Skip to main content

Inward Rectification by an Activation Gating Mechanism

  • Chapter
From Ion Channels to Cell-to-Cell Conversations

Abstract

Potassium channels are found in every organ and virtually in every cell, and appear to play divergent physiological roles (Hille, 1992). In the last 9 years, the identification of a number of potassium channel amino acid sequences suggests only a small number of classes with different putative membrane spanning topologies. Presently, there appear to be two major classes of K+ channels. One class, whose members include the first cloned potassium channel (Shaker) contains voltage gated channels with at least six putative hydrophobic transmembrane segments (Chandy and Gutman, 1995), including a positively charged segment and a highly conserved signature sequence (MacKinnon and Yellen, 1990, Hartmann, et al., 1991, Yool and Schwarz, 1991) in between the fifth and sixth transmembrane segment. The other class consists of smaller channels with only two putative transmembrane segments and the conserved signature sequence and whose members are mainly inward rectifiers whose rectification is a result of block of an internal particle (Ficker, et al., 1994, Lopatin, et al., 1994, Nichols, et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, C. M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. Journal of General Physiology. 70: 567–590.

    Article  PubMed  CAS  Google Scholar 

  • Chandy, K. G., and G. A. Gutman. 1995. Voltage-gated potassium channel genes. In Ligand-and voltage-gated ion channels. CRC Press, Inc., Ann Arbor.

    Google Scholar 

  • Demo, S. D., and G. Yellen. 1991. The Inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 7: 743–753.

    Article  PubMed  CAS  Google Scholar 

  • Ficker, E., M. Taglialatela, B. A. Wible, C. M. Henley, and A. M. Brown. 1994. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 266: 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lagunas, F., and C. M. Armstrong. 1994. The relation between ion permeation and recovery from inactivation of ShakerB K+ channels. Biophysical Journal. 67: 1806–1815.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, H. A., G. E. Kirsch, J. A. Drewe, M. Taglialatela, R. H. Joho, and A. M. Brown. 1991. Exchange of conduction pathways between two related channels. Science. 251: 942–944.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. 1992. Ionic channels of excitable membranes. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Hoshi, T. 1995. Regulation of voltage dependence of the KAT1 channel by intracellular factors. J. Gen. Physiol. 105: 309–328.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, T., W. N. Zagotta, and R. W. Aldrich. 1990. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 250: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, T., W. N. Zagotta, and R. W. Aldrich. 1991. Two types of inactivation in Shaker K+ channels: Effects of alterations in the carboxyterminal region. Neuron. 7: 547–556.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, P. H., O. S. Baker, D. S. Dhillon, and E. Y. Isacoff. 1996. Transmembrane movement of the Shaker K+ channel S4. Neuron. 16: 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Liman, E. R., P. Hess, F. Weaver, and G. Koren. 1991. Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature. 353: 752–756.

    Article  PubMed  CAS  Google Scholar 

  • Lopatin, A. N., E. N. Makhina, and C. G. Nichols. 1994. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature. 372: 366–369.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, G. A., Y. N. Jan, and L. Y. Jan. 1991. Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels. Neuron. 7: 327–336.

    Article  PubMed  CAS  Google Scholar 

  • MacKinnon, R., and G. Yellen. 1990. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science. 250: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Mannuzzu, L. M., M. M. Moronne, and E. Y. Isacoff. 1996. Direct physical measure of conformation rearrangement underlying potassium channel gating. Science. 271: 213–216.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A. G., and R. W. Aldrich. 1996. Conversion of a delayed rectifier K+ channel to a voltage-gated inward rectifier K+ channel by three amino acid substitutions. Neuron. 16: 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, C. G., K. Ho, and S. Hebert. 1994. Mg2+ dependent inward rectification of ROMK1 potassium channels expressed in Xenopus oocytes. J. Physiol. 4763: 399–409.

    Google Scholar 

  • Papazian, D. M., X. M. Shao, S. Seoh, A. F. Mock, Y. Huang, and D. H. Wainstock. 1995. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron. 14: 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  • Papazian, D. M., L. C. Timpe, Y. N. Jan, and L. Y. Jan. 1991. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 349: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Ruppersberg, J. P., R. Frank, O. Pongs, and M. Stocker. 1991. Cloned neuronal Ik (A) channels reopen during recovery from inactivation. Nature. 353: 657–660.

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti, M. C., C. Jiang, M. E. Curran, and M. T. Keating. 1995. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P.L., T. Baukrowitz, and G. Yellen. 1996. The inward rectification mechanism of the HERG cardiac potassium channel. Nature. 379: 833–836.

    Article  PubMed  CAS  Google Scholar 

  • Stuhmer, W., F. Conti, H. Suzuki, X. Wang, M. Noda, N. Yahagi, H. Kubo, and S. Numa. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature. 339: 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela, M., B. A. Wible, R. Caporaso, and A. M. Brown. 1994. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science. 264: 844–847.

    Article  PubMed  CAS  Google Scholar 

  • Trudeau, M. C., J. W. Warmke, B. Ganetzky, and G. A. Robertson. 1995. Herg, a human inward rectifier in the voltage-gated potassium channel family. Science. 269: 92–95.

    Article  PubMed  CAS  Google Scholar 

  • Tytgat, J., and P. Hess. 1992. Evidence for cooperative interactions in potassium channel gating. Nature. 359: 420–423.

    Article  PubMed  CAS  Google Scholar 

  • Warmke, J. W., and B. Ganetzky. 1994. A family of potassium channel genes related to EAG in Drosophila and mammals. Proc. Natl. Acad. Sci. USA. 91: 3438–3442.

    Article  PubMed  CAS  Google Scholar 

  • Yang, N., A. L. George, and R. Horn. 1996. Molecular basis of charge movement in voltage-gated sodium channels. Neuron. 16: 113–122.

    Article  PubMed  Google Scholar 

  • Yang, N., and R. Horn. 1995. Evidence for voltage-dependent S4 movement in sodium channels. Neuron. 15: 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Yool, A. J., and T. L. Schwarz. 1991. Alteration of ionic selectivity of a K+ channel by mutation of the H5 region. Nature. 349: 700–704.

    Article  PubMed  CAS  Google Scholar 

  • Zagotta, W. N., T. Hoshi, and R. W. Aldrich. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 250: 568–571.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, A.G., Warren, C.A., Aldrich, R.W. (1997). Inward Rectification by an Activation Gating Mechanism. In: Latorre, R., Sáez, J.C. (eds) From Ion Channels to Cell-to-Cell Conversations. Series of the Centro de Estudios Científicos de Santiago. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1795-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1795-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1797-3

  • Online ISBN: 978-1-4899-1795-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics