Vitamin K Metabolism

Part of the Subcellular Biochemistry book series (SCBI, volume 30)


The discovery of vitamin K can be largely attributed to the Danish scientist Henrik Dam, whose work on sterol metabolism in chicks required the feeding of carefully controlled diets, some of which were depleted in lipids (Dam, 1929). This often caused internal hemorrhages and other symptoms similar to scurvy, but which Dam showed to be incurable by large doses of vitamin C. The finding of the lack of influence of cod liver oil concentrates (as a source of vitamins A and D), but the protective effect of cereals and seeds, prompted Dam to suggest that the bleeding syndrome was caused by a lack of an essential dietary component that was different from vitamins A, D, and C (Dam and Schoenheyder, 1934; Dam, 1934). Further work by Dam with experimental diets showed the factor was fat soluble, heat stable and occurred in various animal and plant tissues, hog liver fat being one of the best sources. In 1935, after ruling out vitamin E (hog liver fat was many times as active as wheat-germ oil), Dam proposed that the antihemorrhagic factor was a new fat-soluble vitamin that he called “Koagulations vitamin” or vitamin K (Dam, 1935a,b). Other rich sources of vitamin K were found to be green leaves such as alfalfa. Another surprisingly rich souce was bran or fishmeal which had become putrifled by the action of bacteria (Almquist and Stokstad, 1935; Almquist et al., 1938), suggesting that microbial action as well as plant biosynthesis is capable of producing the factor. Improvements in the assay method based on the restoration of normal clotting time in hemorrhagic chicks led to the proposal that a lack of vitamin K caused a deficiency in prothrombin activity and that vitamin K might be some kind of coenzyme or prosthetic group required for active prothrombin (Schoenheyder, 1936). However, subsequent work showed that prothrombin precipitates were active after all lipids had been removed and that vitamin K concentrates could not induce blood to clot (Dam et al., 1936).


Bone Mineral Density Thrombin Receptor Carboxylation Reaction Epoxide Reductase Diethyl Adipate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, Y., Hara, K., Ohkawa, I., and Tajima, T., 1993, Effects of menatetrenone on bone loss induced by ovariectomy in rats, Japan. J. Pharmacol. 62:145–153.Google Scholar
  2. Akiyama, Y., Hara, K., Tajima, T., Murota, S., and Morita, I., 1994, Effect of vitamin K2 (menatatrenone) on osteoclast-like cell formation in mouse bone marrow cultures, Eur. J. Pharmacol. 263:181–185.PubMedGoogle Scholar
  3. Almquist, H. J., and Stokstad, E. L. R., 1935, Hemorragic chick disease of dietary origin, J. Biol. Chem. 111:105–113.Google Scholar
  4. Almquist, H. J., and Stokstad, E. L. R., 1937, Assay procedure for vitamin K (anti-hemorrhagic vitamin), J. Nutr. 14:235–240.Google Scholar
  5. Almquist, H. J., Pentler, C. F., and Mecchi, E., 1938, Synthesis of the antihemorrhagic vitamin by bacteria, Proc. Soc. Exp. Biol. Med. 38:336–338.Google Scholar
  6. Altieri, D. C., 1995, Xa receptor EPR-1, FASEB J. 9:860–865.PubMedGoogle Scholar
  7. Altieri, D. C., and Edgington, T. S., 1990, Identification of effector cell protease receptor-1: A leukocyte-distributed receptor for the serine protease factor Xa, J. Immunol. 145:246–253.PubMedGoogle Scholar
  8. Altieri, D. C., and Stamnes, S. J., 1994, Protease-dependent T-cell activation: Ligation of effector cell protease receptor-1 (EPR-1) stimulates lymphocyte proliferation, Cell. Immunol. 155:372–383.PubMedGoogle Scholar
  9. Babior, B. M., 1966, The role of vitamin K in clotting factor synthesis. I. Evidence for the participation of vitamin K in the conversion of a Polypeptide precursor to factor VII, Biochem. Biophys. Acta 123:606–610.PubMedGoogle Scholar
  10. Bell, R. G., and Matschiner, J. T., 1972, Warfarin and the inhibition of vitamin K activity by an oxide metabolite, Nature 237:32–33.PubMedGoogle Scholar
  11. Benzakour, O., Formstone, G., Rahman, S., Kanthou, G., Dennehy, U., Scully, M., Kakkar, V., and Cooper, D. N., 1995, Evidence for a protein S receptor(s) on human vascular smooth muscle cells, Biochem. J. 308:481–485.PubMedGoogle Scholar
  12. Binkley, S. B., MacCorquodale, D. W., Thayer, S. A., and Doisy, E. A., 1939, The isolation of vitamin K1, J. Biol. Chem. 130:219–234.Google Scholar
  13. Binkley, S. B., McKee, R. W., Thayer, S. A., and Doisy, E. A., 1940, The constitution of vitamin K2, J. Biol. Chem. 133:721–729.Google Scholar
  14. Booth, S. L., Sadowski, J. A., Weihrauch, J. L., and Ferland, G., 1993, Vitamin K1 (phylloquinone) content of foods: A provisional table, J. Food Comp. Anal 6:109–120.Google Scholar
  15. Bristol, J. A., Ratcliffe, J. V., Roth, D. A., Jacobs, M. A., Furie, B. C., and Furie, B., 1996, Biosynthesis of Prothrombin: Intracellular localization of the vitamin K-dependent carboxylase and the sites of carboxylation, Blood 88:2585–2593.PubMedGoogle Scholar
  16. Butt, H. R., Allen, E. V., and Bollman J. L., 1941, A preparation from spoiled sweet clover [3,3′-methylene-bis-(4-hydroxycoumarin)] which prolongs coagulation and Prothrombin time of the blood; preliminary report of experimental and clinical studies, Proc. Staff Meetings Mayo Clinic 16:388–395.Google Scholar
  17. Cairns, J. R., and Price, P. A., 1994, Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely γ-carboxylated in humans, J. Bone Miner. Res. 9:1989–1997.PubMedGoogle Scholar
  18. Campbell, H. A., and Unk, K. P., 1941, Studies on the hemorrhagic sweet clover disease; the isolation and crystallization of the hemorrhagic agent, J. Biol. Chem. 138:21–33.Google Scholar
  19. Chenu, C., Colucci, S., Grano, M., Zigrino, P., Barattolo, R., Zambonin, G., Baldini, N., Vergnaud, P., Delmas, P. D., and Zallone, A. Z., 1994, Osteocalcin induces Chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signalling in human osteoclast-like cells, J. Cell Biol 127:1149–1158.PubMedGoogle Scholar
  20. Church, W. R., Boulanger, L. L., Messier, T. L., and Mann, K. G., 1989, Evidence for a common metal ion-dependent transition in the 4-carboxyglutamic acid domains of several vitamin K-dependent proteins, J. Biol. Chem. 264:17882–17887.PubMedGoogle Scholar
  21. Colman, R. W., Marder, V. J., Salzman, E. W., and Hirsh, J., 1994, Overview of hemostasis, in Hemostasis and Thrombosis, 3rd ed. (R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman, eds.), pp. 3–18, Lippincott, Philadelphia.Google Scholar
  22. Conly, J. M., and Stein, K., 1992, Quantitative and qualitative measurements of K vitamins in human intestinal contents, Am. J. Gasteroenterol. 87:311–316.Google Scholar
  23. Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V., and Coughlin, S. R., 1996, Role of the thrombin receptor in development and evidence for a second receptor, Nature 381:516–519.PubMedGoogle Scholar
  24. Dahlback, B., 1983, Purification of human C4b-binding protein and formation of its complex with vitamin K-dependent protein 5, Biochem. J. 209:847–856.PubMedGoogle Scholar
  25. Dahlback, B., 1984, Interaction between vitamin K-dependent protein S and the complement protein, C4b-binding protein. A link between coagulation and the complement system, Semin. Thromb. Hemostas. 10:139–148.Google Scholar
  26. Dam, H., 1929, Cholesterinstoffwechsel in Hühnereiern und Hühnchen, Biochem. Z. 215:475–492.Google Scholar
  27. Dam, H., 1934, Haemorrhages in chicks reared on artificial diets: A new deficiency disease, Nature 133:909–910.Google Scholar
  28. Dam, H., 1935a, The antihaemorrhagic vitamin of the chick, Nature 135:652–653.Google Scholar
  29. Dam, H., 1935b, The antihaemorrhagic vitamin of the chick, Biochem. J. 29:1273–1285.PubMedGoogle Scholar
  30. Dam, H., and Glavind, J., 1938, Determination of vitamin K by the curative blood-clotting method, Biochem. J. 32:1018–1023.PubMedGoogle Scholar
  31. Dam, H., and Lewis, L., 1937, The chemical concentration of vitamin K, Biochem. J. 31:17–21.PubMedGoogle Scholar
  32. Dam, H., and Schoenheyder, F., 1934, A deficiency disease in chicks resembling scurvy, Biochem. J. 28:1355–1359.PubMedGoogle Scholar
  33. Dam, H., and Schoenheyder, F., 1936, The occurrence and chemical nature of vitamin K, Biochem. J. 30:897–901.PubMedGoogle Scholar
  34. Dam, H., Schoenheyder, F., and Tage-Hansen, E., 1936, Studies on the mode of action of vitamin K, Biochem. J. 30:1075–1079.PubMedGoogle Scholar
  35. De Metz, M., Vermeer, G., Soute, B. A. M., Van Scharrenberg, G. J. M., Slotboom, A. J., and Hemker, H. G. 1981, Partial purification of bovine liver vitamin K-dependent carboxylase by immunospecific adsorption onto antifactor X, FEBS Lett. 123:215–218.PubMedGoogle Scholar
  36. De Metz, M., Soute, B. A. M., Hemker, H. G., and Vermeer, G., 1982, The inhibition of vitamin K-dependent carboxylase by cyanide, FEBS Lett. 137:253–256.PubMedGoogle Scholar
  37. DiScipio, R. G., and Davie, E. W., 1979, Characterization of protein S, a γ-carboxyglutamic acid containing protein from bovine and human plasma, Biochemistry 18:899–904.PubMedGoogle Scholar
  38. Dowd, P., Hershine, R., Ham, S. W., and Naganathan, S., 1995, Vitamin K and energy transduction: A base strength amplification mechanism, Science 269:1684–1691.PubMedGoogle Scholar
  39. Ducy, P., Desbois, G., Boyce, B., Pinero, G., Story, B., Dunstan, G., Smith, E., Bonadio, J., Goldstein, S., Gundberg, G., Bradley, A., and Karsenty, G., 1996, Increased bone formation in osteocalcin-deficient mice, Nature 382:448–452.PubMedGoogle Scholar
  40. Elion, J., Downing, M. J., Butkowski, R. J., and Mann, K. G., 1977, Structure of human thrombin: Comparison with other serine proteases, in Chemistry and Biology of Thrombin (R. L. Lundblad, J. W. Fenton, and K. G. Mann, eds.), pp. 97–111, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  41. Esmon, C. T., and Owen, W. G., 1981, Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C., Proc. Natl. Acad. Sci. USA 78:2249–2252.PubMedGoogle Scholar
  42. Esmon, C. T., Sadowski, J. A., and Suttie, J. W., 1975a, A new carboxylation reaction: The vitamin K-dependent incorporation of H14CO3 into Prothrombin, J. Biol Chem. 250:4744–4748.PubMedGoogle Scholar
  43. Esmon, C. T., Suttie, J. W., and Jackson, C. M., 1975b, The functional significance of vitamin K action. Difference in phospholipid binding between normal and abnormal prothrombin, J. Biol. Chem. 250:4095–4099.PubMedGoogle Scholar
  44. Ewing, D. T., Vanderbilt, J. M., and Kamm, O., 1939, The ultraviolet absorption of vitamins K1, K2 and some related compounds, J. Biol. Chem. 131:345–356.Google Scholar
  45. Fair, D. S., Marlar, R. A., and Levin, E. G., 1986, Human endothelial cells synthesize protein S, Blood 67:1168–1171.PubMedGoogle Scholar
  46. Fieser, L. F., 1939, Synthesis of vitamin K1, J. Am. Chem. Soc. 61:3467–3475.Google Scholar
  47. Foster, D. C., Rudinski, M. S., Schach, B. G., Berkner, K. L., Kumar, A. A., Hagen, F. S., Sprecher, C. A., Insley, M. Y., and Davie, E. W., 1987, Propeptide of human protein C is necessary for γ-carboxylation, Biochemistry 26:7003–7011.PubMedGoogle Scholar
  48. Fraser, J. D., and Price, P. A., 1988, Lung, heart and kidney express high levels of mRNA for the vitamin K-dependent matrix G1a protein, J. Biol.Chem. 263:11033–11036.PubMedGoogle Scholar
  49. Ganrot, P. O., and Nilehn, J. E., 1968, Plasma Prothrombin during treatment with Dicumarol. II. Demonstration of an abnormal Prothrombin fraction, Scand. J. Clin. Lab. Invest. 22:23–28.Google Scholar
  50. Gasic, G. P., Arenas, C. P., Gasic, T. B., and Gasic, G. J., 1992, Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells, Proc. Natl. Acad. Sci. USA 89:2317–2320.PubMedGoogle Scholar
  51. Gijsbers, B. L. M. G., Jie, K.-S. G., and Vermeer, C., 1996, Effect of food composition on vitamin K absorption in human volunteers, Br. J. Nutr. 76:223–229.PubMedGoogle Scholar
  52. Glowacki, J., and Lian, J. B., 1987, Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-depleted bone implants, Cell Differ. 21:247–254.PubMedGoogle Scholar
  53. Godowski, P. J., Mark, M. R., Chen, J., Sadick, M. D., Raab, H., and Hammonds, R. G., 1995, Reevaluation of the roles of protein S and Gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3, Cell 82:355–358.PubMedGoogle Scholar
  54. Goruppi, S., Ruaro, E., and Schneider, C., 1996, Gas6, the ligand of the Ax1 tryosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts, Oncogene 12:471–480.PubMedGoogle Scholar
  55. Goswami, P., and Munro, H. N., 1962, The role of ribonucleic acid in the formation of Prothrombin activity by rat-liver microsomes, Biochim. Biophys. Acta 55:410–412.PubMedGoogle Scholar
