The Role of Vitamin D3 and Antiestrogens in Modulating Apoptosis of Breast Cancer Cells and Tumors

  • JoEllen Welsh
  • Kathryn VanWeelden
  • Louise Flanagan
  • Ian Byrne
  • Elizabeth Nolan
  • Carmen J. Narvaez
Part of the Subcellular Biochemistry book series (SCBI, volume 30)


The death of cells can be classified as either necrosis, usually the result of tissue damage or insult, or apoptosis, an active process of cellular self-destruction. Apoptosis can be distinguished by its characteristic morphological features such as cell shrinkage, nuclear condensation, and irreversible DNA fragmentation (Tenniswood et al., 1992). In most cell types, apoptosis requires gene transcription and activation of specific proteases which mediate destruction of the cell without release of intracellular contents or initiation of an immune response (Vaux and Strasser, 1996; Zhivotovsky et al., 1997). In addition to genes linked to activation of apoptosis, genes associated with repression of apoptosis, such as bcl-2, have been identified (Craig, 1995; Yang and Korsmeyer, 1996). Thus, the regulation of apoptosis within a cell reflects a balance between antiapoptotic and proapoptotic gene products. Extracellular influences on this balance include physiological triggers of apoptosis, cell-type-specific “survival factors,” and the components of the extracellular matrix (Tenniswood et al., 1992; Goberdhan et al., 1996; Merio et al., 1997). The recognition that mutations in critical components or regulators of the apoptotic pathway, such as p53 and bcl-2, may be linked to cancer development or therapeutic responsiveness has emphasized the importance of apoptosis in the context of tumor biology (Barry et al., 1990; Lowe et al., 1993; Yang and Korsmeyer, 1996).


Breast Cancer Cell Crystal Violet Staining SUM159 Cell Ethanol Vehicle SUM159 Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, J., Nakano, T., Nishii, Y., Matsumoto, T., Ogata, E., and Ikeda, K., 1991, A novel vitamin D3 analog, 22-oxa-1,25 dihydroxyvitamin D3, inhibits the growth of human breast cancer in vitro and in vivo without causing hypercalcemia, Endocrinology 129:832–837.PubMedCrossRefGoogle Scholar
  2. Abe-Hashimoto, J., Kikuchi, T., Matsumoto, T., Nishii, Y., Ogata, E., and Ikeda, K., 1993, Antitumor effect of 22-oxa-calcitriol, a noncalcemic analogue of calcitriol, in athymic mice implanted with human breast carcinoma and its synergism with tamoxifen, Cancer Res. 53:2534–2537.PubMedGoogle Scholar
  3. Anzano, M. A., Smith, J. M., Uskokovic, M. R., Peer, C. W., Mullen, L. T., Letterio, J. J., Welsh, M. C., Shrader, M. W., Logsdon, D. L., Driver, C. L., Brown, C. C., Roberts, A., and Sporn, M. B., 1994, 1α,25-Dihydroxy-16-ene-23-yne-26,27-hexafluorocholecalciferol (Ro24-5531), a new deltanoid (vitamin D analogue) for prevention of breast cancer in the rat, Cancer Res. 54:1653–1656.PubMedGoogle Scholar
  4. Barry, M. A., Behnke, C. A., and Eastman, A., 1990, Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia, Biochem. Pharmacol 40:2353–2362.PubMedCrossRefGoogle Scholar
  5. Battcharjee, M., Weintroub, S., and Vonderhaar, B. K., 1987, Milk protein synthesis of vitamin D deficient mice, Endocrinology 121:865–874.CrossRefGoogle Scholar
  6. Berger, U., McClelland, R., Wilson, P., Greene, G., Haussier, M., Pike, J., Colston, K., Easton, D., and Coombes, R. C., 1991, Immunoctyochemical determination of estrogen receptor, progesterone receptor and 1,25(OH)2-vitamin D3 receptor in breast cancer and relationship to prognosis, Cancer Res. 51:239–244.PubMedGoogle Scholar
  7. Binderup, L., Latini, S., Binderup, E., Bretting, C., Caverley, M., and Hansen, K., 1991, 20-Epivitamin D3 analogues: A novel class of potent regulators of cell growth and immune responses, Biochem. Pharmacol. 42:1569–1575.PubMedCrossRefGoogle Scholar
  8. Bouillon, R., Okamura, W. H., and Norman, A. W., 1995, Structure-function relationships in the vitamin D endocrine system, Endocrine Rev. 16:200–257.Google Scholar
  9. Buras, R., Schumaker, L. M., Davoodi, F., Brenner, R. V., Shabahang, M., Nauta, R., and Evans, S., 1994, Vitamin D receptors in breast cancer cells, Breast Cancer Res. Treat. 31:191–204.PubMedCrossRefGoogle Scholar
  10. Carlberg, C., Bendik, I., Wyss, A., Meier, E., Sturzenbecker, L. J., Grippo, J., and Hunziker, W., 1993, Two nuclear signaling pathways for vitamin D, Nature 361:657–660.PubMedCrossRefGoogle Scholar
  11. Chouvet, C., Berger, U., and Coombes, R. C., 1986, 1,25 Dihydroxy vitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20), J. Steroid Biochem. 24:373–376.PubMedCrossRefGoogle Scholar
  12. Colston, K., Colston, M. J., and Feldman, D., 1981, Ia25-Dihydroxyvitamin D3 inhibits the clonogenic growth of transformed cells via its receptor, Endocrinology 108:1083–1086.PubMedCrossRefGoogle Scholar
  13. Colston, K., Berger, U., and Coombes, R. C., 1989, Possible role for vitamin D in controlling breast cancer cell proliferation, Lancet 1:188–191.PubMedCrossRefGoogle Scholar
  14. Colston, K., Chander, S. K., Mackay, A. G., and Coombes, R. C., 1992a, Effects of synthetic vitamin D analogs on breast cancer cell proliferation in vivo and in vitro, Biochem. Pharmacol. 44:693–702.PubMedCrossRefGoogle Scholar
  15. Colston, K., Mackay, A. G., James, S. Y., and Binderup, L., 1992b, EB1089: A new vitamin D3 analogue that inhibits the growth of breast cancer cells in vivo and in vitro, Biochem. Pharmacol. 44:2273–2280.PubMedCrossRefGoogle Scholar
  16. Colston, K., Mackay, A. G., and James, S. Y., 1994, The role of 1α25(OH)2D3 and its analogs in breast cancer, in Proceedings of the Ninth Workshop on Vitamin D (A. W. Norman, R. Bouillon, and M. Thomasett, eds.), pp. 477–484, DeGruyter, Berlin.Google Scholar
  17. Colston, K., Mackay, A. G., and James, S. Y., 1995, Vitamin D3 derivatives and breast cancer, in Apoptosis in Hormone Dependent Cancers (M. Tenniswood and H. Michna, eds.), pp. 201–224, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  18. Craig, R. W., 1995, The BCL-2 gene family, Semin. Cancer Biol. 6:35–43.PubMedCrossRefGoogle Scholar
  19. Darwish, H. M., and DeLuca, H. F., 1996, Recent advances in the molecular biology of vitamin D action, Prog. Nucleic Acids Res. Mol. Biol. 53:321–344.CrossRefGoogle Scholar
  20. Dusso, A. S., Negrea, L., Gunawardhana, S., Lopez-Hilker, S., Finch, J., Mori, T., Nishii, Y., Slatopolsky, E., and Brown, A. J., 1991, On the mechanisms for the selective action of vitamin D analogs, Endocrinology 128:1687–1692.PubMedCrossRefGoogle Scholar
  21. Eisman, J., Suva, L., Sher, E., Pearce, P., Funder, J., and Martin, T. J., 1981, Frequency of 1,25-dihydroxyvitamin D3 receptor in human breast cancer, Cancer Res. 41:5121–5124.PubMedGoogle Scholar
  22. Eisman, J., Sutherland, R. L., McMenemy, M. L., Fragonas, J. C., Musgrove, E. A., and Pang, G., 1989, Effects of 1,25-dihydroxyvitamin D3 on cell cycle kinetics of T47D human breast cancer cells, J. Cell. Physiol. 138:611–616.PubMedCrossRefGoogle Scholar
  23. Elstner, E., Linker-Israeli, M., Said, J., Umiel, T., deVos, S., Shintaku, I. P., Heber, D., Binderup, L., Uskokovic, M., and Koeffler, H. P., 1995, 20-epi Vitamin D3 analogues: A novel class of potent inhibitors of proliferation and inducers of differentiation of human breast cancer cells, Cancer Res. 55:2822–2830.PubMedGoogle Scholar
  24. Elstner, E., Linker-Israeli, M., Le, J., Umiel, T., Michl, P., Said, J., Binderup, L., Reed, J. C., and Koeffler, H. P., 1997, Synergistic decrease of clonal proliferation, induction of differentiation and apoptosis of acute promyelocytic leukemia cells after combined treatment with novel 20-epi vitamin D3 analogues and 9-cis retinoic acid, J. Clin. Invest. 99:349–260.PubMedCrossRefGoogle Scholar
  25. Fesus, L., Szondy, Z., and Uray, I., 1995, Probing the molecular program of apoptosis by cancer chemopreventive agents, J. Cell. Biochem. S22:151–161.CrossRefGoogle Scholar
  26. Goberdhan, N., Dive, C., and Streuli, C. H., 1996, The role of the extracellular matrix and lactogenic hormones in mammary gland apoptosis, Biochem. Soc. Trans. 24:348S.PubMedGoogle Scholar
  27. Guenette, R. S., Corbeil, H., Leger, J., Wong, K., Mezl, V., Mooibroek, M., and Tenniswood, M., 1994, Induction of gene expression during involution of the lactating mammary gland of the rat, J. Mol. Endocrinol. 12:47–60.PubMedCrossRefGoogle Scholar
  28. Haussier, M. R., Jurukta, P. W., Hsieh, J. C., Thompson, P. D., Selznick, S. H., Haussler, C. A., and Whitfield, G. K., 1995, New understanding of the molecular mechanism of receptor mediated genomic actions of the vitamin D hormone, Bone 17(2 Suppl.):33S–38S.CrossRefGoogle Scholar
  29. Iino, Y., Yoshida, M., Sugamata, N., Maemura, M., Ohwada, S., Yokoe, T., Ishikita, T., Ooriuchi, R., and Morishita, Y., 1992, 1α-Hydroxyvitamin D3, hypercalcemia, and growth suppression of 7,12-dimethylbenz[a]anthracene-induced rat mammary tumors, Breast Cancer Res. Treat. 22:133–140.PubMedCrossRefGoogle Scholar
  30. James, S. Y., Mackay, A., Binderup, L., and Colston, K., 1994, Effects of a new synthetic vitamin D analogue, EB1089, on the oestrogen responsive growth of human breast cancer cells, J. Endocrinol. 141:555–563.PubMedCrossRefGoogle Scholar
  31. James, S. Y., Mackay, A. G., and Colston, K., 1996, Effects of 1,25 dihydroxyvitamin D3 and its analogues on induction of apoptosis in breast cancer cells, J. Steroid Biochem. Mol. Biol. 58:395–401.PubMedCrossRefGoogle Scholar
  32. Kyprianou, N., English, H., Davidson, N., and Isaacs, J., 1991, Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation, Cancer Res. 51:162–166.PubMedGoogle Scholar
  33. Liu, M., Lee, M.-H., Cohen, M., Bommakanti, M., and Freedman, L., 1996, Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937, Genes Dev. 10:142–153.PubMedCrossRefGoogle Scholar
  34. Love-Schimenti, C., Gibson, D., Ratnam, A., and Bikle, D., 1996, Antiestrogen potentiation of antiproliferative effects of vitamin D3 analogues in breast cancer cells, Cancer Res. 56:2789–2794.PubMedGoogle Scholar
  35. Lowe, S., Ruley, H. E., Jacks, T., and Housman, D., 1993, p53-Dependent apoptosis modulates the cytotoxicity of anticancer agents, Cell 74:957–967.PubMedCrossRefGoogle Scholar
  36. Merio, G. R., Cella, N., and Hynes, N. E., 1997, Apoptosis is accompanied by changes in bcl-2 and bax expression, induced by loss of attachment, and inhibited by specific extracellular matrix proteins in mammary epithelial cells, Cell Growth Diff. 8:251–260.Google Scholar
  37. Mezettie, G., Monti, M. G., Casolo, P., Piccinini, G., and Moruzzi, M. S., 1988, 1,25-Dihydroxycholecalciferol dependent calcium uptake by mouse mammary gland in culture, Endocrinology 122:389–394.CrossRefGoogle Scholar
  38. Mork-Hansen, C., Danielsson, C., and Carlberg, C., 1996, The potent anti-proliferative effect of 20-epi analogues of 1,25 dihydroxyvitamin D3 in human breast cancer MCF-7 cells is related to promoter specificity, Int. J. Cancer 67:739–742.PubMedCrossRefGoogle Scholar
  39. Narvaez, C. J. and Welsh, J. E., 1997, Differential effects of 1,25 Dihydroxyvitamin D3 and TPA on cell cycle and apoptosis of MCF-7 cells and a vitamin D3 resistant variant, Endocrinology 138:4690–4698.PubMedCrossRefGoogle Scholar
  40. Narvaez, C. J., VanWeelden, K., Byrne, I., and Welsh, J. E., 1996, Characterization of a Vitamin D3 resistant MCF-7 cell line, Endocrinology 137:400–409.PubMedCrossRefGoogle Scholar
  41. Nayeri, S., Danielsson, C., Kahlen, J. P., Schräder, M., Mathiasen, I., Binderup, L., and Carlberg, C., 1995, The anti-proliferative effect of vitamin D3 analogues is not related to the AP-1 pathway, but related to promoter selectivity, Oncogene 11:1853–1858.PubMedGoogle Scholar
  42. Nolan, E., Donepudi, M., Van Weelden, K., Flanagan, L., and Welsh, J. E., 1998, Dissociation of vitamin D3 and anti-estrogen mediated growth regulation in MCF-7 breast cancer cells, Mol. Cell. Biochem. in press.Google Scholar
  43. Peleg, S., Sastry, M., Collins, E. D., Bishop, J. E., and Norman, A. W., 1995, Distinct conformational changes induced by 20-epi analogues of 1α,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor, J. Biolo. Chem. 270:10551–10558.CrossRefGoogle Scholar
  44. Pols, H., Birkenhager, J. C., Foekens, J., and van Leeuwen, J., 1990, Vitamin D: A modulator of cell proliferation and differentiation, J. Steroid Biochem. Mol. Biol. 37:873–876.PubMedCrossRefGoogle Scholar
  45. Quarrie, L. H., Addey, C. V., and Wilde, C. J., 1996, Programmed cell death during mammary tissue involution induced by weaning, litter removal and milk stasis, J. Cell. Physio. 168:559–569.CrossRefGoogle Scholar
  46. Reichel, H., Koeffler, H. P., and Norman, A. W., 1989, The role of the vitamin D endocrine system in health and disease, N. Eng. J. Med. 320:980–991.CrossRefGoogle Scholar
  47. Saez, S., Falette, N., Guillot, C., Meggouh, F., Lefebvre, M., and Crepin, M., 1993, 1,25(OH)2D3 modulation of mammary tumor growth in vitro and in vivo, Breast Cancer Res. Treat. 27:69–81.PubMedCrossRefGoogle Scholar
  48. Shabahang, M., Buras, R., Davoodi, F., Schumaker, L., Nauta, R., Uskokovic, M., Brenner, R., and Evans, S., 1994, Growth inhibition of HT-29 human colon cancer cells by analogues of 1,25 dihydroxyvitamin D3, Cancer Res. 54:4057–4064.PubMedGoogle Scholar
  49. Simboli-Campbell, M., and Welsh, J., 1995, 1,25 Dihydroxyvitamin D3: Coordinate regulator of active cell death and proliferation in MCF-7 breast cancer cells, in Apoptosis in Hormone Dependent Cancers (M. Tenniswood and H. Michna, eds.), pp. 181–200, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  50. Simboli-Campbell, M., Narvaez, C. J., Tenniswood, M., and Welsh, J. E., 1996, 1,25(OH)2D3 induces morphological and biochemical indices of apoptosis in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 58:367–376.PubMedCrossRefGoogle Scholar
  51. Simboli-Campbell, M., Narvaez, C. J., VanWeelden, K., Tenniswood, M., and Welsh, J. E., 1997, Comparative effects of 1,25(OH)2D3 and EB1089 on cell cycle kinetics and apoptosis in MCF-7 cells, Breast Cancer Res. Treat. 42:31–41.PubMedCrossRefGoogle Scholar
  52. Studzinski, G., McLane, J. A., and Uskokovic, M., 1993, Signaling pathways for vitamin D induced differentiation: Implications for therapy of proliferative and neoplastic diseases, Crit. Rev. Eukaryotic Gene Expression 3:279–312.Google Scholar
  53. Tenniswood, M., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P., and Welsh, J. E., 1992, Active cell death in hormone dependent tissues, Cancer Metastasis Rev. 11:197–220.PubMedCrossRefGoogle Scholar
  54. Tsuchiya, H., Morishita, H., Tomita, K., Ueda, Y., and Tanaka, M., 1993, Differentiating and antitumor activities of la,25 dihydroxyvitamin D3 in vitro and 1α-hydroxyvitamin D3 in vivo on human osteosarcoma, J. Orthopaedic Res. 11:122–130.CrossRefGoogle Scholar
  55. Vandewalle, B., Hornez, L., Wattez, N., Revillion, F., and Lefebvre, J., 1995, Vitamin D3 derivatives and breast tumor cell growth: effect on intracellular calcium and apoptosis, Int. J.Cancer 61:806–811.PubMedCrossRefGoogle Scholar
  56. VanWeelden, K., Flanagan, L., Binderup, L., Tenniswood, M. P., and Welsh, J. E., 1998, Apoptotic regression of MCF-7 xenografts in nude mice treated with the vitamin D3 analog, EB1089, Endocrinology 139:2102–2110.PubMedCrossRefGoogle Scholar
  57. Vaux, D., and Strasser, A., 1996, The molecular biology of apoptosis, Proc. Natl. Acad. Sci. USA 93:2239–2244.PubMedCrossRefGoogle Scholar
  58. Vink-van Wijngaarden, T., Pols, H., Buurman, C. J., van den Bernd, G., Dorssers, L., Birkenhager, J., and van Leeuwen, J., 1994, Inhibition of breast cancer cell growth by combined treatment with vitamin D3 analogues and tamoxifen, Cancer Res. 54:5711–5717.PubMedGoogle Scholar
  59. Warri, A. M., Huovinen, R. L., Laine, A. M., Martikainen, P. M., and Harkonen, P. L., 1993, Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro, J. Natl. Cancer Ins. 85:1412–1418.CrossRefGoogle Scholar
  60. Welsh, J. E., 1994, Induction of apoptosis in breast cancer cells in response to vitamin D and antiestrogens, Biochem. Cell Biol. 72:537–545.PubMedCrossRefGoogle Scholar
  61. Welsh, J., Simboli-Campbell, M., and Tenniswood, M., 1994, Induction of apoptotic cell death by 1,25(OH)2D3 in MCF-7 breast cancer cells, in Proceedings of the Ninth Workshop on Vitamin D (A. W. Norman, R. Bouillon, and M. Thomasett, eds.), pp. 526–527, DeGruyter, Berlin.Google Scholar
  62. Welsh J. E., Simboli-Campbell, M., Narvaez C. J., and Tenniswood M., 1995, Role of apoptosis in the growth inhibitory effects of vitamin D in MCF-7 cells, Adv. Exp. Biol. Med. 375:45–52.CrossRefGoogle Scholar
  63. Yang, E., and Korsmeyer, S., 1996, Molecular thanatopsis: A discourse on the BCL2 family nd cell death, Blood 881:386–401.Google Scholar
  64. Zhivotovsky, B., Burgess, D., Vanags, D., and Orrenius, S., 1997, Involvement of cellular proteolytic machinery in apoptosis, Biochem. Biophys. Res. Commun. 230:481–488.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • JoEllen Welsh
    • 1
  • Kathryn VanWeelden
    • 1
    • 2
  • Louise Flanagan
    • 1
    • 3
  • Ian Byrne
    • 1
    • 3
  • Elizabeth Nolan
    • 1
  • Carmen J. Narvaez
    • 1
  1. 1.W. Alton Jones Cell Science CenterLake PlacidUSA
  2. 2.Clarkson UniversityPotsdamUSA
  3. 3.University College DublinBelfieldIreland

Personalised recommendations