Skip to main content

Quantum Integrable Models on 1 + 1 Discrete Space Time

  • Chapter
Quantum Fields and Quantum Space Time

Part of the book series: NATO ASI Series ((NSSB,volume 364))

Abstract

Classical theory of solitons was based on two main examples: the KdV equation [1] and Toda lattice [2]. The role of continuous space variable x in the first example is played by discrete integer valued variable n in the second one. So discrete space was not foreign to the soliton theory from its very beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korteveg D. and de Vries G., Phil. Mag 39 (1985) 442

    Google Scholar 

  2. Toda M., The Theory of Nonlinear Lattices, Springer, Berlin 1981

    Google Scholar 

  3. Faddeev L. and Takhtajan L., Hamiltonian Approach to Soliton Theory, Springer, 1986

    Google Scholar 

  4. Izergin A., Korepin V., Lett. Math. Phys. 5 (1981) 199

    Article  MathSciNet  ADS  Google Scholar 

  5. Izergin A., Korepin V., Lett. Math. Phys. 6 (1984) 241

    Google Scholar 

  6. Faddeev L., Volkov A., Phys. Lett. B315 (1993) 311

    MathSciNet  ADS  Google Scholar 

  7. Faddeev L. and Takhtajan L., Springer Lecture Notes in Physics, 246 (1986) 66

    MathSciNet  Google Scholar 

  8. Babelon O., Phys. Lett. B238 (1990) 234

    MathSciNet  ADS  Google Scholar 

  9. Volkov A., Phys. Lett. A167 (1992) 345

    ADS  Google Scholar 

  10. Volkov A., preprint, q-alg/9603003

    Google Scholar 

  11. Faddeev L., Kashaev R., Mod. Phys. Lett. A9, (1994) 427

    MathSciNet  ADS  Google Scholar 

  12. Faddeev L., Lett. Math. Phys. 34 (1995) 249

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hirota R. J. Phys. Soc. Jpn., 43 (1977) 2079

    Article  MathSciNet  ADS  Google Scholar 

  14. Volkov A., preprint, hep-th/9509024

    Google Scholar 

  15. Nijhoff F., Capel H., Acta Appl. Math. 39 (1995) 133

    Article  MathSciNet  MATH  Google Scholar 

  16. Faddeev L., Volkov A., Theor. Math. Phys. 92 (1932) 207

    MathSciNet  Google Scholar 

  17. Faddeev L., Volkov A., Lett. Math. Phys. 32 (1994) 125

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Faddeev L., Int. J. Mod. Phys. A10 (1995) 1845

    MathSciNet  ADS  Google Scholar 

  19. Faddeev L., Volkov A., Zapiski Nauch. Seminar. PDMI v. 224 (1995)

    Google Scholar 

  20. Fateev V., Zamolodchikov A., Phys. lett. A92 (1982) 37

    MathSciNet  ADS  Google Scholar 

  21. Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Volkov A., preprint CERN-TH-5981-91 (1991)

    Google Scholar 

  22. Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Commun. Math. Phys. 149 (1992) 335

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Alekseev A., Faddeev L., Frölich J., Schomerus V., preprint DESY 96-07, q-alg/9604017

    Google Scholar 

  24. Falceto F., Gawedsky K., J. Georn. Phys. 11 (1993) 251

    ADS  MATH  Google Scholar 

  25. Faddeev L., in New Symmetry Principles in Quantum Field Theory NATO ASI Series, Physics, vol. 295 (1992) 159

    Article  MathSciNet  Google Scholar 

  26. Faddeev L., Volkov A., preprint, hep-th/9606088

    Google Scholar 

  27. Reshetikhin N., Takhtajan L., Faddeev L., Leningrad Math. J. 1 (1990)

    Google Scholar 

  28. Korepanov I., Algebraic integrable dynamical systems, 2+1-dimensional models in wholly discrete space-time, and inhomogeneous models in 2-dimensional statistical physics. Doctoral dissertation, solv-int/9506003

    Google Scholar 

  29. Kashaev R., Reshetikhin N., preprint ENSLAPP-L-548/95, hep-th/9507065, to be published in Lett. Math. Phys.

    Google Scholar 

  30. Bazhanov V., Baxter R., J. Stat. Phys. 69, (1992) 453

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Kashaev R., preprint ENSLAPP-L-569/95, solv-int/9512005, to be published in Lett. Math. Phys.

    Google Scholar 

  32. Sergeev S., Bazhanov V., Boos H., Mangazeev V., Stroganov Yu., preprint IHEP 95-129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faddeev, L., Volkov, A. (1997). Quantum Integrable Models on 1 + 1 Discrete Space Time. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds) Quantum Fields and Quantum Space Time. NATO ASI Series, vol 364. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1801-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1801-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1803-1

  • Online ISBN: 978-1-4899-1801-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics