Skip to main content

Noncommutative Differential Geometry and the Structure of Space Time

  • Chapter
Book cover Quantum Fields and Quantum Space Time

Part of the book series: NATO ASI Series ((NSSB,volume 364))

Abstract

The basic data of Riemannian geometry consists of a manifold M whose points are locally labeled by a finite number of real coordinates x μ and a metric, which is given by the infinitesimal line element:

$$ ds^2 = g_{\mu \nu } dx^\mu dx^\nu $$
(1.1)

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Atiyah: K-theory and reality, Quart. J. Math. Oxford (2), 17 (1966), 367–386.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Beals and P. Greiner: Calculus on Heisenberg manifolds, Annals of Math. Studies 119, Princeton Univ. Press, Princeton, N.J., 1988.

    Google Scholar 

  3. T.P. Branson: An anomaly associated with 4-dimensional quantum gravity, to appear.

    Google Scholar 

  4. T.P. Branson and B. Ørsted: Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc, 113 (1991), 669–682.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.R. Bernstein and F. Wattenberg: Non standard measure theory. In Applications of model theory to algebra analysis and probability, Edited by W.A.J. Luxenburg Halt, Rinehart and Winstin (1969).

    Google Scholar 

  6. A. Chamseddine and A. Connes: The spectral action principle, to appear.

    Google Scholar 

  7. A. Connes: Noncommutative geometry, Academic Press (1994).

    Google Scholar 

  8. A. Connes: Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras, (Kyoto, 1983), pp. 52-144, Pitman Res. Notes in Math. 123 Longman, Harlow (1986).

    Google Scholar 

  9. A. Connes: Gravity coupled with matter and the foundation of noncommutative geometry.

    Google Scholar 

  10. A. Connes and H. Moscovici: Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), 345–388.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Connes and H. Moscovici: The local index formula in noncommutative geometry, GAFA, 5 (1995), 174–243.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Connes and H. Moscovici: Hypoelliptic Dirac operator, diffeomorphisms and the transverse fundamental class.

    Google Scholar 

  13. A. Connes, D. Sullivan and N. Teleman: Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes, Topology, Vol.33 n.4 (1994), 663–681.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Damour and J.H. Taylor: Strong field tests of relativistic gravity and binary pulsars, Physical Review D, Vol.45 n.6 (1992), 1840–1868.

    Article  ADS  Google Scholar 

  15. J. Dixmier: Existence de traces non normales, C.R. Acad. Sci. Paris, Ser. A-B 262 (1966).

    Google Scholar 

  16. S. Doplicher, K. Fredenhagen and J.E. Roberts: Quantum structure of space time at the Planck scale and Quantum fields, to appear in CMP.

    Google Scholar 

  17. J. Fröhlich: The noncommutative geometry of two dimensional supersymmetric conformal field theory, Preprint ETE (1994).

    Google Scholar 

  18. M. Gromov: Carnot—Caratheodory spaces seen from within, Preprint IHES/ M/94/6.

    Google Scholar 

  19. M. Hilsum, G. Skandalis: Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov, Ann. Sci. Ecole Norm. Sup. (4) 20 (1987), 325–390.

    MathSciNet  MATH  Google Scholar 

  20. W. Kalau and M. Walze: Gravity, noncommutative geometry and the Wodzicki residue, J. of Geom. and Phys. 16 (1995), 327–344.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. G. Kasparov: The operator K-functor and extensions of C*-algebras, Izv. Akad. Nauk. SSSR Ser. Mat, 44 (1980), 571–636.

    MathSciNet  MATH  Google Scholar 

  22. C. Kassel: Le résidu non commutatif, Séminaire Bourbaki, exposé 708, Astérisque Vol. 88-89.

    Google Scholar 

  23. D. Kastler: The Dirac operator and gravitation, Commun. Math. Phys. 166 (1995), 633–643.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R.C. Kirbi: Stable homeomorphisms and the annulus conjecture, Ann. Math. 89 (1969), 575–582.

    Article  Google Scholar 

  25. B. Lawson and M.L. Michelson: Spin Geometry, Princeton 1989.

    Google Scholar 

  26. Y. Manin: Quantum groups and noncommutative geometry, Centre Recherche Math. Univ. Montréal (1988).

    Google Scholar 

  27. J. Milnor and D. Stasheff: Characteristic classes, Ann. of Math. Stud., 76 Princeton University Press, Princeton, N.J. (1974).

    Google Scholar 

  28. S.P. Novikov: Topological invariance of rational Pontrjagin classes. Doklady A.N. SSSR, 163 (1965), 921–923.

    Google Scholar 

  29. S. Power: Hankel operators on Hubert space, Res. Notes in Math., 64 Pitman, Boston, Mass. (1982).

    Google Scholar 

  30. M.A. Rieffel: Morita equivalence for C*-algebras and W*-algebra.s, J. Pure Appl. Algebra 5 (1974), 51–96.

    Article  MathSciNet  MATH  Google Scholar 

  31. M.A. Rieffel: C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415–429; MR 83b:46087.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Riemann: Mathematical Werke, Dover, New York (1953).

    Google Scholar 

  33. E. Stein: Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J. (1970).

    MATH  Google Scholar 

  34. J. Stern: Le problème de la mesure, Séminaire Bourbaki, Vol. 1983/84, Exp. 632, pp. 325-346, Astérisque N. 121/122, Soc. Math. France, Paris (1985).

    Google Scholar 

  35. D. Sullivan: Hyperbolic geometry and homeomorphisms, in Geometric Topology, Proceed. Georgia Topology Conf. Athens, Georgia (1977), 543-555.

    Google Scholar 

  36. D. Sullivan: Geometric periodicity and the invariants of manifolds, Lecture Notes in Math. 197, Springer (1971).

    Google Scholar 

  37. M. Takesaki: Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Math. 128, Springer (1970).

    Google Scholar 

  38. Weinberg: Gravitation and Cosmology, John Wiley and Sons, New York London (1972).

    Google Scholar 

  39. M. Wodzicki: Noncommutative residue, Part I. Fundamentals K-theory, arithmetic and geometry, Lecture Notes in Math., 1289, Springer-Berlin (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Connes, A. (1997). Noncommutative Differential Geometry and the Structure of Space Time. In: ’t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds) Quantum Fields and Quantum Space Time. NATO ASI Series, vol 364. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1801-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1801-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1803-1

  • Online ISBN: 978-1-4899-1801-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics