Skip to main content

Control of Retinoid Nuclear Receptor Function and Expression

  • Chapter
Fat-Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 30))

Abstract

Vitamin A and its physiological metabolites (collectively known as retinoids) are important regulators of embryogenesis, cell growth and differentiation, vision, and reproduction (Hofmann and Eichele, 1994; Eskild and Hansson, 1994; DeLuca, 1991; Wald, 1968; Thompson et al., 1964). Deficiency of vitamin A leads to well-described defects in vision, fertility, and, in animals, increased susceptibility to carcinogenesis (Chambon, 1994; Sporn et al., 1976; Wilson et al., 1953). Retinol (vitamin A) is metabolized by cells to form a number of biologically active compounds (Napoli et al., 1993). These include all-trans retinoic acid, 9-cis retinoic acid, and didehydroretinoic acid. Retinol is first converted to retinal, which is then metabolized by a retinal dehydrogenase leading to production of all-trans retinoic acid (Posch et al., 1992, 1991). The metabolic pathway which generates 9-cis retinoic acid has yet to be elucidated. Didehydroretinoic acid is produced from 3,4-didehydroretinol by a pathway that is similar to that which converts retinol to all-trans retinoic acid (Thaller and Eichele, 1990). Dietary sources of vitamin A are β-carotene from plant sources and retinyl ester from animal sources. Vitamin A from these sources is either stored in the liver as retinyl esters, or packaged with retinol-binding protein together with transthyretin for export to the circulatory system (Blaner, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allenby, G., Bocquel, M.-T., Saunders, M., Kazmer, S., Speck, J., Rosenberger, M., Lovey, A., Kastner, F., Grippo, J. F., Chambon, P., and Levin, A. A., 1993, Retinoic acid receptors and retinoid X receptors: Interaction with endogenous retinoic acids, Proc. Natl. Acad. Sci. USA 90:30–34.

    Article  PubMed  CAS  Google Scholar 

  • Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, P. J., Rahmadorf, H. J., Jonat, C., Herrlich, P., and Karin, M., 1987, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor, Cell 49:724–739.

    Article  Google Scholar 

  • Angel, P., Allegrato, E. A., Okino, S. T., Hattori, K., Bolye, W. J., Hunter, T., and Karin, M., 1988, Oncogene jun encodes a sequence-specific trans-activator similar to AP-1, Nature 332:166–171.

    Article  PubMed  CAS  Google Scholar 

  • Apfel, C. M., Kamber, M., Klaus, M., Mohr, P., Keidel, S., and LeMotte, P., 1995, Enhancement of HL-60 differentiation by a new class of retinoids with selective activity on retinoid X receptor, J. Biol. Chem. 270:30765–30772.

    Article  PubMed  CAS  Google Scholar 

  • Arias, J., Alberts, A. S., Brindle, P., Claret, F. X., Smeal, T., Karin, M., Feramisco, J., and Montiminy, M., 1994, Activation of cAMP and mitogen responsive genes relies on a common nuclear factor, Nature 370:226–229.

    Article  PubMed  CAS  Google Scholar 

  • Astrom, A., Tavakkol, A., Pettersson, U., Cromie, M., Elder, J. T., and Voorhees, J. J., 1991, Molecular cloning of two human cellular retinoic acid-binding proteins (CRABP). Retinoic acid-induced expression of CRABP-II in adult human skin in vivo and in skin fibroblasts in vitro, J. Biol. Chem. 266:17662–17666.

    PubMed  CAS  Google Scholar 

  • Bailey, J. S., and Siu, C. H., 1988, Purification and partial characterization of a novel binding protein for retinoic acid from neonatal rat, J. Biol. Chem. 263:9326–9332.

    PubMed  CAS  Google Scholar 

  • Bannister, A. J., and Kouzarides, T., 1995, CBP-induced stimulation of c-Fos activity is abrogated by E1A, EMBO J. 14:4758–4762.

    PubMed  CAS  Google Scholar 

  • Basiahmad, A., Kohne, A. C., and Renkawitz, R., 1992, A transferable silencing domain is present in the thyroid hormone receptor, in the v-erb A oncogene product and in the retinoic acid receptor, EMBO J. 11:1015–1023.

    Google Scholar 

  • Bavik, C.-D., Ericksson, U., Allen, R. A., and Peterson, P. A., 1991, Identification and partial characterization of a retinal pigment epithelial membrane receptor for plasma retinol-binding protein, J. Biol. Chem. 266:14078–14985.

    Google Scholar 

  • Bavik, C.-D., Busch, C., and Ericksson, U., 1992, Characterization of a plasma retinol-binding membrane receptor expressed in the retinal pigment epithelium, J. Biol. Chem. 267:23035–23042.

    PubMed  CAS  Google Scholar 

  • Beato, M., 1989, Gene regulation by steroid hormones, Cell 56:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Benbrook, D., Lernhardt, E., and Pfahl, M., 1988, A new retinoic acid receptor identified from a hepatocellular carcinoma, Nature 333:669–672.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J., 1990, Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules, J. Biol. Chem. 265:6513–6516.

    PubMed  CAS  Google Scholar 

  • Berkenstam, A., Ruiz, d. M. V., Barettino, D., Horikoshi, M., and Stunnenberg, H. G., 1992, Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to E1A, Cell 69:401–412.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, P. S., Law, W. C., and Rando, R. R., 1987, Isomerization of all-trans retinoids to 11-cis retinoids in vitro, Proc. Natl. Acad. Sci. USA 84:1849–1853.

    Article  PubMed  CAS  Google Scholar 

  • Blaner, W. S., 1989, Retinol-binding protein: The serum transporter protein for vitamin A, Endocrine Rev. 10:305–316.

    Article  Google Scholar 

  • Bocquel, M.-T., Kumar, V., Stricker, C., Chambon, P., and Gronemeyer, H., 1989, The contribution of the N-and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific, Nucleic Acids Res. 17:2581–2595.

    Article  PubMed  CAS  Google Scholar 

  • Bugge, T. H., Pohl, J., Lonnoy, O., and Stunnenberg, H. G., 1992, RXRγ, a promiscuous partner of retinoic acid and thyroid hormone receptors, EMBO J. 11:1409–1410.

    PubMed  CAS  Google Scholar 

  • Burns, K., Duggan, B., Atkinson, E. A., Fanulski, K. S., Nemer, M., Bleackley, R. C., and Michalak, M., 1994, Modulation of gene expression by calreticulin binding to the glucocorticoid receptor, Nature 367:476–480.

    Article  PubMed  CAS  Google Scholar 

  • Burris, T. P., Nawaz, Z., Tsai, M.-J., and O’Malley, B. W., 1995, A nuclear hormone receptor associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors, Proc. Natl. Acad. Sci. USA 92:9525–9529.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli, E., 1987, Intracellular calcium homeostasis, in Annual Review of Biochemistry, Vol. 55 (C. C. Richardson, P. D. Boyer, I. B. Dawid, and A. Meister, eds.), pp. 395–434, Annual Reviews, Palo Alto, California.

    Google Scholar 

  • Carlberg, C., Bendik, I., Wyss, A., Meier, E., Sturzenbecker, L. J., Grippo, J. F., and Hunziker, W., 1993, Two nuclear signalling pathways for vitamin D, Nature 361:657–660.

    Article  PubMed  CAS  Google Scholar 

  • Cavailles, V., Dauvois, S., Danielian, P. S., and Parker, M. G., 1994, Interaction of proteins with transcriptionally active estrogen receptor, Proc. Natl. Acad. Sci. USA 91:10009–10013.

    Article  PubMed  CAS  Google Scholar 

  • Cavailles, V., Dauvois, S., L’Horset, F., Lopez, G., Hoare, S., Kushner, P. J., and Parker, M. G., 1995, Nuclear factor RIP 140 modulates transcriptional activation by the estrogen receptor, EMBO J. 14:3741–3751.

    PubMed  CAS  Google Scholar 

  • Chambon, P., 1994, The retinoid signaling pathway: Molecular and genetic analysis, Semin. Cell Biol. 5:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. D., and Evans, R. M., 1995, A transcriptional co-repressor that interacts with nuclear hormone receptors, Nature 377:454–457.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. D., Umesono, K., and Evans, R. M., 1996, SMRT isoforms mediate repression and antirepression of nuclear receptor heterodimers, Proc. Natl. Acad. Sci. USA 93:7567–7571.

    Article  PubMed  CAS  Google Scholar 

  • Chrivia, J. C., Kwok, R. P. S., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H., 1993, Phosphorylated CREB binds specifically to the nuclear protein CBP, Nature 365:855–859.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S. D., and Armstrong, M. K., 1989, Cellular lipid binding proteins: Expression, function and nutritional regulation, FASEB J. 3:2480–2487.

    PubMed  CAS  Google Scholar 

  • Costa, S. L., Pratt, M. A. C., and McBurney, M. W., 1996, E2F inhibits transcriptional activation by the retinoic acid receptor, Cell Growth Diff. 7:1479–1485.

    PubMed  CAS  Google Scholar 

  • Dalman, F. C., Sturzenbecker, L. J., Levin, A. A., Lucas, D. A., Perdew, G. H., Petkovitch, M., Chambon, P., Grippo, J. F., and Pratt, W. B., 1991, Retinoic acid receptor belongs to a subclass of nuclear receptors that do not form “docking” complexes with hsp 90, Biochemistry 30:5605–5608.

    Article  PubMed  CAS  Google Scholar 

  • Dedhar, S., Rennie, P. S., Shago, M., Hagesteljn, E.-Y. L., Yang, H., Filmus, J., Hawley, R. G., Bruchovsky, N., Cheng, H., Matuski, R. J., and Giguere, V., 1994, Inhibition of nuclear hormone receptor activity by calreticulin, Nature 367:480–483.

    Article  PubMed  CAS  Google Scholar 

  • DeLuca, L. M., 1991, Retinoids and their receptors in differentiation, embryogenesis and neoplasia, FASEB J. 5:2924–2933.

    CAS  Google Scholar 

  • Desai, D. S., and Niles, R. M., 1995, Expression and regulation of retinoid X receptors in B16 melanoma cells, J. Cell. Physiol. 165:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Desai, D., Michalek, M., Singh, N. K., and Niles, R. M., 1996, Inhibition of retinoic acid receptor function and retinoic acid-regulated gene expression in mouse melanoma cells by calreticulin, J. Biol. Chem. 271:15153–15159.

    Article  PubMed  CAS  Google Scholar 

  • de The, H., Marchio, A., Tollais, P., and Dejean, A., 1989, Differential expression and ligand regulation of retinoic acid receptor α and β genes, EMBO J. 8:429–433.

    PubMed  Google Scholar 

  • de The, H., del Mar Vivanco-Ruiz, M., Tiollais, P., Stunneberg, H., and Dejean, A., 1990, Identification of a retinoic acid responsive element in the retinoic acid receptor β gene, Nature 343:177–180.

    Article  PubMed  Google Scholar 

  • Durand, B., Saunders, M, Leroy, P., Leid, M., and Chambon, P., 1992, All trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs, Cell 71:73–85.

    Article  PubMed  CAS  Google Scholar 

  • Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B., and Livingston, D. M., 1994, Molecular cloning and functional analysis of the adenovirus El A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor, Genes Dev. 8:869–884.

    Article  PubMed  CAS  Google Scholar 

  • Eskild, W., and Hansson, V., 1994, Vitamin A functions in the productive organs, in Vitamin A in Health and Disease (R. Blomhoff, ed.), pp. 531–559, Marcel Dekker, New York.

    Google Scholar 

  • Evans, R. M., 1988, The steroid and thyroid hormone receptor superfamily, Science 240:889–895.

    Article  PubMed  CAS  Google Scholar 

  • Fiorella, P. D., Giguere, V., and Napoli, J. L., 1993, Expression of cellular retinoic acid binding protein (type II) in Escherichia coli: Characterization and comparison to cellular retinoic acid binding protein (type I), J. BioL Chem. 268:21545–21552.

    PubMed  CAS  Google Scholar 

  • Fogh, K., Voorhees, J. J., and Astrom, A., 1993, Expression, purification and binding properties of human cellular retinoic acid-binding protein type I and type II, Arch. Biochem. Biophys. 300:751–755.

    Article  PubMed  CAS  Google Scholar 

  • Folkers, G. E., and van der Saag, P. T., 1995, Adenovirus E1A functions as a cofactor for retinoic acid receptor β (RARβ) through direct interaction with RARβ, Mol. Cell. Biol. 15:5868–5878.

    PubMed  CAS  Google Scholar 

  • Folkers, G. E., van der Leede, B.-jM., and van der Saag, P. T., 1993, The retinoic acid receptor-β2 contains two separate cell-specific transactivation domains at the N terminus and in the ligand-binding domain, Mol. Endocrinol. 7:616–627.

    Article  PubMed  CAS  Google Scholar 

  • Forman, B. M., Umesono, K., Chen, J., and Evans, R. M., 1995, Unique response pathways are established by allosteric interactions among nuclear hormone receptors, Cell 81:541–550.

    Article  PubMed  CAS  Google Scholar 

  • Forman, B. M., Yange, C.-R., Au, M., Casanova, J., Ghysdael, J., and Samuels, H. H., 1989, A domain containing leucine-zipper-like motifs mediate novel in vivo interaction between the thyroid hormone and retinoic acid receptors, Mol. Endocrinol. 3:1610–1626.

    Article  PubMed  CAS  Google Scholar 

  • Gaub, M.-P., Rochette-Egly, C., Lutz, Y., Ali, S., Matthes, H., Scheuer, L, and Chambon, P., 1992, Immunodetection of multiple species of retinoic acid receptor a: Evidence for phosphorylation, Exp. Cell Res. 201:335–346.

    Article  PubMed  CAS  Google Scholar 

  • Gebert, J. F., Mogkal, N., Fragioni, J. V., Sugarbaker, D. J., and Neel, B. G., 1991, High frequency of retinoic acid receptor β abnormalities in human lung cancer, Oncogene 6:1859–1869.

    PubMed  CAS  Google Scholar 

  • Giguere, V., Ong, S., Segui, P., and Evans, R., 1987, Identification of a receptor for the morphogen retinoic acid, Nature 330:624–629.

    Article  PubMed  CAS  Google Scholar 

  • Giguere, V., Lyn, S., Yip, P., Siu, C. H., and Amin, S., 1990a, Molecular cloning of a cDNA encoding a second cellular retinoic acid-binding protein, Proc. Nad. Acad. Sci. USA 87:6233–6237.

    Article  CAS  Google Scholar 

  • Giguere, V., Shago, M., Zirngibl, R., Tate, P., Rossant, J., and Varmuza, S., 1990b, Identification of a novel isoform of the retinoic acid receptor y expressed in the mouse embryo, Mol. Cell Biol. 10:2335–2340.

    PubMed  CAS  Google Scholar 

  • Goodrich, J. A., Hoey, T., Thut, C. J., Admon, A., and Tijian, R., 1993, Drosophila TAFII 40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB, Cell 75:519–530.

    Article  PubMed  CAS  Google Scholar 

  • Halachmi, S., Marden, E., Martin, G., MacKay, H., Abbondanza, C., and Brown, M., 1994, Estrogen receptor associated protein: Possible mediators of hormone-independent transcription, Science 264:1455–1458.

    Article  PubMed  CAS  Google Scholar 

  • Haugen, B. R., Brown, N. S., Wood, W. M., Gordon, D. F., and Ridgway, E. C., 1997, The thyrotrope-restricted isoform of the retinoid-X receptor-γl mediates 9-cis-retinoic acid suppression of the thyrotropin-β promoter activity, Mol. Endocrinol. 11:481–489.

    Article  PubMed  CAS  Google Scholar 

  • Heyman, R. A., Mangelsdorf, D. J., Dyck, J. A., Stein, R. B., Eichele, G., Evans, R. M., and Thaller, C., 1992, 9-cis Retinoic acid is a high affinity ligand for the retinoid X receptor, Cell 68:397–406.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, B., Lehmann, J. M., Zhang, X.-K., Hermann, T., Hausmann, M., Graupner, G., and Pfahl, M., 1990, A retinoic acid receptor-specific element controls the retinoic acid receptor-β promoter, Mol. Endocrinol. 4:1727–1726.

    Article  Google Scholar 

  • Hofmann, G, and Eichele, G., 1994, Retinoids in development, in The Retinoids, Biology, Chemistry and Medicine, 2nd ed. (M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), pp. 387–441, Raven Press, New York.

    Google Scholar 

  • Hoopes, C. W., Taketo, M., Ozato, K., Liu, Q., Howard, T. A., Linney, E., and Seldin, M. F., 1992, Mapping of the Rxr loci encoding nuclear retinoid X receptors RXRα, RXRβ, and RXRγ, Genomics 14:611–617.

    Article  PubMed  CAS  Google Scholar 

  • Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and Rosenfeld, M. G., 1995, Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor, Nature 377:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Houle, B., Rochette-Egly, G, and Bradley, W. E. G, 1993, Tumor-suppressive effect of the retinoic acid receptor β in human epidermoid lung cancer cells, Proc. Natl. Acad. Sci. USA 90:985–989.

    Article  PubMed  CAS  Google Scholar 

  • Hu, L., and Gudas, L. J., 1990, Cyclic AMP analogs and retinoic acid influences the expression of retinoic acid receptor α, β and γ mRNAs in F9 teratocarcinoma cells, Mol. Cell. Biol. 10:391–396.

    PubMed  CAS  Google Scholar 

  • Hu, L., Crowe, D. L., Rheinwald, J. G., Chambon, P., and Gudas, L. J., 1991, Abnormal expression of retinoic acid receptors and keratin 19 by human oral and epidermal squamous cell carcinoma cell lines, Cancer Res. 51:3972–3981.

    PubMed  CAS  Google Scholar 

  • Huggenvik, J. I., Collard, M. W., Kim, Y.-W., and Sharma, R. P., 1993, Modification of the retinoic acid signaling pathway by the catalytic subunit of protein kinase A, Mol. Endocrinol 7:543–550.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, A., Umesono, K., Mangelsdorf, D. J., Aburtatani, H., Stanger, B. Z., Shibaski, Y., Imawari, M., Evans, R. M., and Takaku, F., 1990, A functional retinoic acid receptor encoded by a gene on human chromosome 12, Mol. Endocrinol. 4:837–844.

    Article  PubMed  CAS  Google Scholar 

  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S.-C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G., 1996, A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors, Cell 85:403–414.

    Article  PubMed  CAS  Google Scholar 

  • Kastner, P., Krust, A., Mendelsohn, C., Garnier, J. M., Zelent, A., Leroy, P., Staub, A., and Chambon, P., 1990, Murine isoforms of the mouse retinoic acid receptor y with specific patterns of expression, Proc. Natl. Acad. Sci. USA 87:2700–2704.

    Article  PubMed  CAS  Google Scholar 

  • Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., and Wahli, W., 1993, Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers, Proc. Natl. Acad. Sci. USA 90:2160–2164.

    Article  PubMed  CAS  Google Scholar 

  • Kliewer, S. A., Umensono, K., Mangelsdorf, D. J., and Evans, R. M., 1992a, Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3 signalling, Nature 335:446–449.

    Article  Google Scholar 

  • Kliewer, S. A., Umesono, K., Heyman, R. H., Mangelsdorf, D. J., Dyck, J. A., and Evans, R. M., 1992b, Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling, Proc. Natl. Acad. Sci. USA 89:1448–1452.

    Article  PubMed  CAS  Google Scholar 

  • Kiiewer, S. A., Umesono, K., Noonan, D. J., Heyman, R. A., and Evans, R. M., 1992c, Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors, Nature 358:771–774.

    Article  Google Scholar 

  • Kruyt, F. A. E., Folkers, G. E., Walhout, A. J. M., van der Leede, B.-J. M., and van der Saag, P. T., 1993, E1A functions as a coactivator of retinoic acid-dependent retinoic acid receptor-β2 promoter activation, Mol. Endocrinol. 7:604–616.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, R., Shoemaker, A. R., and Verma, A. K., 1994, Retinoic acid nuclear receptors and tumor promotion: Decreased expression of retinoic acid nuclear receptors by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, Carcinogenesis 15:701–705.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa, R., Yu, V., Naar, A., Kyakumoto, S., Han, Z., Siverman, S., Rosenfeld, M. G., and Glass, C. K., 1993, Differential orientations of the DNA binding domain and C-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers, Genes Dev. 7:1423–1435.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa, R., DiRenzo, J., Boehm, M., Sugarman, J., Gloss, B., Rosenfeld, M. G., Heyman, R. A., and Glass, C. K., 1994, Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding, Nature 371:528–531.

    Article  PubMed  CAS  Google Scholar 

  • Kurokawa, R., Soderstrom, M., Horlein, A., Halachmi, S., Brown, M., Rosenfeld, M. G., and Glass, C. K., 1995, Polarity-specific activities of retinoic acid receptors determined by a co-repressor, Nature 377:451–454.

    Article  PubMed  CAS  Google Scholar 

  • Kwok, R. P., Lundblad, J. R., Chrivia, J. C., Richards, J. P., Bachinger, H. P., Brennan, R. G., Roberts, S. G., Green, M. R., and Goodman, R. H., 1994, Nuclear protein CBP is a coactivator for the transcription factor CREB, Nature 370:223–226.

    Article  PubMed  CAS  Google Scholar 

  • Lafyatis, R., Kim, S.J., Angel, P., Roberts, A. B., Sporn, M. B., Karin, M., and Wilder, R. L., 1990, Interleukin-1 and all-trans-retinoic acid inhibit collagenase gene expression through its 5′ activator protein-1-binding site, Mol. Endocrinol. 4:971–980.

    Article  Google Scholar 

  • Lamph, W. W., Wamsley, P., Sassone-Corsi, P., and Verma, I., 1988, Induction of protooncogene JUN/AP-1 by serum and TPA, Nature 334:629–631.

    Article  PubMed  CAS  Google Scholar 

  • Lampron, C., Rochette-Egly, C., Gorry, P., Dolle, P., Mark, M., Lufkin, T., LeMeur, M., and Chambon, P., 1995, Mice deficient in cellular retinoic acid binding protein II (CRABP II) or in both CRABP I and CRABP II are essentially normal, Development 121:539–548.

    PubMed  CAS  Google Scholar 

  • Laudet, V., Hanni, C., Coil, J., Catzefles, F., and Stehelin, D., 1992, Evolution of the nuclear receptor gene superfamily, EMBO J. 11:1003–1013.

    PubMed  CAS  Google Scholar 

  • Le Douarin, B., Zechel, C., Gamier, J.-M., Lutz, Y., Tora, L., Pierrat, B., Heery, D., Gronemeyer, H., Chambon, P., and Losson, R., 1995, The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18, EMBO J. 14:2020–2033.

    PubMed  Google Scholar 

  • Lee, J. W., Ryan, F., Swaffield, J. C., Johnston, S. A., and Moore, D. D., 1995, Interaction of thyroid-hormone receptor with a conserved transcriptional mediator, Nature 374:91–94.

    Article  PubMed  CAS  Google Scholar 

  • Lee, W., Mitchell, P., and Tijian, R., 1987, Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements, Cell 49:741–752.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre, P., Gaub, M.-P., Tahayato, A., Rochette-Egly, C., and Formstecher, P., 1995, Protein phosphatases 1 and 2A regulate the transcriptional and DNA binding activities of retinoic acid receptors, J. Biol. Chem. 270:10806–10816.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, J. M., Zhang, K.-K., and Pfahl, M., 1992, RARγ2 expression is regulated through a retinoic acid response element embedded in Spl sites, Mol. Cell Biol. 12:2976–2985.

    PubMed  CAS  Google Scholar 

  • Leid, M., Kastner, P., Lyons, R., Nakshari, H., Saunders, M., Zacharewski, T., Chen, J.-Y., Staub, A., Gamier, J.-M., Mader, S., and Chambon, P., 1992, Purification, cloning, and RXR identity of the HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently, Cell 68:377–395.

    Article  PubMed  CAS  Google Scholar 

  • Leroy, P., Krust, A., Zelent, A., Mendelsohn, C., Gamier, J. M., Kastner, P., Dierich, A., and Chambon, P., 1991a, Multiple isoforms of the mouse retinoic acid receptor a are generated by alternative splicing and differential induction by retinoic acid, EMBO J. 10:59–69.

    PubMed  CAS  Google Scholar 

  • Leroy, P., Nakshatri, H., and Chambon, P., 1991b, Mouse retinoic acid receptor a2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc. Natl. Acad. Sci. USA 88:10138–10142.

    Article  PubMed  CAS  Google Scholar 

  • Levin, A. A., Sturgenbecker, L. J., Kazmer, S., Bosakowski, T., Huselton, C., Allenby, G., Speck, J., Kratzelsen, C., Rosenberger, M., Lovey, A., and Grippo, J. F., 1992, 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα, Nature 355:359–361.

    Article  PubMed  CAS  Google Scholar 

  • Levin, M. S., Li, E., Ong, D. E., and Gordon, J. I., 1987, Comparison of the tissue-specific expression and developmental regulation of two closely linked rodent genes encoding cytosolic retinol-binding proteins, J. Biol. Chem. 262:7118–7124.

    PubMed  CAS  Google Scholar 

  • Liu, Q., and Linney, E., 1993, The mouse X receptor-γ gene: Evidence for functional isoforms, Mol. Endocrinol. 7:651–658.

    Article  PubMed  CAS  Google Scholar 

  • Lundblad, J. R., Kwok, R. P., Laurance, M. E., Harter, M. L., and Goodman, R. H., 1995, Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP, Nature 374:85–88.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, P. N., and Ong, D. E., 1988, Evidence for a lecithin-retinol acyltransferase activity in the rat small intestine, J. Biol. Chem. 263:12478–12482.

    PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J., Ong, E. S., Dynk, J. A., and Evans, R. M., 1990, Nuclear receptor that identifies a novel retinoic acid response pathway, Nature 345:224–229.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A. Zhou, J. Y., Ong, E. S., Oro, A. E., Kakizuka, A., and Evans, R. M., 1992, Characterization of three RXR genes that mediate the action of 9-cis-retinoic acid, Genes Dev. 6:329–344.

    Article  PubMed  CAS  Google Scholar 

  • Marks, M. S., Hallenbeck, P. I., Nagata, T., Segars, J. H., Apella, E., Nikodem, V. M., and Ozato, K., 1992, H-2 RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes, EMBO J. 11:1419–1435.

    PubMed  CAS  Google Scholar 

  • Martin, C. A., Ziegler, L. M., and Napoli, J. L., 1990, Retinoic acid, dibutyryl-cyclic AMP and differentiation affect the expression of retinoic acid receptors in F9 cells, Proc. Natl. Acad. Sci. USA 87:4804–4808.

    Article  PubMed  CAS  Google Scholar 

  • Martin, R., Renakawitz, R., and Muller, M., 1994, Two silencing subdomains of v-erbA synergize with each other, but not with RXR, Nucleic Acids Res. 22:4898–4905.

    Article  PubMed  CAS  Google Scholar 

  • Mattei, M.-G., Riviere, M., Krust, A., Ingvarsson, S., Vennstrom, B., Islam, M. Q., Levan, G., Kastner, P., Zelent, A., Chambon, P., Szpirer, J., and Szpirer, C., 1991, Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse and rat genomes, Genomics 10:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M. F., Gronemeyer, H., Turcotte, B., Bocquel, M. T., Tasset, D., and Chambon, P., 1989, Steroid hormone receptors compete for factors that mediate their enhancer function, Cell 57:433–442.

    Article  PubMed  CAS  Google Scholar 

  • Nagpal, S., Saunders, M., Kastner, P., Durand, B., Nakshatri, H., and Chambon, P., 1992a, Promoter context-and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors, Cell 70:1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Nagpal, S., Zelent, A., and Chambon, P., 1992b, RAR-β4, a retinoic acid receptor isoform, is generated from RAR-β2 by alternative splicing and usage of a CUG initiator codon, Proc. Nati Acad, Sci. USA 89:2718–2722.

    Article  CAS  Google Scholar 

  • Nagpal, S., Frinat, S., Nakshatri, H., and Chambon, P., 1993, RARs and RXRs: Evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo, EMBO J. 12:2349–2360.

    PubMed  CAS  Google Scholar 

  • Napoli, J. L., 1994, Retinoic acid homeostasis. Prospective roles of β-carotene, retinol, CRBP and CRABP, in Vitamin A in Health and Disease (R. Blomhoff, ed.), pp. 135–188, Marcel Dekker, New York.

    Google Scholar 

  • Napoli, J. L., Posch, K. C., Fiorella, P. D., Boerman, M. H. C. M., Salerno, G. J., and Burns, P. D., 1993, Roles of cellular retinol-binding protein and cellular retinoic acid-binding protein in the metabolic channeling of retinoids, in Retinoids: Progress in Research and Clinical Applications (M. A., Liverea and L. Packer, eds.), pp. 29–48, Marcel Dekker, New York.

    Google Scholar 

  • Nicholson, R. C., Mader, S., Nagpal, S., Leid, M., Rochette-Egly, C., and Chambon, P., 1990, Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an AP-1 binding site, EMBO J. 9:4441–4454.

    Google Scholar 

  • Noji, S., Yamsai, T., Koyama, E., Nohno, T., Fujimoto, W., Arata, J., and Taniguchi, S., 1989, Expression of retinoic acid receptor genes in keratinizing front skin, FEBS Lett. 259:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y., 1996, The transcriptional coactivators p300 and CBP are histone acetyltransferases, Cell 87:953–959.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, I., Breitman, T., and Gallo, R., 1992, Priming of human myeloid leukemic cell lines HL-60 and U-937 with retinoic acid for differentiating effects of cyclic adenosine 3′-5′ monophosphate-inducing agents and a T-lymphocyte derived differentiation factor. Cancer Res. 42:3928–3934.

    Google Scholar 

  • Ong, D. E., 1987, Cellular retinoid-binding proteins, Arch. Dermatol. 123:1693–1695.

    Article  PubMed  CAS  Google Scholar 

  • Ong, D. E., and Chytil, F., 1978, Cellular retinoic acid-binding protein from rat testis, J. Biol. Chem. 253:4551–4554.

    PubMed  CAS  Google Scholar 

  • Ong, D. E., Newcomer, M. E., and Chytil, F., 1994, Cellular retinoid-binding proteins, in The Retinoids: Biology, Chemistry, and Medicine, 2nd ed. (M. B. Sporn, A. B. Roberts, and D. S. Goodman, eds.), pp. 288–317, Raven Press, New York.

    Google Scholar 

  • Opas, M., Dziak, E., Flieget, L., and Michalak, M., 1991, Regulation of expression and intracellular distribution of calretinculin, a major calcium binding protein of nonmuscle cells, J. Cell. Physiol. 112:160–171.

    Article  Google Scholar 

  • Onate, S. A., Tsai, S. Y., Tsai, M.-J., and O’Malley, B. W., 1995, Sequence and characterization of a coactivator for the steroid hormone receptor superfamily, Science 270:1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Perlmann, T., and Vennstrom, B., 1995, The sound of silence, Nature 377:387–388.

    Article  PubMed  CAS  Google Scholar 

  • Petkovich, M., Brand, N. J., Krust, A., and Chambon, P., 1987, A human retinoic acid receptor which belongs to the family of nuclear receptors, Nature 330:444–450.

    Article  PubMed  CAS  Google Scholar 

  • Posch, K. C., Boerman, M. H. E. M., Burns, R. D., and Napoli, J. L., 1991, Holocellular retinol binding protein as a substrate for microsomal retinal synthesis, Biochemistry 30:6224–6230.

    Article  PubMed  CAS  Google Scholar 

  • Posch, K. C., Burns, R. D., and Napoli, J. L., 1992, Biosynthesis of all-trans retinoic acid from retinol. Recognition of retinal bound to cellular retinol binding protein (type I) as substrate by a purified cytosolic dehydrogenase, J. Biol. Chem. 267:19676–19682.

    PubMed  CAS  Google Scholar 

  • Predki, P. F., Zambie, D., Sarkar, B., and Giguere, V., 1994, Ordered binding of retinoic acid and retinoid X receptors to asymmetric response elements involves determinants adjacent to their DNA binding domain, Mol. Endocrinol. 8:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, Jr., C. W., Petkoviche, M, Gates, P. B., and Chambon, P., 1989, Identification of a novel retinoic acid receptor in regenerative tissue of the newt, Nature 341:654–657.

    Article  PubMed  CAS  Google Scholar 

  • Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., and Moras, D., 1995, Crystal structure of the RARγ ligand-binding domain bound to all-trans retinoic acid, Nature 377:454–457.

    Article  Google Scholar 

  • Rochette-Egly, C., Lutz, Y., Saunders, M., Scheuer, I., Gaub, M. P., and Chambon, P., 1991, Retinoic acid receptor γ: Specific immunodetection and phosphorylation, J. Cell Biol. 115:535–545.

    Article  PubMed  CAS  Google Scholar 

  • Rochette-Egly, C., Gaub, M.-P., Lutz, Y., Ali, S., Scheuer, I., and Chambon, P., 1992, Retinoic acid receptor-β: Immunodetection and phosphorylation on tyrosine residues, Mol. Endocrinol. 6:2197–2209.

    Article  PubMed  CAS  Google Scholar 

  • Rochette-Egly, C., Oulad-Abdelghani, M., Staub, A., Pfister, V., Scheuer, I., Chambon, P., and Gaub, M.-P., 1995, Phosphorylation of the retinoic acid receptor-a by protein kinase A, Mol. Endocrinol. 9:860–871.

    Article  PubMed  CAS  Google Scholar 

  • Roman, D. S., Clarke, C. L., Hall R. E., Alexander, I. E., and Sutherland, R. L., 1992, Expression and regulation of retinoic acid receptors in human breast cancer cells, Cancer Res. 52:2236–2242.

    PubMed  CAS  Google Scholar 

  • Roman, S. D., Ormandy, C. J., Manning, D. L., Blaney, R. W., Nicholson, R. I., Sutherland, R. L., and Clarke, C. L., 1993, Estradiol induction of retinoic acid receptors in human breast cancer cells, Cancer Res. 53:5940–5945.

    PubMed  CAS  Google Scholar 

  • Ruberti, E., Friedrich, V., Morriss-Kay, G., and Chambon, P., 1992, Differential distribution patterns of CRABPI and CRABPII transcripts during mouse embryogenesis, Development 115:973–987.

    Google Scholar 

  • Schule, R., Umesono, K., Mangelsdorf, D. J., Bolado, J., Pike, J. W., and Evans, R. M., 1990, Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene, Cell 61:497–504.

    Article  PubMed  CAS  Google Scholar 

  • Schule, R., Ranjarajan, P., Yang, N., Kliewer, S., Ransome, L. J., Bolado, J., Verma, I. M., and Evans, R. M., 1991, Retinoic acid is a negative regulator of AP-1 responsive genes, Proc. Natl. Acad. Sci. USA 88:6092–6096.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M. B., Dunlop, N. M., Newton, D. L., and Smith, J. M., 1976, Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids), Fed. Proc. 35:1332–1338.

    PubMed  CAS  Google Scholar 

  • Sucov, H. M., Murakami, K. K., and Evans, R. M., 1990, Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene, Nature 343:177–180.

    Article  Google Scholar 

  • Tahayato, A, Lefebvre, P., Formstecher, P., and Dautrevaux, M., 1993, A protein kinase C-dependent activity modulates retinoic acid-induced transcription, Mol. Endocrinol. 7:1642–1653.

    Article  PubMed  CAS  Google Scholar 

  • Takase, S., Ong, D. E., and Chytil, F., 1986, Transfer of retinoic acid from its complex with cellular retinoic acid-binding protein to the nucleus, Arch. Biochem. Biophys. 247:328–334.

    Article  PubMed  CAS  Google Scholar 

  • Tasset, D., Tora, L., Fromental, G, Scheer, E., and Chambon, P., 1990, Distinct classes of transcriptional activating domains function by different mechanisms, Cell 62:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, G, and Eichele, G., 1990, Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud, Nature 345:815–819.

    Article  PubMed  CAS  Google Scholar 

  • Tharin, S., Dziak, E., Michalak, M, and Opas, M., 1991, Widespread tissue distribution of rabbit calreticulin, a non-muscle functional analogue of calsequestrin, Cell Tiss. Res. 269:29–37.

    Google Scholar 

  • Thompson, J. N., Howell, J. M., and Pitt, G. A. J., 1964, Vitamin A and reproduction in rats, Proc. R. Soc. Lond. B 159:510–535.

    Article  PubMed  CAS  Google Scholar 

  • van der Leede, B.-J. M., Folders, G. E., van den Brink, C. E., van der Saag, P. T., and van der Burg, B., 1995, Retinoic acid receptor αl isoform is induced by estradiol and confers retinoic acid sensitivity in human breast cancer cells, Mol. Cell. Endocrinol. 109:77–86.

    Article  PubMed  Google Scholar 

  • Wald, G., 1968, The molecular basis of visual excitation, Nature 219:800–807.

    Article  PubMed  CAS  Google Scholar 

  • Widom, R. L., Rhee, M., and Karathanasis, S. K., 1992, Repression by ARP-1 sensitizes apolipoprotein Al gene responsiveness to RXRα and retinoic acid, Mol. Cell. Biol. 12:3380–3389.

    PubMed  CAS  Google Scholar 

  • Wilson, J. G., Roth, C. B., and Warkany, J., 1953, An analysis of the syndrome of malformations induced by maternal vitamin A deficiency, Am. J. Anal 92:189–217.

    Article  CAS  Google Scholar 

  • Wurtz, J. M., Bourguet, W., Renaud, J. P., Vivat, V., Chambon, P., Moras, D., and Gronemeyer, H., 1996, A canonical structure for the ligand binding domain of nuclear receptors, Nature Struct. Biol. 3:87–94.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Desai, D., Quick, T. C., and Niles, R. M., 1996, Control of retinoic acid receptor expression in mouse melanoma cells by cyclic AMP, J. Cell. Physiol. 167:413–421.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X.-C, Ro, J. Y., Lee, J. S., Shin, D. M., Hong, W. K., and Lotan, R., 1994, Differential expression of nuclear retinoid receptors in normal, premalignant and malignant head and neck tissues, Cancer Res. 54:3580–3587.

    PubMed  CAS  Google Scholar 

  • Yang, N., Schule, R., Mangelsdorf, D. J., and Evans, R. M., 1991, Characterization of DNA binding and retinoic acid binding properties of retinoic acid receptor, Proc. Natl. Acad. Sci. USA 88:3559–3563.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Minucci, S., Zand, D. J., Ozato, K., and Ashwell, J. D., 1994, T cell activation and increases in protein kinase C activity enhance retinoic acid-induced gene transcription, Mol. Endocrinol. 8:1370–1376.

    Article  PubMed  CAS  Google Scholar 

  • Yang Yen, H.-F., Zhang, X.-K., Graupner, G., Tzukerman, M., Karin, M., and Pfahl, M., 1991, Antagonism between retinoic acid receptors and AP-1: Implication for tumor promotion and inflammation, Nature New Biol. 3:1216–1219.

    Google Scholar 

  • Yoshinaga, S. K., Peterson, C. L., Harskowitz, I., Yamamoto, K. R., 1992, Roles of SW11, SW12, and SW13 proteins for transcriptional enhancement of steroid receptors, Science 258:1598–1604.

    Article  PubMed  CAS  Google Scholar 

  • Yu, V. C., Deisert, C., Anderson, B., Holloway, J. M., Devary, D. V., Naar, A. M., Kim, S. Y., Boutin, J. M., Glass, C. K., and Rosenfeld, M. G., 1991, RXRβ, a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements, Cell 67:1251–1266.

    Article  PubMed  CAS  Google Scholar 

  • Zamir, I., Harding, H. P., Arkins, G. B., Horlein, A., Glass, C. K., Rosenfeld, M. G., and Lazar, M. A., 1996, A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains, Mol. Cell. Biol. 16:5458–5465.

    PubMed  CAS  Google Scholar 

  • Zelent, A., Krust, A., Petkovich, M., Kastner, P., and Chambon, P., 1989, Cloning of murine a and β retinoic acid receptors and a novel receptor γ predominantly expressed in skin, Nature 339:714–717.

    Article  PubMed  CAS  Google Scholar 

  • Zelent, A., Mendelsohn, C., Kastner, P., Gamier, J. M., Ruffenach, F., Leroy, P., and Chambon, P., 1991, Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing, EMBO J. 10:71–81.

    PubMed  CAS  Google Scholar 

  • Zhang, X.-K., Hoffmann, B., Tran, P. B.V., Graupner, G., and Pfahl, M., 1992, Retinoid X receptor is an auxilliary protein for thyroid hormone and retinoic acid receptors, Nature 335:441–446.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niles, R.M. (1998). Control of Retinoid Nuclear Receptor Function and Expression. In: Quinn, P.J., Kagan, V.E. (eds) Fat-Soluble Vitamins. Subcellular Biochemistry, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1789-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1789-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1791-1

  • Online ISBN: 978-1-4899-1789-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics