Root Culture as a Source of Secondary Metabolites of Economic Importance

  • Victor M. Loyola-Vargas
  • María de Lourdes Miranda-Ham
Chapter
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 29)

Abstract

Plants produce more than 80,000 different compounds through their secondary metabolic pathways. Some are used as pharmaceuticals, agrochemicals, dyes, flavors, pesticides, fragrances, etc., and represent multibillion dollar industries. Enormous amounts of plant material are needed for the extraction of these metabolites. Many of these compounds are obtained by direct extraction from plants that are cultivated in the field or sometimes growing in their original habitats. Several factors can alter the yield of products of economic importance. The quality of the raw material can vary widely, and some plants need to grow for several years before they are ready for harvesting. In addition, almost nothing is known about the control of pests and diseases of these plants, or of the postharvest procedures which are essential to preserve the active compounds until their extraction.

Keywords

Cellulase Candida Saponin Kinetin Glucoside 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zenk, M. H. 1991. Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry 30: 3861–3863.CrossRefGoogle Scholar
  2. 2.
    Meijer, A. H., Verpoorte, R., Hoge, J. H. C. 1993. Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J. Plant Res. 3: 145–164.Google Scholar
  3. 3.
    Loyola-Vargas, V. M, Miranda-Ham, M. L. 1990. Aspects about the obtention of secondary metabolites from plant tissue culture. In: Production of Secondary Metabolites from Plant Tissue Cultures and its Biotechnological Perspectives. (V. M. Loyola-Vargas, ed.), Cicy, Merida, Yucatan. pp. 31–79.Google Scholar
  4. 4.
    Kooijman, R., De Wildt, P., Van Den Briel, W., Tan, S., Musgrave, A., Van Den Ende, H. 1990. Cyclic Amp is one of the intracellular signals during the mating of Chlamydomonas eugametos. Planta. 181: 529–537.CrossRefGoogle Scholar
  5. 5.
    Fujita, Y., Takahashi, S., Yamada, Y. 1985. Selection of cell lines with high productivity of shikonin derivatives by protoplast culture of Lithospermum erythrorhizon cells. Agric. Biol. Chem. 49: 1755–1759.CrossRefGoogle Scholar
  6. 6.
    Sato, F., Yamada, Y. 1984. High berberine-producing cultures of Coptis japonica cells. Phytochemistry 23: 281–285.CrossRefGoogle Scholar
  7. 7.
    Baiza, A. M. 1990. Cytogenetics and transformed hairy root cultures. In: Production of Secondary Metabolites from Plant Tissue Cultures and its Biotechnological Perspectives.(V. M. Loyola-Vargas, ed.), Cicy, Merida, Yucatan. pp. 244–261.Google Scholar
  8. 8.
    Dougall, D. K. 1990. Somaclonal variation as a tool for the isolation of elite cell lines to produce secondary metabolites. In: Production of Secondary Metabolites from Plant Tissue Cultures and its Biotechnological Perspectives. (V.M. Loyola-Vargas, ed.), Cicy, Merida, Yucatan. pp. 122–137.Google Scholar
  9. 9.
    Lindsey, K., Yeoman, M. M. 1983. The relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. J. Exp. Bot. 34: 1055–1065.CrossRefGoogle Scholar
  10. 10.
    Collinge, M. A., Yeoman, M. M. 1986. The relationship between tropane alkaloid production and structural differentiation in plant cell cultures of Atropa belladonna and Hyoscyamus muticus. In: Secondary metabolism in plant cell cultures. (P. Morris, A. H. Scragg, A. Stafford, M. W. Fowler, eds.), Cambridge University Press, Cambridge. pp. 82–88.Google Scholar
  11. 11.
    Galewsky, S., Nessler, C.L. 1986. Synthesis of morphinane alkaloids during opium poppy somatic embryogenesis. Plant Sci. 45: 215–222.CrossRefGoogle Scholar
  12. 12.
    Endo, T., Goodbody, A. E., Misawa, M. 1987. Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med. 53: 479–482.PubMedCrossRefGoogle Scholar
  13. 13.
    Barthe, G. A., Jourdan, P. S., Mcintosh, C. A., Mansell, R. L. 1987. Naringin and limonin production in callus cultures and regenerated shoots from Citrus sp. J. Plant Physiol. 127: 55–65.CrossRefGoogle Scholar
  14. 14.
    Greidziak, N., Diettrich, B., Luckner, M. 1990. Batch cultures of somatic embryos of Digitalis lanata in gaslift fermenters. Development and cardenolide accumulation. Planta Med. 56: 175–178.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacobson, M. 1971. The unsaturated isobutylamines. In: Naturally Occurring Insecticides. (M. Jacobson, D. G. Crosby, eds.), Marcel Dekker, Inc. New York. pp. 137–176.Google Scholar
  16. 16.
    Signs, M., Flores, H. E. 1990. The biosynthetic potential of plant roots. BioEssays 12: 7–13.CrossRefGoogle Scholar
  17. 17.
    Butcher, D. N., Street, H. E. 1964. Excised root culture. Bot. Rev. 30: 513–586.CrossRefGoogle Scholar
  18. 18.
    Miranda-Ham, M. L. 1990. Biosynthesis of secondary metabolites in plant cell and tissue cultures. In: Production of Secondary Metabolites from Plant Tissue Cultures and its Biotechnological Perspectives.(V. M. Loyola-Vargas, ed.), Cicy, Merida, Yucatan. pp. 80–90.Google Scholar
  19. 19.
    Chilton, M. D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., Tempe, J. 1982. Agrobacterium rhizogenes inserts T-Dna into the genomes of the host plant root cells. Nature 295: 432–434.CrossRefGoogle Scholar
  20. 20.
    O’Dowd, N. A., Richardson, D. H. S. 1994. Production of tumours and roots by Ephedra following Agrobacterium rhizogenes infection. Can. J. Bot. 72: 203–207.CrossRefGoogle Scholar
  21. 21.
    Oostdam, A., Mol, J. N. M., Van Der Plas, L. H. W. 1993. Establishment of hairy root cultures of Linum flavum producing the lignan 5-methoxypodophyllotoxin. Plant Cell Rep. 12: 474–477.Google Scholar
  22. 22.
    Benjamin, B. D., Roja, G., Heble, M. R. 1994. Alkaloid synthesis by root cultures of Rauwolfia serpentina transformed by Agrobacterium rhizogenes. Phytochemistry 35: 381–383.CrossRefGoogle Scholar
  23. 23.
    Ciau-Uitz, R., Miranda-Ham, M. L., Coello-Coello, J., Chi, B., Pacheco, L. M., Loyola-Vargas, V. M. 1994. Indole alkaloid production by transformed and non-transformed root cultures of Catharanthus roseus. In Vitro Cell. Dev. Biol. 30: 84–88.Google Scholar
  24. 24.
    Gränicher, F., Christen, P., Kapetanidis, I. 1992. High-yield production of valepotriates by hairy root cultures of Valeriana officinalis L. var. sambucifolia Mikan. Plant Cell Rep. 11: 339–342.CrossRefGoogle Scholar
  25. 25.
    Toivonen, L., Balsevich, J., Kurz, W. G. W. 1989. Indole alkaloid production by hairy root cultures of Catharanthus roseus. Plant Cell Tiss. Org. Cult. 18: 79–93.CrossRefGoogle Scholar
  26. 26.
    Maldonado-Mendoza, I. E., Ayora-Talavera, T., Loyola-Vargas, V.M. 1993. Establishment of hairy root cultures of Datura stramonium. Characterization and stability of tropane alkaloid production during long periods of subculturing. Plant Cell Tiss. Org. Cult. 33: 321–329.CrossRefGoogle Scholar
  27. 27.
    Maldonado-Mendoza, I. E., Ayora-Talavera, T., Loyola-Vargas, V M. 1992. Tropane alkaloid production in Datura stramonium root cultures. In Vitro Cell. Dev. Biol. 28: 67–72.CrossRefGoogle Scholar
  28. 28.
    Shimomura, K., Sauerwein, M., Ishimaru, K. 1991. Tropane alkaloids in the adventitious and hairy root cultures of solanaceous plants. Phytochemistry 30: 2275–2278.CrossRefGoogle Scholar
  29. 29.
    Ishimaru, K., Sudo, H., Satake, M., Matsunaga, Y, Hasegawa, Y, Takemoto, S., Shimomura, K. 1990. Amarogentin, amaroswerin and four xanthones from hairy root cultures of Swertia japonica. Phytochemistry 29: 1563–1565.CrossRefGoogle Scholar
  30. 30.
    Bhadra, R., Vani, S., Shanks, J. V 1993. Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol. Bioeng. 41: 581–592.PubMedCrossRefGoogle Scholar
  31. 31.
    Trotin, F., Moumou, Y, Vasseur, J. 1993. Flavanol production by Fagopyrum esculentum hairy and normal root cultures. Phytochemistry 32: 929–931.CrossRefGoogle Scholar
  32. 32.
    Kamada, H., Okamura, N., Satake, M., Harada, H., Shimomura, K. 1986. Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep. 5: 239–242.CrossRefGoogle Scholar
  33. 33.
    Vazquez-Flota, F., Moreno-Valenzuela, O., Miranda-Ham, M.L., Coello-Coello, J., Loyola-Vargas, V M. 1994. Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures in an induction medium and during elicitation. Plant Cell Tiss. Org. Cult. (in press)Google Scholar
  34. 34.
    Flores, H.E., Filner, P. 1985. Hairy roots of Solanaceae as a source of alkaloids. Plant Physiol. 77: 12sCrossRefGoogle Scholar
  35. 35.
    Flores, H. E., Filner, P. 1985. Metabolic relationships of putrescine, Gaba and alkaloids in cell and root cultures of Solanaceae. In: Primary and Secondary Metabolism in Plant Cell Cultures.(K. H. Neumann, W. Barz, E. Reinhard, eds.), Springer-Verlag, Heidelberg. pp. 174–186.CrossRefGoogle Scholar
  36. 36.
    Aird, E. L. H., Hamill, J. D., Robins, R. J., Rhodes, M. J. C. 1988. Chromosome stability in transformed hairy root cultures and the properties of variant lines of Nicotiana trustica hairy roots. In: Manipulating Secondary Metabolism in Culture. (R.J. Robins, M.J.C. Rhodes, eds.), Cambridge University Press, Cambridge. pp. 137–144.Google Scholar
  37. 37.
    Banerjee-Chattopadhyay, S., Schwemmin, A. M., Schwemmin, D. J. 1985. A study of karyotypes and their alterations in cultured and Agrobacterium transformed roots of Lycopersicon peruvianum mill. Theor. Appl. Genet. 71: 258–262.Google Scholar
  38. 38.
    Hamill, J. D., Parr, A. J., Robins, R. J., Rhodes, M. J. C. 1986. Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep. 5: 111–114.CrossRefGoogle Scholar
  39. 39.
    Rhodes, M. J. C., Robins, R. J., Hamill, J. D., Parr, A. J., Walton, N. J. 1987. Secondary product formation using Agrobacterium rhizogenes-transformed “hairy-root” cultures. News Lett. 53: 2–15.Google Scholar
  40. 40.
    Mano, Y., Nabeshima, S., Matsui, C., Ohkawa, H. 1986. Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric. Biol. Chem. 50: 2715–2722.CrossRefGoogle Scholar
  41. 41.
    Payne, J., Hamill, J. D., Robins, R. J., Rhodes, M. J. C. 1987. Production of hyoscyamine by “hairy root” cultures of Datura stramonium. Planta Med. 53: 474–478.PubMedCrossRefGoogle Scholar
  42. 42.
    Mukundan, U., Hjortso, M. A. 1991. Growth and thiophene accumulation by hairy root cultures of Tagetes patula in media of varying initial pH. Plant Cell Rep. 9: 627–630.CrossRefGoogle Scholar
  43. 43.
    Green, K. D., Thomas, N. H., Callow, J. A. 1992. Product enhancement and recovery from transformed root cultures of Nicotiana glauca. Biotechnol. Bioeng. 39: 195–202.PubMedCrossRefGoogle Scholar
  44. 44.
    Ho, C. H., Shanks, J. V. 1992. Effects of initial medium pH on growth and metabolism of Catharanthus roseus hairy root cultures. A study with 31P and 13C Nmr spectroscopy. Biotechnol. Lett. 14: 959–964.CrossRefGoogle Scholar
  45. 45.
    Mano, Y., Ohkawa, H., Yamada, Y. 1989. Production of tropane alkaloids by hairy root cultures of Duboisia leichhardtii transformed by Agrobacterium rhizogenes. Plant Sci. 59: 191–201.CrossRefGoogle Scholar
  46. 46.