  56. Hara, K., Akiyama, Y., Ohkawa, I., and Tajima, T., 1993a, Effects of menatetrenone on prednisolone-induced bone loss in rats, Bone 14:813–818.PubMedGoogle Scholar
  57. Hara, K., Akiyama, Y., Tajima, T., and Shiraki, M., 1993b, Menatetrenone inhibits bone resorption partly through inhibition of PGE2 synthesis in vitro, J. Bone Miner. Res. 8:535–542.PubMedGoogle Scholar
  58. Hara, K., Akiyama, Y., Nakamura, T., Murota, S., and Morita., 1995, The inhibitory effect of vitamin K2 (menetetrenone) on bone may be related to its side chain, Bone 16:179–184.PubMedGoogle Scholar
  59. Hauschka, P. V., and Carr, S. A., 1982, Calcium-dependent α-helical structure in osteocalcin, Biochemistry 21:2538–2547.PubMedGoogle Scholar
  60. Hauschka, P. V., Lian, J. B., and Gallop, P. M., 1975, Direct identification of the calcium-binding amino acid γ-carboxyglutamate in mineralized tissue, Proc. Natl. Acad. Sci. USA 72:3925–3929.PubMedGoogle Scholar
  61. Hauschka, P. V., Friedman, P. A., Traverso, H. P., and Gallop, P. M., 1979, Vitamin K-dependent γ-carboxyglutamic acid formation by kidney microsomes in vitro, Biochem. Biophys. Res. Commun. 71:1207–1213.Google Scholar
  62. Hemker, H. C., Veltkamp, J. J., Hensen, A., and Loeliger, E. A., 1963, Nature of Prothrombin biosynthesis: Preprothrombinaemia in vitamin K-deficiency, Nature 200:589–590.PubMedGoogle Scholar
  63. Hemker, H. C., Veltkamp, J. J., and Loeliger, E. A., 1968, Kinetic aspects of the interaction of blood clotting enzymes. III. Demonstration of an inhibitor of Prothrombin conversion in vitamin K deficiency, Thromb. Diath. Haemorrh. 19:346–363.PubMedGoogle Scholar
  64. Hodges, S. J., Akesson, K., Vergnaud, P., Obrant, K., and Delmas, P. D., 1993, Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture, J. Bone Miner. Res. 8:1241–1245.PubMedGoogle Scholar
  65. Hogg, P. J., and Stenflo, J., 1991a, Interaction of vitamin K-dependent protein Z with thrombin, J. Biol. Chem. 266:10953–10958.PubMedGoogle Scholar
  66. Hogg, P. J., and Stenflo, J., 1991b, Interaction of human protein Z with thrombin: Evaluation of the species difference in the interaction between bovine and human protein Z and thrombin, Biochem. Biophys. Res. Commun. 178:801–807.PubMedGoogle Scholar
  67. Hubbard, B. R., Jacobs, M., Ulrich, M. M. W., Walsh, C., Furie, B., and Furie, B. C., 1989, Vitamin K-dependent carboxylation, J. Biol Chem. 264:14145–14150.PubMedGoogle Scholar
  68. Isler, O., Rüegg, R., Chopard-dit-Jean, L. H., Winterstein, A., and Wiss, O., 1958, Synthese und Isolierung von vitamin K2 und isoprenalogen Verbindungen, Helv. Chim. Acta 41:786–807.Google Scholar
  69. Kameda, A., Miyazawa, K., Mori, Y., Yuasa, M., Nakamura, Y., Mano, H., Hakeda, Y., Kameda, A., and Kumegawa, M., 1996, Vitamin K2 inhibits osteoclastic bone resorption by inducing osteoclast apoptosis, Biochem. Biophys. Res. Commun. 220:515–519.PubMedGoogle Scholar
  70. Karrer, P., Geiger, A., Ruegger, A., and Salomon, H., 1939, Uber Noe-a-phyllochinon (Nor-vitamin-K1) und ahnliche Verbindungen, Helv. Chim. Acta 22:1513–1516.Google Scholar
  71. Kaufman, R., Wasley, L., Furie, B. G., Furie, B., and Shoemaker, C., 1986, Expression, purification and characterization of recombinant γ-carboxylated human factor IX synthesized in Chinese hamster ovary cells, J. Biol. Chem. 261:9622–9628.PubMedGoogle Scholar
  72. Kisiel, W., Canfield, W. M., Ericsson, L. H., and Davie, E. W., 1977, Anticoagulant properties of bovine plasma protein C following activation by thrombin, Biochemistry 16:5824–5831.PubMedGoogle Scholar
  73. Knapen, M. H. J., Hamulyak, K., and Vermeer, C., 1989, The effect of vitamin K supplementation on circulating osteocalcin (bone G1a protein) and urinary calcium excretion, Ann. Intern. Med. 111:1001–1005.PubMedGoogle Scholar
  74. Kohlmeier, M., Salomon, A., Saupe, J., and Shearer, M. J., 1996, Transport of vitamin K to bone in humans, J. Nutr. 126:1192S–1196S.PubMedGoogle Scholar
  75. Koshihara, Y., Hoshi, K., and Shiraki, M., 1993, Vitamin K2 (menatetrenone) inhibits Prostaglandin synthesis in cultured human osteoblast-like periosteal cells by inhibiting Prostaglandin H synthase activity, Biochem. Pharmacol. 46:1355–1362.PubMedGoogle Scholar
  76. Lev, M., and Milford, A. F., 1972, Effects of vitamin K depletion and restoration on sphingolipid metabolism in Bacteriodes melaninogenicus, J. Lipid Res. 13:364–370.PubMedGoogle Scholar
  77. Levy, R. J., Lian, J. B., and Gallop, P., 1979, Atherocalcin, a γ-carboxyglutamic acid containing protein from atherosclerotic plaque, Biochem. Biophys. Res. Commun. 91:41–49.PubMedGoogle Scholar
  78. Levy, R. J., Zenker, J. A., and Lian, J. B., 1980, Vitamin K-dependent calcium binding proteins in aortic valve calcification, J. Clin. Invest. 65:563–566.PubMedGoogle Scholar
  79. Lian, J. B., Glimcher, M. J., and Gallop, P. M., 1977, Identification of γ-carboxyglutamic acid in urinary proteins, in Calcium-Binding Proteins and Calcium Function (R. H. Wasserman, ed.), pp. 379–381, Elsevier/North-Holland, Amsterdam.Google Scholar
  80. Liggett, W. H., Lian, J. B., Greenberger, J. S., and Glowacki, J., 1994, Osteocalcin promotes differentiation of osteoclast progenitors from murine long-term bone marrow cultures, J. Cell. Biochem. 55:190–199.PubMedGoogle Scholar
  81. Link, K. P., 1959, The story of Dicumarol and its sequels, Circulation 19:97–107.PubMedGoogle Scholar
  82. Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R., and Karsenty, G., 1997, Spontaneous calcification of arteries and cartilage in mice lacking matrix G1a protein, Nature 386:78–81.PubMedGoogle Scholar
  83. MacCorquodale, D. W., Binkley, S. B., Thayer, S. A., and Doisy, E. A., 1939, On the constitution of vitamin K1, J. Am. Chem. Soc. 61:1928–1929.Google Scholar
  84. Magnusson, S., Sottrup-Jensen, L., Petersen, T. E., Morris, H. R., and Dell, A., 1974, Primary structure of the vitamin K-dependent part of Prothrombin, FEBS Lett. 44:189–193.PubMedGoogle Scholar
  85. Maillard, C., Berruyer, M., Serre, C. M., Dechavanne, M., and Delmas, P. D., 1992, Protein S, a vitamin K-dependent protein, is a bone matrix component synthesized and secreted by osteoblasts, Endocrinology 130:1599–1604.PubMedGoogle Scholar
  86. Malhotra, O. P., 1972, Atypical Prothrombin in purified preparations from Dicumarol-treated steers, Life Sci. 11:901–907.Google Scholar
  87. Malhotra, O. P., Nesheim, M. E., and Mann, K. G., 1985, The kinetics of activation of normal and γ-carboxyglutamic acid-deficient prothrombine, J. Biol. Chem. 260:279–287.PubMedGoogle Scholar
  88. Mammen, E. F., Thomas, W. R., and Seegers, W. H., 1960, Activation of purified Prothrombin to autoprothrombin I or autoprothrombin II (platelet cofactor II) or autoprothrombin II-A, Thromb. Diath. Haemorrh. 5:218–250.PubMedGoogle Scholar
  89. Manfioletti, G., Brancolini, C., Avanzi, G., and Schneider, C., 1993, The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade, Mol. Cell. Biol. 13:4976–4985.PubMedGoogle Scholar
  90. Mann, K. G., 1994, Prothrombin and thrombin, in Hemostasis and Thrombosis: Basic Principles and Cinical Practice, 3rd ed. (R. W. Colman, J. Hirsh, V. J. Marder, and E. W. J. B. Salzman, eds.), pp. 184–199, Lippincott, Philadelphia.Google Scholar
  91. Marlar, R. A., Kleiss, A. J., and Griffin, J., 1982, Mechanism of action of human activated protein C., a thrombin-dependent anticoagulant enzyme, Blood 59:1067–1072.PubMedGoogle Scholar
  92. McIntosh, J. M., Olivera, B. M., Cruz, L. J., and Gray, W. R., 1984, γ-carboxyglutamate in a neuroactive toxin, J. Biol Chem. 259:14343–14346.PubMedGoogle Scholar
  93. McKee, R. W., Binkley, S. B., Thayer, S. A., MacCorquodale, D. W., and Doisy, E. A., 1939, The isolation of vitamin K2, J. Biol. Chem. 131:327–344.Google Scholar
  94. Morris, D. P., Soute, B. A. M., Verneer, C., and Stafford, D. W., 1993, Characterization of the purified vitamin K-dependent γ-glutamyl carboxylase, J. Biol.Chem. 268:8735–8742.PubMedGoogle Scholar
  95. Mundy, G. R., and Poser, J. W., 1983, Chemotactic activity of gamma-carboxyglutamic acid containing protein in bone, Calcif. Tiss. Int. 35:164–168.Google Scholar
  96. Nagakawa, Y., Abram, V., Kezdy, F. J., Kaiser, E. T., and Coe, F. L., 1983, Purification and characterization of the principal inhibitor of calcium Oxalate monohydrate crystal growth in human urine, J. Biol. Chem. 258:12594–12600.Google Scholar
  97. Nakano, T., Higashino, K., Kikuchi, N., Kishino, J., Nomura, K., Fujita, H., Ohara, O., and Arita, H., 1995, Vascular smooth muscle cell-derived, G1a-containing growth-potentiating factor for Ca2+-mobilizing growth factors, J. Biol. Chem. 270:5702–5705.PubMedGoogle Scholar
  98. National Research Council, 1989, Recommended Dietary Allowances, 10th ed. National Academy Press, Washington D.C.Google Scholar
  99. Nelsestuen, G. L., 1976, Role of γ-carboxyglutamic acid: An unusual protein transition required for the calcium-dependent binding of Prothrombin to phospholipid, J. Biol. Chem. 251:5648–5656.PubMedGoogle Scholar
  100. Nelsestuen, G. L., and Suttie, J. W., 1968, Mode of action of vitamin K. Calcium binding properties of bovine Prothrombin, Biochemistry 11:4961–4964.Google Scholar
  101. Nelsestuen, G. L., and Suttie, J. W., 1972, The purification and properties of an abnormal Prothrombin protein produced by Dicumarol-treated cows. A comparison to normal Prothrombin, J. Biol. Chem. 247:8176–8182.PubMedGoogle Scholar
  102. Nelsestuen, G. L., Zytkovicz, T. H., and Howard, J. B. 1974, The mode of action of vitamin K. Identification of γ-carboxyglutamic acid as a component of Prothrombin, J. Biol. Chem. 249:6347–6350.PubMedGoogle Scholar
  103. Ohizumi, H., Masuda, Y., Nakajo, S., Ohsawa, S., and Nakaya, K., 1995, Geranylgeraniol is a potent inducer of apoptosis in tumor cells, J. Biochem. 117:11–13.PubMedGoogle Scholar
  104. Orimo, H., Fujita, T., Onomura, T., Inoue, T., Kushida, K., and Shiraki, M., 1992, Clinical evaluation of Ea-0167 (Menatetrenone) in the treatment of osteoporosis: Phase III multicenter double blind comparative study with alfacalcidol, Clin. Eval. 20:45–100.Google Scholar
  105. Owen, W. G., and Esmon, C. T., 1981, Functional properties of an endothelial cell cofactor for thrombin catalysed activation of protein C, J. Biol. Chem. 256:5532–5535.PubMedGoogle Scholar
  106. Pan, E. Y., Gomperts, E. D., Millen, R., and Gilsanz, V., 1990, Bone mineral density and its association with inherited protein S deficiency, Thromb. Res. 58:221–231.PubMedGoogle Scholar
  107. Pettifor, J. M., and Benson, R., 1975, Congenital malformations associated with the administration of oral anticoagulants during pregnancy, J. Pediat. 86:459–462.PubMedGoogle Scholar
  108. Plantalech, L. C., Chapuy, M. C., Guillaumont, M., Chapuy, P., Leclerq, M., and Delmas, P. D., 1990, Impaired carboxylation of serum osteocalcin in elderly women: Effect of vitamin K1 treatment, in Osteoporosis (C. Christiansen and K. Overgaard, eds.), pp. 345–347, Osteopress, Copenhagen, Denmark.Google Scholar
  109. Plantalech, L. C., Guillaumont, M., Vergnaud, P., Leclercq, M., and Delmas, P. D., 1991, Impairment of gamma carboxylation of circulating osteocalcin (bone G1a protein) in elderly women, J. Bone Miner. Res. 6:1211–1216.PubMedGoogle Scholar
  110. Poser, J. W., and Price, P. A., 1979, A method for decarboxylation of γ-carboxyglutamic acid in proteins, J. Biol. Chem. 254:431–436.PubMedGoogle Scholar
  111. Price, P. A., Poser, J. W., and Raman, N., 1976, Primary structure of the γ-carboxyglutamic acid-containing protein from bovine bone, Proc. Natl. Acad. Sci. USA 73:3374–3375.PubMedGoogle Scholar
  112. Price, P. A., Parthemore, J. G., and Deftos, L. J., 1980, A new biochemical marker for bone metabolism, J. Clin. Invest. 66:878–883.PubMedGoogle Scholar
  113. Price, P. A., Williamson, M. K., Haba, T., Dell, R. B., and Jee, W. S., 1982, Excessive mineralization with growth plate closure in rats on chronic warfarin treatment, Proc. Natl. Acad. Sci. USA 79:7734–7738.PubMedGoogle Scholar
  114. Price, P. A., Urist, M. R., and Otawara, Y., 1983, Matrix Gla protein, a new γ-carboxyglutamic-containing protein which is associated with the organic matrix of bone, Biochem. Biophys. Res. Commun. 117:765–771.PubMedGoogle Scholar
  115. Price, P. A., Fraser, J. D., and Metz-Virca, G., 1987, Molecular cloning of matrix Gla protein: Implications for substrate recognition by the vitamin K-dependent γ-carboxylase, Proc. Natl. Acad. Sci. USA 84:8335–8339.PubMedGoogle Scholar
  116. Quick, A. J., 1937, The coagulation defect in sweet clover disease and in the hemorrhagic chick disease of dietary origin, Am. J. Physiol. 118:260–271.Google Scholar
  117. Rannels, S. R., Gallaher, K. J., Wallin, R., and Rannels, D. E., 1987, Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins, Proc. Natl. Acad. Sci. USA 84:5952–5956.PubMedGoogle Scholar
  118. Ren, P., Laliberte, R. E., and Bell, R. G., 1974, Effects of warfarin, phenylindanedione, tetrachloropyridinol, and chloro-vitamin K, on Prothrombin synthesis and vitamin K metabolism in normal and warfarin-resistant rats, Mol. Pharmacol. 10:373–380.PubMedGoogle Scholar
  119. Sadowski, J. A., Schnoes, H. K., and Suttie, J. W., 1977, Vitamin K epoxidase: Properties and relationship to Prothrombin synthesis, Biochemistry 16:3856–3863.PubMedGoogle Scholar
  120. Schneider, C., King, R. M., and Philipson, L., 1988, Genes specifically expressed at growth arrest of mammalian cells, Cell 67:469–481.Google Scholar
  121. Schoenheyder, F., 1936, The quantitative determination of vitamin K, Biochem. J. 30:890–896.Google Scholar
  122. Schwartz, H. P., Heeb, M. J., Wencel-Drake, J., Burstein S. A., and Griffin, J. H., 1985, Localization of protein S, an antithrombotic protein, in human platelets and megakaryocytes, Blood 66:353a.Google Scholar
  123. Shah, D. V., and Suttie, J. W., 1974, The vitamin K-dependent, in vitro production of prothrombin, Biochem. Biophys. Res. Commun. 60:1397–1402.PubMedGoogle Scholar
  124. Shah, H. N., and Collins, M. D., 1983, Genus Bacteroides, A chemotaxonomical perspective, J. Appl. Bacteriol 55:403–416.PubMedGoogle Scholar
  125. Shearer, M. J., 1992, Vitamin K metabolism and nutriture, Blood Rev. 6:92–104.PubMedGoogle Scholar
  126. Shearer, M. J., McBurney, A., and Barkham, P., 1974, Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man, Vitamins Hormones 32:513–542.PubMedGoogle Scholar
  127. Shearer, M. J., Allan, V., Haroon, Y., and Barkham, P., 1980, Nutritional aspects of vitamin K in the human, in Vitamin K Metabolism and Vitamin K-Dependent Proteins (J. W. Suttie, ed.), pp. 317–327, University Park Press, Baltimore.Google Scholar
  128. Shearer, M. J., Bach, A., and Kohlmeier, M., 1996, Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health, J. Nutr. 126:1181S–1186S.PubMedGoogle Scholar
  129. Smith, C. C., Fradkin, R., and Lackey, M. D., 1946, A hemorrhagic syndrome induced by derivatives of 3-hydroxy-l,4-naphthoquinone, Proc. Soc. Exp. Biol. Med. 61:398–403.PubMedGoogle Scholar
  130. Solymoss, S., Tucker, M. M., and Tracy, P. B., 1988, Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection, J. Biol. Chem. 263:14884–14890.PubMedGoogle Scholar
  131. Soute, B. A. M., Vermeer, C., de Metz, M., Hemker, H. C., and Lijnen, H. R., 1981, In vitro Prothrombin synthesis from a purified precursor protein. III. Preparation of an acid-soluble substrate for vitamin K-dependent carboxylase by limited proteolysis of bovine descarboxyprothrombin, Biochim. Biophys. Acta 676:101–107.PubMedGoogle Scholar
  132. Soute, B. A. M., Mueller-Esterl, W., de Boer-van den Berg, M. A. G., Ulrich, M., and Vermeer, C., 1985, Discovery of a γ-carboxylic acid-containing protein in human spermatozoa, FEBS Lett. 190:137–141.PubMedGoogle Scholar
  133. Soute, B. A. M., Ulrich, M. M. W., and Vermeer, C., 1987, Vitamin K-dependent carboxylase: Increased efficiency of the carboxylation reaction, Thromb. Haemostas. 57:77–81.Google Scholar
  134. Speijer, H., Govers-Riemslag, J. W. P., Zwaal, R. F. A., and Rosing, J., 1986, Prothrombin activation by an activator from the venom of Oxyuranus scutellatus (Taipan snake), J. Biol. Chem. 261:13258–13267.PubMedGoogle Scholar
  135. Stanton, C., and Wallin, R., 1992, Processing and trafficking of clotting factor X in the secretory pathway. Effects of warfarin, Biochem. J. 284:25–31.PubMedGoogle Scholar
  136. Stenflo, J., 1976, A new vitamin K-dependent protein, purification from bovine plasma and preliminary characterization, J. Biol. Chem. 251:355–363.PubMedGoogle Scholar
  137. Stenflo, J., Fernlund, P., Egan W., and Roepsdorff, P., 1974, Vitamin K-dependent modifications of glutamic acid residues in Prothrombin, Proc. Natl. Acad. Sci. USA 71:2730–2733.PubMedGoogle Scholar
  138. Sundaram, K. S., and Lev, M., 1990, Regulation of sulfatide metabolism by vitamin K in mouse brain, Arch. Biochem. Biophys. 277:109–113.PubMedGoogle Scholar
  139. Sundaram, K. S., Fan, J.-H., Engelke, J. A., Foley, A. L., Suttie, J. W., and Lev, M., 1996, Vitamin K status influences brain sulfatide metabolism in young mice and rats, J. Nutr. 126:2746–2751.PubMedGoogle Scholar
  140. Suttie, J. W., 1985, Vitamin K, in Fat-Soluble Vitamins: Their Biochemistry and Applications (A. T. Diplock, ed.), pp. 225–311, Heinemann, London.Google Scholar
  141. Suttie, J. W., Hageman, J. M., Lehrman, S. R., and Rich, D. H., 1976, Vitamin K-dependent carboxylase. Development of a peptide substrate, J. Biol Chem. 251:5827–5830.PubMedGoogle Scholar
  142. Szulc, P., Chapuy, M.-C., Meunier, P. J., and Delmas, P. D., 1993, Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women, J. Clin. Invest. 91:1769–1774.PubMedGoogle Scholar
  143. Szulc, P., Arlot, M., Chapuy, M.-C., Duboef, F., Meunier, P. J., and Delmas, P. D., 1994, Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women, J. Bone Miner. Res. 9:1591–1595.PubMedGoogle Scholar
  144. Tans, G., Govers-Riemslag, J. W. P., van Rijn, J. L. M. L., and Rosing, J., 1985, Purification and properties of a Prothrombin activator from the venom of Notechis scutatus scutatus, J. Biol. Chem. 260:9366–9322.PubMedGoogle Scholar
  145. Thijssen, H. H. W., 1995, Warfarin-based rodenticides: Mode of action and mechanism of resistance, Pestic. Sci. 43:73–78.Google Scholar
  146. Thijssen, H. H. W., and Drittij-Reijnders, M. J., 1994, Vitamin K distribution in rat tissues: Dietary phylloquinone is a source of tissue menaquinone-4, Br. J. Nutr. 72:415–425.PubMedGoogle Scholar
  147. Ulrich, M. M. W., Furie, B., Jacobs, M., Vermeer, C., and Furie, B. C., 1988, Vitamin K-dependent carboxylation: A synthetic peptide based upon the γ-carboxylation recognition site sequence of the Prothrombin propeptide is an active substrate for the carboxylase in vitro, J. Biol. Chem. 263:9697–9702.PubMedGoogle Scholar
  148. Usui, Y., Tanimura, H., Nishimura, N., Kobayashi, N., Okanoue, T., and Ozawa, K., 1990, Vitamin K concentrations in the plasma and liver of surgical patients, Am. J. Clin. Nutr. 51:846–852.PubMedGoogle Scholar
  149. Vermeer, C., 1990, γ-Carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase, Biochem J. 266:625–636.PubMedGoogle Scholar
  150. Vermeer, C., Soute, B. A. M., Hendrix, H., and de Boer-van den Berg, M. A. G., 1984, Decarboxylated bone G1a-protein as a substrate for hepatic vitamin K-dependent carboxylase, FEBS Lett. 165:16–20.PubMedGoogle Scholar
  151. Vermeer, C., Jie, K.-S. G., and Knapen, M. H. J., 1995, Role of vitamin K in bone metabolism, Annu. Rev. Nutr. 15:1–22.PubMedGoogle Scholar
  152. Vu, T.-K. H., Hung, D. T., Wheaton, V. I., and Coughlin, S. R., 1991, Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell 64:1057–1068.PubMedGoogle Scholar
  153. Walker, F. J., 1981, Regulation of activated protein C by protein S, J. Biol. Chem. 256:11128–11131.PubMedGoogle Scholar
  154. Wallin, R., Guenthner, T. M., and Higson, T. S., 1995, Warfarin sensitive vitamin K 2,3-epoxide reduction in rat liver involves epoxide hydrolase and a second 30kDa protein which appears to carry the warfarin binding site, FASEB J. 9:A726, abstract 4206.Google Scholar
  155. Whitlon, D. S., Sadowski, J. A., and Suttie, J. W., 1978, Mechanism of coumarin action: Significance of vitamin K epoxide reductase inhibition, Biochemistry 17:1371–1377.PubMedGoogle Scholar
  156. Wu, S.-M., Morris, D. P., and Stafford, D. W., 1991, Identification and purification to near homogeneity of the vitamin K-dependent carboxylase, Proc. Natl. Acad. Sci. USA 88:2236–2240.PubMedGoogle Scholar
  157. Yaguchi, M., Miyazawa, K., Katagiri, T., Nishimaki, J., Iwase, O., Kizaki, M., Tohyama, K., and Toyama, K., 1996, Vitamin K2 and its derivatives induce apoptosis in laekemia cells and have a synergistic effect with all trans retinoic acid, Blood 88(Suppl. 1):270–I.Google Scholar
  158. Zhang, L., and Castellino, F. J., 1992, Influence of specific gamma-carboxyglutamic acid residues on the integrity of the calcium-dependent conformation of human protein C, J. Biol. Chem. 267:26078–26084.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  1. 1.Vitamin K Laboratory, The Haemophilia CentreSt. Thomas’s HospitalLondonEngland

Personalised recommendations