polycrystalline silicon, in Rapid Thermal Processing of Electronic Materials, edited by S. R. Wilson, R. Powell, and D. E. Davies (MRS, Pittsburgh, 1987), pp. 329–333.Google Scholar
  61. 61.
    E. F. Krimmel, A. G. Lutsch, and E. Doering, Contribution to electron beam annealing of high-dose ion-implanted polysilicon, Phys. Status Solidi A 71(1), 451–456 (1982).CrossRefGoogle Scholar
  62. 62.
    R. C. Cammarata, C. V. Thompson, and S. M. Garrison, Secondary grain growth during rapid thermal annealing of doped polysilicon films, in Rapid Thermal Processing of Electronic Materials, edited by S. R. Wilson, R. Powell, and D. E. Davies (MRS, Pittsburgh, 1987), pp. 335–339.Google Scholar
  63. 63.
    V. E. Borisenko, L. F. Gorskaya, A. G. Dutov, and V. A. Samuilov, Povedenie implantirovannogo fosfora v polikristallicheskom kremnii pri impulsnoii termoobrabotke, Elektronnaya Tekhnika, Ser. 2, Polupro-vodnikovie Pribori 2, 53–57 (1987).Google Scholar
  64. 64.
    J. L. Hoyt, E. Crabbe, J. F. Gibbons, and R. F. W. Pease, Epitaxial alignment of arsenic implanted polycrystalline silicon films on (100) silicon obtained by rapid thermal annealing, Appl. Phys. Lett. 50(12), 751–753 (1987).CrossRefGoogle Scholar
  65. 65.
    H. J. Bohm, H. Wendt, and H. Oppolzer, Diffusion of B and As from polycrystalline silicon during rapid optical annealing, J. Appl. Phys. 62(7), 2784–2788 (1987).CrossRefGoogle Scholar
  66. 66.
    J. L. Hoyt, E. F. Crabbe, J. F. Gibbons, and R. F. W. Pease, Epitaxial alignment of As implanted polysilicon emitters, in Rapid Thermal Processing of Electronic Materials, edited by S. R. Wilson, R. Powell, and D. E. Davies (MRS, Pittsburgh, 1987), pp. 47–52.Google Scholar
  67. 67.
    T. L. Alford, D. K. Yang, W. Maszara, V. H. Ozguz, J. J. Wortman, and G. A. Rozgonyi, Microstructure of implanted and rapid thermal annealed semi-insulating polycrystalline oxygen-doped silicon, J. Electrochem. Soc. 134(4), 998–1003 (1987).CrossRefGoogle Scholar
  68. 68.
    W. Andra, G. Gotz, H. Hobert, V. Misyuchenko, V. A. Samuilov, and V. Stelmakh, IR and RBS spectroscopy investigation of semi-insulating phosphorus-doped polycrystalline silicon layers, Phys. Status Solidi A 110(1), 181–187 (1988).CrossRefGoogle Scholar
  69. 69.
    A. Almaggoussi, J. Sicart, J. L. Robert, J. F. Joly, and A. Laugier, Enhanced mobility in SOI films annealed by rapid thermal annealing, Appl. Surf. Sci. 36(1), 572–578 (1989).CrossRefGoogle Scholar
  70. 70.
    M. Takai, M. Izumi, T. Yamamoto, S. Namba, and T. Minamisono, Rapid thermal annealing of arsenic-implanted poly-Si layers on insulator, Nucl. Instrum. Methods Phys. Res. B 39(1-4), 352–356 (1989).CrossRefGoogle Scholar
  71. 71.
    N. Natsuaki, M. Tamura, and T. Tokuyama, Transformation of CVD poly-Si films on Si substrates into single crystal during rapid thermal annealing, in Layered Structures and Interface Kinetics, edited by S. Furukawa (KTK Scientific Publishers, Tokyo, 1985), pp. 137–146.Google Scholar
  72. 72.
    H. B. Harrison, S. T. Johnson, Y. Komem, C. Wong, and S. Cohen, Using rapid thermal processing to induce epitaxial alignment of polycrystalline silicon films on (100) silicon, in Materials Issues in Silicon Integrated Circuit Processing, edited by M. Wittmer, I. Stimmell, and M. Strathan (MRS, Pittsburgh, 1986), pp. 455–458.Google Scholar
  73. 73.
    R. B. Fair, Concentration profiles of diffused dopants in silicon, in Impurity Doping Processes in Silicon, edited by F. F. Wang (North-Holland, Amsterdam, 1981), pp. 315–442.CrossRefGoogle Scholar
  74. 74.
    V. E. Borisenko and S. G. Yudin, Steady-state solubility of substitutional impurities in silicon, Phys. Status Solidi A 101(1), 123–127 (1987).CrossRefGoogle Scholar
  75. 75.
    V. A. Samuilov and V. F. Stelmakh, Nonequilibrium impurity segregation in phosphorus implanted polycrystalline silicon subjected to transient heating, in Energy Pulse and Particle Beam Modification of Materials, edited by K. Hennig (Akademie-Verlag, Berlin, 1988), pp. 285–287.Google Scholar
  76. 76.
    L. Gerzberg and J. Meindl, A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon, IEEE Electron Device Lett. 1(3), 38–41 (1980).CrossRefGoogle Scholar
  77. 77.
    V. E. Borisenko, S. N. Kornilov, V. A. Labunov, and Y. V. Kucherenko, Oborudovanie dlya impul’snoii termoobrabotki materialov poluprovodnikovoii elektroniki intensivnim nekogerentnim svetom, Zarube-jnaya Elektronnaya Tekhnika 6, 45–65 (1985).Google Scholar
  78. 78.
    G. A. Ruggles, S. N. Hong, J. J. Wortman, F. Y. Sorrel, and M. C. Ozturk, Sample geometry effects in rapid thermal annealing, J. Vac. Sci. Technol. B 8(2), 122–127 (1990).CrossRefGoogle Scholar
  79. 79.
    H. J. Kim and C. V. Thompson, The effects of dopants on surface-energy-driven secondary grain growth in silicon films, J. Appl. Phys. 67(2), 757–767 (1990).CrossRefGoogle Scholar
  80. 80.
    R. Angelucci, M. Severi, S. Solmi, and L. Baldi, Electrical properties of phosphorus-doped polycrystalline silicon films contaminated with oxygen, Thin Solid Films 103(3), 275–281 (1983).CrossRefGoogle Scholar
  81. 81.
    J. Bloem and W. A. P. Classen, Carbon in polycrystalline silicon, influence on resistivity and grain size, Appl. Phys. Lett. 40(8), 725–726 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Victor E. Borisenko
    • 1
  • Peter J. Hesketh
    • 2
  1. 1.Belarussian State University of Informatics and RadioelectronicsMinskRepublic of Belarus
  2. 2.The University of Illinois at ChicagoChicagoUSA

Personalised recommendations