    Christen, P., Aoki, T., Shimomura, K. 1992. Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with Agrobacterium rhizogenes A4. Plant Cell Rep. 11: 597–600.CrossRefGoogle Scholar
  47. 47.
    Sauerwein, M., Shimomura, K. 1991. Alkaloid production in hairy roots of Hyoscyamus albus transformed with Agrobacterium rhizogenes. Phytochemistry 30: 3277–3280.CrossRefGoogle Scholar
  48. 48.
    Yonemitsu, H., Shimomura, K., Satake, M., Mochida, S., Tanaka, M., Endo, T., Kaji, A. 1990. Lobeline production by hairy root culture of Lobelia inflata L. Plant Cell Rep. 9: 307–310.CrossRefGoogle Scholar
  49. 49.
    Ishimaru, K., Shimomura, K. 1991. Tannin production in hairy root culture of Geranium thunbergii. Phytochemistry 30: 825–828.CrossRefGoogle Scholar
  50. 50.
    Parr, A. J., Peerless, A. C. J., Hamill, J. D., Walton, N. J., Robins, R. J., Rhodes, M. J. C. 1988. Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep. 7: 309–312.CrossRefGoogle Scholar
  51. 51.
    Hilton, M. G., Rhodes, M. J. C. 1993. Factors affecting the growth and hyoscyamine production during batch culture of transformed roots of Datura stramonium. Planta Med. 59: 340–344.PubMedCrossRefGoogle Scholar
  52. 52.
    Jaziri, M., Legros, M., Homes, J., Vanhaelen, M. 1988. Tropine alkaloids production by hairy root cultures of Datura stramonium and Hyoscyamus niger. Phytochemistry 27: 419–420.CrossRefGoogle Scholar
  53. 53.
    Sato, K., Yamazaki, T., Okuyama, E., Yoshihira, K., Shimomura, K. 1991. Anthraquinone production by transformed root cultures of Rubia tinctorum. Influence of phytohormones and sucrose concentration. Phytochemistry 30: 1507–1509.CrossRefGoogle Scholar
  54. 54.
    Becker, T. W., Caboche, M., Carrayol, E., Hirel, B. 1992. Nucleotide sequence of a tobacco cDna encoding plastidic glutamine synthetase and light inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Mol. Biol. 19: 367–379.PubMedCrossRefGoogle Scholar
  55. 55.
    Toivonen, L., Ojala, M., Kauppinen, V. 1991. Studies on the optimization of growth and indole alkaloid production by hairy root cultures of Catharanthus roseus. Biotechnol. Bioeng. 37: 673–680.PubMedCrossRefGoogle Scholar
  56. 56.
    Deno, H., Yamagata, H., Emoto, T., Yoshioka, T., Yamada, Y, Fujita, Y. 1987. Scopolamine production by root cultures of Duboisia myoporoides. II. Establishment of a hairy root culture by infection with Agrobacterium rhizogenes. J. Plant Physiol. 131: 315–323.CrossRefGoogle Scholar
  57. 57.
    Ohkawa, H., Kamada, H., Sudo, H., Harada, H. 1989. Effects of gibberellic acid on hairy root growth in Datura innoxia. J. Plant Physiol. 134: 633–636.CrossRefGoogle Scholar
  58. 58.
    Sauerwein, M., Wink, M., Shimomura, K. 1992. Influence of light and phytohormones on alkaloid production in transformed root cultures of Hyoscyamus albus. J. Plant Physiol. 140: 147–152.CrossRefGoogle Scholar
  59. 59.
    Yoshikawa, T., Furuya, T. 1987. Saponin production by cultures of Panax ginseng with Agrobacterium rhizogenes. Plant Cell Rep. 6: 449–453.Google Scholar
  60. 60.
    Sauerwein, M., Ishimaru, K., Shimomura, K. 1991. Indole alkaloids in hairy roots of Amsonia elliptica. Phytochemistry 30: 1153–1155.CrossRefGoogle Scholar
  61. 61.
    Constabel, C. P., Towers, G. H. N 1988. Thiarubrine accumulation in hairy root cultures of Chaenactis douglasii. J. Plant Physiol. 133: 67–72.CrossRefGoogle Scholar
  62. 62.
    Sauerwein, M., Yamazaki, T., Shimomura, K. 1991. Hernandulcin in hairy root cultures of Lippia dulcis. Plant Cell Rep. 9: 579–581.Google Scholar
  63. 63.
    Croes, A. F., Van Den Berg, A. J. R., Bosveld, M., Breteler, H., Wullems, GJ. 1989. Thiophene accumulation in relation to morphology in roots of Tagetes patula. Effects of auxin and transformation by Agrobacterium. Planta 179: 43–50.CrossRefGoogle Scholar
  64. 64.
    Ersek, T., Kiraly, Z. 1986. Phytoalexins: warding off compounds in plants? Physiol. Plant. 86: 343–346.CrossRefGoogle Scholar
  65. 65.
    Flores, H. E., Pickard, J. J., Hoy, M. W. 1988. Production of polyacetylenes and thiophenes in heterotrophic and photosynthetic root cultures of Asteraceae. In: Proceedings 1st. International Conference Naturally Occurring Acetylenes and Related Compounds. (J. Lam, H. Breteler, T. Arnason, L. Hansen, eds.), Elsevier, Amsterdam. pp. 233–254.Google Scholar
  66. 66.
    Flores, H. E., Pickard, J. J., Signs, M. 1988. Elicitation of polyacetylene production in hairy root cultures of Asteraceae. Plant Physiol. 86: 108sCrossRefGoogle Scholar
  67. 67.
    Buitelaar, R. M., Leenen, E. J. T.M., Geurtsen, G., De Groot, Æ., Tramper, J. 1993. Effects of the addition of Xad-7 and of elicitor treatment on growth, thiophene production, and excretion by hairy roots of Tagetes patula. Enzyme Microb. Technol. 15: 670–676.CrossRefGoogle Scholar
  68. 68.
    Buitelaar, R. M., Cesário, M. T., Tramper, J. 1992. Elicitation of thiophene production by hairy roots of Tagetes patula. Enzyme Microb. Technol. 14: 2–7.CrossRefGoogle Scholar
  69. 69.
    Mukundan, U., Hjortso, M. A. 1990. Thiophene accumulation in hairy roots of Tagetes patula in response to fungal elicitors. Biotechnol. Lett. 12: 609–614.CrossRefGoogle Scholar
  70. 70.
    Mukundan, U., Hjortso, M.A. 1990. Effect of fungal elicitor on thiophene production in hairy root cultures of Tagetes patula. Appl. Microbiol. Biotechnol. 33: 145–147.CrossRefGoogle Scholar
  71. 71.
    Loyola-Vargas, V. M., Cosgaya, E., Quintero, C., Ayora, T. 1988. Modification del perfil de poliaminas por inductores füngicos en cultivos in vitro de raices transformadas de Datura stramonium. Soc. Mex. Bioquim. 101Google Scholar
  72. 72.
    Signs, M. W., Flores, H. E. 1989. Elicitation of sesquiterpene phytoalexin biosynthesis in transformed root cultures of Hyoscyamus muticus L. Plant Physiol. 89: 135sGoogle Scholar
  73. 73.
    Robbins, M. P., Hartnoll, J., Morris, P. 1991. Phenylpropanoid defence responses in transgenic Lotus corniculatus. 1. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures. Plant Cell Rep. 10: 59–62.CrossRefGoogle Scholar
  74. 74.
    Sato, N., Yoshizawa, Y., Miyazaki, H., Murai, A. 1985. Antifungal activity to Phytophthora infestans and toxicity to tuber tissue of several popato phytoalexins. Ann. Phytopathol. Soc. (Japan). 51: 494–497.CrossRefGoogle Scholar
  75. 75.
    Dunlop, D. S., Curtis, W. R. 1991. Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechnol. Prog. 7: 434–438.CrossRefGoogle Scholar
  76. 76.
    Furze, J. M., Rhodes, M. J. C., Parr, A. J., Robins, R. J., Withehead, I. M., Threlfall, D. R. 1991. Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep. 10: 111–114.CrossRefGoogle Scholar
  77. 77.
    Saenz-Carbonell, L., Maldonado-Mendoza, I. E., Moreno, V., Ciau-Uitz, R., Lopez-Meyer, M., Oropeza, C., Loyola-Vargas, V. M. 1993. Effect of the medium pH on the release of secondary metabolites from roots of Datura stramonium, Catharanthus roseus and Tagetes patula cultured in vitro. Appl. Biochem. Biotechnol. 38: 257–267.CrossRefGoogle Scholar
  78. 78.
    Shimomura, K., Sudo, H., Saga, H., Kamada, H. 1991. Shikonin production and secretion by hairy root cultures of Lithospermum erythrorhizon. Plant Cell Rep. 10: 282–285.CrossRefGoogle Scholar
  79. 79.
    Uozumi, N., Kato, Y., Nakashimada, Y., Kobayashi, T. 1992. Excretion of peroxidase from horseradish hairy root in combination with ion supplementation. Appl. Microbiol. Biotechnol. 37: 560–565.CrossRefGoogle Scholar
  80. 80.
    Maldonado-Mendoza, I. E. Loyola-Vargas, V. M. 1990. Effect of photoautotrophy on tropane alkaloids contents in Datura stramonium hairy root cultures. Plant Physiol. 93:21sGoogle Scholar
  81. 81.
    Flores, H. E., Yao-Rem, D., Cuello, J. L., Maldonado-Mendoza, I. E., Loyola-Vargas, V. M. 1993. Green roots: photosynthesis and photoautotrophy in an underground plant organ. Plant Physiol. 101: 363–371.PubMedGoogle Scholar
  82. 82.
    De Luca, V., Cutler, A.J. 1987. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 85: 1099–1102.PubMedCrossRefGoogle Scholar
  83. 83.
    Ishimaru, K., Arakawa, H., Yamanaka, M., Shimomura, K. 1994. Polyacetylenes in Lobelia sessilifolia hairy roots. Phytochemistry 35: 365–369.CrossRefGoogle Scholar
  84. 84.
    Mukundan, U., Hjortso, M.A. 1991. Effect of light on growth and thiophene accumulation in transformed roots of Tagetes patula. J. Plant Physiol. 138: 252–255.CrossRefGoogle Scholar
  85. 85.
    Fujita, Y. Tabata, M. 1987. Secondary metabolites from plant cells. Pharmaceutical applications and progress in commercial production. In: Plant Biology Vol. 3. Plant Tissue and Cell Culture. (C. E. Green, D. A. Somers, W. P. Hackett, D. D. Biesboer, eds.), Alan R. Liss, Co. New York. pp. 169–185.Google Scholar
  86. 86.
    Flores, H. E. 1987. Use of plant cells and organ culture in the production of biological chemicals. In: Biotechnology in Agricultural Chemistry. Symposium Series 334. (H.M. LeBaron, R.O. Mumma, R.C. Honeycutt, J.H. Duesing, J.F. Phillips, M.J. Haas, eds.), American Chemical Society, Washington, D. C. pp. 66–86.CrossRefGoogle Scholar
  87. 87.
    Rhodes, M. J. C., Hamill, J. D., Parr, A. J., Robins, R. J., Walton, N. J. 1988. Strain improvement by screening and selection techniques. In: Manipulating Secondary Metabolism in Culture. (R.J. Robins, M.Jc. Rhodes, eds.), Cambridge University Press, Cambridge. pp. 83–93.Google Scholar
  88. 88.
    Furze, J. M., Hamill, J. D., Parr, A. J., Robins, R. J., Rhodes, M. J. C. 1987. Variations in morphology and nicotine alkaloid accumulation in protoplasts derived hairy root cultures of N. rustica. J. Plant Physiol. 131: 237–246.CrossRefGoogle Scholar
  89. 89.
    Medina-BoliVar, F., Flores, H. E. 1993. A novel approach for tropane alkaloid overproduction from hairy roots of Hyoscyamus muticus. Plant Physiol. 102: 98sGoogle Scholar
  90. 90.
    Fecker, L. F., Hillebrandt, S., Rugenhagen, C., Herminghaus, S., Landsmann, J., Berlin, J. 1992. Metabolic effects of a bacterial lysine decarboxylase gene expressed in hairy root cultures of Nicotiana glauca. Biotechnol. Lett. 14: 1035–1040.CrossRefGoogle Scholar
  91. 91.
    Fecker, L. F., Rügenhagen, C., Berlin, J. 1993. Increased production of cadaverine and anabasine in hairy root cultures of Nicotiana tabacum expressing a bacterial lysine decarboxylase gene. Plant Mol. Biol. 23: 11–21.PubMedCrossRefGoogle Scholar
  92. 92.
    Hashimoto, T., Yun, D.-J., Yamada, Y. 1993. Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32: 713–718.CrossRefGoogle Scholar
  93. 93.
    Doolittle, R. F. 1994. Protein sequence comparisons: Searching databases and aligning sequences. Curr. Opin. Biotechnol. 5: 24–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Rhodes, M. J. C., Hilton, M., Parr, A. J., Hamill, J. D., Robins, R. J. 1986. Nicotine production by “hairy root” cultures of Nicotiana rustica: fermentation and product recovery. Biotechnol. Lett. 8: 415–420.CrossRefGoogle Scholar
  95. 95.
    Wilson, P. D. G., Hilton, M. G., Robins, R. J., Rhodes, M. J. C. 1989. Fermentation studies of transformed root cultures. In: Bioreactors and Biotransformations. (G. W. Moody, P. B. Baker, eds.), Elsevier Applied Sci. Pub. New York. pp. 38–51.Google Scholar
  96. 96.
    Muranaka, T., Ohkawa, H., Yamada, Y. 1992. Scopolamine release into media by Duboisia leichhardtii hairy root clones. Appl. Microbiol. Biotechnol. 37: 554–559.CrossRefGoogle Scholar
  97. 97.
    Whitney, P.J. 1992. Novel bioreactors for the growth of roots transformed by Agrobacterium rhizogenes. Enzyme Microb. Technol. 14: 13–17.CrossRefGoogle Scholar
  98. 98.
    Sharp, J. M., Doran, P. M. 1990. Characteristics of growth and tropane alkaloid synthesis in Atropa belladonna roots transformed by Agrobacterium rhizogenes. J. Biotechnol. 16: 171–186.CrossRefGoogle Scholar
  99. 99.
    Toivonen, L., Ojala, M., Kauppinen, V. 1990. Indole alkaloid production by hairy root cultures of Catharanthus roseus: growth kinetics and fermentation. Biotechnol. Lett. 12: 519–524.CrossRefGoogle Scholar
  100. 100.
    Rodriguez-Mendiola, M. A., Stafford, A., Cresswell, R., Arias-Castro, C. 1991. Bioreactors for growth of plant roots. Enzyme Microb. Technol. 13: 697–702.CrossRefGoogle Scholar
  101. 101.
    Matsumoto, T., Tanaka, N. 1991. Production of phytoecdysteroids by hairy root cultures of Ajuga reptans Var Atropurpurea. Agric. Biol. Chem. 55: 1019–1025.CrossRefGoogle Scholar
  102. 102.
    Kennedy, A. I., Deans, S. G., Svoboda, K. P., Gray, A. I., Waterman, P. G. 1993. Volatile oils from normal and transformed root of Artemisia absinthium. Phytochemistry 32: 1449–1451.CrossRefGoogle Scholar
  103. 103.
    Wilson, P. D. G., Hilton, M. G., Robins, R. J., Rhodes, M. J. C. 1987. Fermentation studies of transformed root cultures. In: Bioreactors and Biotransformations. (G.W. Moody, P. B. Baker, eds.), Elsevier Applied Science, London. pp. 38–51.Google Scholar
  104. 104.
    Scheidegger, A. 1990. Plant biotechnology goes commercial in Japan. Trends Biotechnol. 8: 197–198.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamada, Y., Hashimoto, T. 1988. Biosynthesis of tropane alkaloids. In: Applications of Plant Cell and Tissue Culture. (G. Bock, J. Marsh, eds.), John Wiley & Sons, New York. pp. 199–212.Google Scholar
  106. 106.
    Portsteffen, A., Draeger, B., Nahrstedt, A. 1992. Two tropinone reducing enzymes from Datura stramonium transformed root cultures. Phytochemistry 31: 1135–1138.CrossRefGoogle Scholar
  107. 107.
    Drager, B., Portsteffen, A., Schaal, A., Mccabe, P. H., Peerless, A. C. J., Robins, R. J. 1992. Levels of tropinone-reductase activities influence the spectrum of tropane esters found in transformed root cultures of Datura stramonium L. Planta 188: 581–586.CrossRefGoogle Scholar
  108. 108.
    Robins, R. J., Parr, A. J., Payne, J., Walton, N. J., Rhodes, M. J. C. 1990. Factors regulating tropane-alkaloid production in a transformed root culture of a Datura Candida x D. aurea hybrid. Planta 181: 414–422.CrossRefGoogle Scholar
  109. 109.
    Hashimoto, T., Nakajima, K., Ongena, G., Yamada, Y. 1992. Two tropinone reductases with distinct stereospecificities from cultured roots of Hyoscyamus niger. Plant Physiol. 100: 836–845.PubMedCrossRefGoogle Scholar
  110. 110.
    Robins, R. J., Bachmann, P., Robinson, T., Rhodes, M. J. C., Yamada, Y. 1991. The formation of 3a-and 3ß-acetoxytropanes by Datura stramonium transformed root cultures involves two acetyl-CoA-dependent acyltransferases. Febs Lett. 292: 293–297.PubMedCrossRefGoogle Scholar
  111. 111.
    Hashimoto, T., Mitani, A., Yamada, Y. 1990. Diamine oxidase from cultured roots of Hyoscyamus niger. Plant Physiol. 93: 216–221.PubMedCrossRefGoogle Scholar
  112. 112.
    Walton, N. J., Peerless, A. C. J., Robins, R. J., Rhodes, M. J. C., Boswell, H. D., Robins, D. J. 1994. Purification and properties of putrescine N-methyltransferase from transformed roots of Datura stramonium L. Planta 193: 9–15.CrossRefGoogle Scholar
  113. 113.
    Walton, N. J., Robins, R. J., Peerless, A. C. J. 1990. Enzymes of N-methylputrescine biosynthesis in relation to hyoscyamine formation in transformed root cultures of Datura stramonium and Atropa belladonna. Planta 182: 136–141.CrossRefGoogle Scholar
  114. 114.
    Mclauchlan, W. R., Mckee, R. A., Evans, D. M. 1993. The purification and immunocharacterisation of N-methylputrescine oxidase from transformed root cultures of Nicotiana tabacum L. cv Sc58. Planta 191: 440–445.CrossRefGoogle Scholar
  115. 115.
    Hibi, N., Fujita, T., Hatano, M., Hashimoto, T., Yamada, Y. 1992. Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus. n-Butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol. 100: 826–835.PubMedCrossRefGoogle Scholar
  116. 116.
    Hashimoto, T., Yukimune, Y., Yamada, Y. 1989. Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus. Planta 178: 123–130.CrossRefGoogle Scholar
  117. 117.
    Hashimoto, T., Yukimune, Y., Yamada, Y. 1989. Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus II. Incorporation of labeled precursors. Planta 178: 131–137.CrossRefGoogle Scholar
  118. 118.
    Constabel, C.R, Towers, G. H. N. 1989. Incorporation of 35S into dithiacyclohexadiene and thiophene polyines in hairy root cultures of Chaenectis douglasii. Phytochemistry 28: 93–95.CrossRefGoogle Scholar
  119. 119.
    Sugimoto, Y., Sugimura, Y., Yamada, Y. 1990. Biosynthesis of bisbenzylisoquinoline alkaloids in cultured roots of Stephania cepharantha. Febs Lett. 273: 82–86.PubMedCrossRefGoogle Scholar
  120. 120.
    Gomez-Barrios, M. L., Parodi, F. J., Vargas, D., Quijano, L., Hjortso, M. A., Flores, H. E., Fischer, N. H. 1992. Studies on the biosynthesis of thiarubrine A in hairy root cultures of Ambrosia artemisiifolia using 13C-labelled acetates. Phytochemistry 31: 2703–2707.CrossRefGoogle Scholar
  121. 121.
    Berlin, J., Rugenhagen, C., Greidziak, N., Kuzovkina, I. N., Witte, L., Wray, V. 1993. Biosynthesis of serotonin and ß-carboline alkaloids in hairy root cultures of Peganum harmala. Phytochemistry 33: 593–597.CrossRefGoogle Scholar
  122. 122.
    Islas, I., Loyola-Vargas, V. M., Miranda-Ham, M. L. 1994. Tryptophan decar-boxylase activity in transformed roots from Catharanthus roseus and its relationship to tryptamine, ajmalicine, and catharanthine accumulation during the culture cycle. In Vitro Cell. Dev.Biol. 30P: 81–83.Google Scholar
  123. 123.
    Hamill, J. D., Parr, A. J., Rhodes, M. J.C., Robins, R. J., Walton, N. J. 1987. New routes to plant secondary products. BioTechnol. 5: 800–804.CrossRefGoogle Scholar
  124. 124.
    Parr, A. J., Hamill, J. D. 1987. Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26: 3241–3245.CrossRefGoogle Scholar
  125. 125.
    Tempe, J., Schell, J. 1987. La manipulation des plantes. La Recherche 188: 696–709.Google Scholar
  126. 126.
    Vazquez-Flota, F., Coello, J., Loyola-Vargas, V.M. 1992. Growth kinetics and alkaloid production in hairy root cultures of Catharanthus roseus. Plant Physiol. 99: 49sGoogle Scholar
  127. 127.
    Bhadra, R., Ho, C. H., Shanks, J. V. 1991. Growth characteristics of hairy root lines of Catharanthus roseus. In Vitro Cell. Dev. Biol. 27: 109A–109A.Google Scholar
  128. 128.
    Davioud, E., Kan, C., Hamon, J., Tempe J., Husson, H. P. 1989. Production of indole alkaloids by in vitro root cultures from Catharanthus trichophyllus. Phytochemistry. 28: 2675–2680.CrossRefGoogle Scholar
  129. 129.
    Kyo, M., Miyauchi, Y., Fujimoto, T., Mayama, S. 1990. Production of nematocidal compounds by hairy root cultures of Tagetes patula L. Plant Cell Rep. 9: 393–397.CrossRefGoogle Scholar
  130. 130.
    Ogasawara, T., Chiba, K., Tada, M. 1993. Production in high-yield of a naphtho-quinone by a hairy root culture of Sesamum indicum. Phytochemistry 33: 1095–1098.CrossRefGoogle Scholar
  131. 131.
    Hamill, J. D., Robins, R. J., Rhodes, M. J. C. 1989. Alkaloid production by transformed root cultures of Cinchona ledgeriana. Planta Med. 55: 354–357.PubMedCrossRefGoogle Scholar
  132. 132.
    Christen, P., Roberts, M. F., Phillipson, J. D., Evans, W. C. 1989. High-yield production of tropane alkaloids by hairy-root cultures of a Datura Candida hybrid. Plant Cell Rep. 8: 75–77.CrossRefGoogle Scholar
  133. 133.
    Parr, A. J. 1992. Alternative metabolic fates of hygrine in transformed root cultures of Nicandra physaloides. Plant Cell Rep. 11: 270–273.Google Scholar
  134. 134.
    Jung, K. H., Kwak, S. S., Kim, S. W., Lee, H., Choi, C. Y., Liu, J. R. 1992. Improvement of catharanthine productivity in hairy root cultures of Croseus by using monosaccharides as carbon source. Biotechnol. Lett. 14: 695–700.CrossRefGoogle Scholar
  135. 135.
    Davioud, E., Kan, C., Quirion, J. C., Das, B. C., Husson, H. P. 1989. Epiallo-yohimbine derivatives isolated from in vitro hairy-root cultures of Catharanthus trichophyllus. Phytochemistry 28: 1383–1387.CrossRefGoogle Scholar
  136. 136.
    Falkenhagen, H., Stockigt, J., Kuzovkina, I. N., Alterman, I. E., Kolshorn, H. 1993. Indole alkaloids from “hairy roots” of Rauwolfia serpentina. Can. J. Chem. 71: 2201–2203.CrossRefGoogle Scholar
  137. 137.
    Asada, Y., Saito, H., Yoshikawa, T., Sakamoto, K., Furuya, T. 1993. Biotransformation of 1 18ß-glycyrrhetinic acid by ginseng hairy root culture. Phytochemistry 34: 1049–1052.PubMedCrossRefGoogle Scholar
  138. 138.
    Hirakura, K., Morita, M., Nakajima, K., Ikeya, Y, Mitsuhashi, H. 1991. Three acetylated polyacetylenes from the roots of Panax ginseng. Phytochemistry 30: 4053–4055.CrossRefGoogle Scholar
  139. 139.
    Lu, T., Parodi, F. J., Vargas, D., Quijano, L., Mertooetomo, E. R., Hjortso, M. A., Fischer, N. H. 1993. Sesquiterpenes and thiarubrines from Ambrosia trifida and its transformed roots. Phytochemistry 33: 113–116.CrossRefGoogle Scholar
  140. 140.
    Norton, R. A., Towers, G. H. N. 1986. Factors affecting synthesis of polyacetylenes in root cultures of Bidens alba. J. Plant Physiol. 122: 41–53.CrossRefGoogle Scholar
  141. 141.
    Horz, K. H., Reichling, J. 1993. Allylphenol biosynthesis in a transformed root culture of Coreopsis tinctoria: Side-chain formation. Phytochemistry 33: 349–351.CrossRefGoogle Scholar
  142. 142.
    Trypsteen, M., Vanlijsebettens, M., Vanseveren, R., Vanmontagu, M. 1991. Agrobacterium-rhizogenes-mediated transformation of Echinacea purpurea. Plant Cell Rep. 10: 85–89.CrossRefGoogle Scholar
  143. 143.
    Abegaz, B. M. 1991. Polyacetylenic thiophenes and terpenoids from the roots of Echinops pappii. Phytochemistry 30: 879–881.CrossRefGoogle Scholar
  144. 144.
    Yamazaki, T., Flores, H. E., Shimomura, K., Yoshihira, K. 1991. Examination of steviol glucosides production by hairy root and shoot cultures of Stevia rebaudiana. J. Nat. Prod. 54: 986–992.CrossRefGoogle Scholar
  145. 145.
    Mukundan, U., Hjortso, M. A. 1990. Thiophene content in normal and transformed root cultures of Tagetes erecta: A comparison with thiophene content in roots of intact plants. J. Exp. Bot. 41: 1497–1501.CrossRefGoogle Scholar
  146. 146.
    Uesato, S., Ogawa, Y, Inouya, H., Saiki, K., Zenk, M.H. 1986. Synthesis of iridodial by cell free extracts from Rauwolfia serpentina cell suspension cultures. Tetrahedron Lett. 13: 2893–2896.CrossRefGoogle Scholar
  147. 147.
    Parodi, F. J., Fischer, N. H., Flores, H. E. 1988. Benzofuran and bithiophenes from root cultures of Tagetes patula. J. Nat. Prod. 51: 594–595.CrossRefGoogle Scholar
  148. 148.
    Westcott, R. J. 1988. Thiophene production from “hairy roots” of Tagetes. In: Manipulating Secondary Metabolism in Culture. (R.J. Robins, M.J.C. Rhodes, eds.), Cambridge University Press, Cambridge. pp. 233–237.Google Scholar
  149. 149.
    Sim, S.J., Chang, H. N. 1993. Increased shikonin production by hairy roots of Lithospermum erythrorhizon in two phase bubble column reactor. Biotechnol. Lett. 15: 145–150.CrossRefGoogle Scholar
  150. 150.
    Ishimaru, K., Sadoshima, S., Neera, S., Koyama, K., Takahashi, K., Shi-Momura, K. 1992. A polyacetylene gentiobioside from hairy roots of Lobelia inflata. Phytochemistry 31: 1577–1579.CrossRefGoogle Scholar
  151. 151.
    Ishimaru, K., Yonemitsu, H., Shimomura, K. 1991. Lobetyolin and lobetyol from hairy root culture of Lobelia inflata. Phytochemistry 30: 2255–2257.CrossRefGoogle Scholar
  152. 152.
    Benson, E. E., Hamill, J. D. 1991. Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tiss. Org. Cult. 24: 163–172.CrossRefGoogle Scholar
  153. 153.
    Jung, G., Tepfer, D. 1987. Use of genetic transformation by the Ri T-Dna of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci. 50: 145–151.CrossRefGoogle Scholar
  154. 154.
    Parkinson, M., Cotter, T., Dix, P. J. 1990. Peroxidase production by cell suspension and hairy root cultures of horseradish (Armoracia rusticand). Plant Sci. 66: 271–277.CrossRefGoogle Scholar
  155. 155.
    Katavic, V, Jelaska, S., Bakran-Petricioli, T., David, C. 1991. Host-tissue differences in transformation of pumpkin (Cucurbita pepo L.) by Agrobacterium rhizogenes. Plant Cell Tiss. Org. Cult. 24: 35–42.CrossRefGoogle Scholar
  156. 156.
    Savary, B. J., Flores, H. E. 1993. Characterization of bioactive proteins produced in root cultures of Trichosanthes kirilowi var. Japonica. Plant Physiol. 102: 31sGoogle Scholar
  157. 157.
    Ishimaru, K., Sudo, H., Satake, M., Shimomura, K. 1990. Phenyl glucosides from a hairy root culture of Swertia japonica. Phytochemistry 29: 3823–3825.CrossRefGoogle Scholar
  158. 158.
    Hu, Z. B., Alfermann, A. W. 1993. Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32: 699–703.CrossRefGoogle Scholar
  159. 159.
    Wink, M., Witte, L. 1987. Alkaloids in stem roots of Nicotiana tabacum and Spartium junceum transformed by Agrobacterium rhizogenes. Z. Naturforsch. 42c: 69–72.Google Scholar
  160. 160.
    Williams, R. D., Ellis, B. E. 1988. Patterns of benzylisoquinoline alkaloids in Papaver somniferum plants and Agrobacterium rhizogenes transformed tissues. Phytochem. Soc. Newsletter. 28: 12Google Scholar
  161. 161.
    Williams, R. D., Ellis, B. E. 1993. Alkaloids from Agrobacterium rhizogenes-trans-formed Papaver somniferum cultures. Phytochemistry 32: 719–723.CrossRefGoogle Scholar
  162. 162.
    Ishimaru, K., Hirose, M., Takahashi, K., Koyama, K., Shimomura, K. 1990. Tannin production in root culture of Sanguisorba officinalis. Phytochemistry 29: 3827–3830.CrossRefGoogle Scholar
  163. 163.
    Jha, S., Sahu, N. P., Sen, J., Jha, T. B., Mahato, S. B. 1991. Production of emetine and cephaeline from cell suspension and excised root cultures of Cephaelis ipecacuanha. Phytochemistry 30: 3999–4003.CrossRefGoogle Scholar
  164. 164.
    Knopp, E., Strauss, A., Wehrli, W. 1988. Root induction on several Solanaceae species by Agrobacterium rhizogenes and the determination of root tropane alkaloid content. Plant Cell Rep. 7: 590–593.CrossRefGoogle Scholar
  165. 165.
    Christen, P., Roberts, M. F., Phillipson, J. D., Evans, W. C. 1990. Alkaloids of hairy root cultures of a Datura Candida hybrid. Plant Cell Rep. 9: 101–104.CrossRefGoogle Scholar
  166. 166.
    Parr, A. J., Payne, J., Eagles, J., Chapman, B. T., Robins, R J., Rhodes, M. J. C. 1990. Variation in tropane alkaloid accumulation within the solanaceae and strategies for its exploitation. Phytochemistry 29: 2545–2550.CrossRefGoogle Scholar
  167. 167.
    Flores, H. E., Protacio, C. M., Signs, M. W. 1989. Primary and secondary metabolism of polyamines in plants. In: Plant Nitrogen Metabolism. Recent Advances in Phytochemistry. Vol. 23.(J.E. Poulton, J.T. Romeo, E.E. Conn, eds.), Plenum Press, New York and London. pp. 329–391.CrossRefGoogle Scholar
  168. 168.
    Robins, R. J., Parr, A. J., Bent, E. G., Rhodes, M. J. C. 1991. Studies on the biosynthesis of tropane alkaloids in Datura stramonium L. transformed root cultures. 1. The kinetics of alkaloid production and the influence of feeding intermediate metabolites. Planta 183: 185–195.CrossRefGoogle Scholar
  169. 169.
    Robins, R. J., Bent, E. G., Rhodes, M. J. C. 1991. Studies on the biosynthesis of tropane alkaloids by Datura stramonium L. transformed root cultures. 3. The relationship between morphological integrity and alkaloid biosynthesis. Planta 185: 385–390.CrossRefGoogle Scholar
  170. 170.
    Rhodes, M. J. C., Robins, R. J., Lindsay, E., Aird, H., Payne, J., Parr, A. J., Walton, N. J. 1989. Regulation of secondary metabolism in transformed roots cultures. In: Primary and Secondary Metabolism of Plant Cell Cultures II. (W.G.W. Kurz, ed.). Springer-Verlag, Berlin Heidelberg. pp. 58–72.CrossRefGoogle Scholar
  171. 171.
    Kitamura, Y., Taura, A., Kajiya, Y., Miura, H. 1992. Conversion of Phenylalanine and tropic acid into tropane alkaloids by Duboisia leichhardtii root cultures. J. Plant Physiol. 140: 141–146.CrossRefGoogle Scholar
  172. 172.
    Kitamura, Y., Nishimi, S., Miura, H., Kinoshita, T. 1993. Phenyllactic acid in Duboisia leichhardtii root cultures by feeding of phenyl[l-14C]alanine. Phytochemistry 34: 425–427.CrossRefGoogle Scholar
  173. 173.
    Leete, E., Endo, T., Yamada, Y. 1990. Biosynthesis of nicotine and scopolamine in a root culture of Duboisia leichhardtii. Phytochemistry 29: 1847–1851.CrossRefGoogle Scholar
  174. 174.
    Doerk-Schmitz, K., Witte, L., Alfermann, A. W. 1994. Tropane alkaloid patterns in plants and hairy roots of Hyoscyamus albus. Phytochemistry 35: 107–110.CrossRefGoogle Scholar
  175. 175.
    Sauerwein, M., Shimomura, K., Wink, M. 1993. Incorporation of l-13C-acetate into tropane alkaloids by hairy root cultures of Hyoscyamus albus. Phytochemistry 32: 905–909.CrossRefGoogle Scholar
  176. 176.
    Sauerwein, M., Wink, M. 1993. On the role of opines in plants transformed with Agrobacterium rhizogenes: Tropane alkaloid metabolism, insect-toxicity and allelopathic properties. J. Plant Physiol. 142: 446–451.CrossRefGoogle Scholar
  177. 177.
    Hashimoto, T., Yukimune, Y., Yamada, Y. 1986. Tropane alkaloid production in Hyoscyamus root culture. J. Plant Physiol. 124: 61–75.CrossRefGoogle Scholar
  178. 178.
    Sauerwein, M., Ishimaru, K., Shimomura, K. 1991. Apiperidone alkaloid from Hyoscyamus albus roots transformed with Agrobacterium rhizogenes. Phytochemistry 30: 2977–2978.CrossRefGoogle Scholar
  179. 179.
    Corry, J. P., Reed, W. L., Curtis, W. R. 1993. Enhanced recovery of solavetivone from Agrobacterium transformed root cultures of Hyoscyamus muticus using integrated product extraction. Biotechnol. Bioeng. 42: 503–508.PubMedCrossRefGoogle Scholar
  180. 180.
    Walton, N. J., Belshaw, N. J. 1988. The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep. 7: 115–118.CrossRefGoogle Scholar
  181. 181.
    Boswell, H. D., Watson, A.B., Walton, N. J., Robins, D. J. 1993. Formation of N’-ethyl-S-nornicotine by transformed root cultures of Nicotiana rustica. Phytochemistry 34: 153–155.CrossRefGoogle Scholar
  182. 182.
    Robins, R. J., Hamill, J. D., Parr, A. J., Smith, K., Walton, N. J., Rhodes, M. J. C. 1987. Potential for use of nicotinic acid as a selective agent for isolation of high nicotine-producing lines of Nicotiana rustica hairy root cultures. Plant Cell Rep. 6: 122–126.Google Scholar
  183. 183.
    Walton, N. J., Robins, R. J., Rhodes, M. J. C. 1988. Perturbation of alkaloid production by cadaverine in hairy root cultures of Nicotiana rustica. Plant Sci. 54: 125–131.CrossRefGoogle Scholar
  184. 184.
    Walton, N. J., Mclauchlan, W. R. 1990. Diamine oxidation and alkaloid production in transformed root cultures of Nicotiana tabacum. Phytochemistry 29: 1455–1457.CrossRefGoogle Scholar
  185. 185.
    Bel Rhlid, R., Chabot, S., Piché, Y., Chênevert, R. 1993. Isolation and identification of flavonoids from Ri T-Dna-transformed roots (Daucus carota) and their significance in vesicular-arbuscular mycorrhiza. Phytochemistry 33: 1369–1371.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Victor M. Loyola-Vargas
    • 1
  • María de Lourdes Miranda-Ham
    • 1
  1. 1.Plant Biology DivisionCentro de Investigación Científica de YucatánCordemexYuc. México

Personalised recommendations