Skip to main content
Book cover

Ion Channels pp 333–376Cite as

Single-Channel Studies in Molluscan Neurons

  • Chapter
  • 112 Accesses

Part of the book series: Ion Channels ((IC,volume 4))

Abstract

Throughout the modern history of neuroscience, molluscs have served as a model system to disclose the neuronal basis of cell-to-cell communication and the underlying mechanisms of neuronal excitability. The ease with which individual neurons within a particular molluscan species can be recognized led to the establishment of in vitro preparations ranging from the isolated squid axon nerve to single-cell culture systems. Hence it became possible to study the effects of the various neurotransmitters, second messengers, and toxic substances on properties of single identified neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, T. W., Castellucci, V. F., Camardo, J. S., Kandel E. R., and Lloyd, P. E., 1984, Two endogenous neuropeptides modulate the gill and siphon withdrawal reflex in Aplysia by presynaptic facilitation involving cAMP-dependent closure of a serotonin-sensitive potassium channel, Proc. Natl. Acad. Sci. USA 81: 7956–7960.

    PubMed  CAS  Google Scholar 

  • Adrian, R. H., and Freygang, W. H., 1962, Potassium and chloride permeability of frog muscle membrane, J. Physiol. 163: 61–103.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Bezanilla, F., 1977, Inactivation of the sodium channel. II. Gating current experiments, J. Gen. Physiol. 70: 567–590.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M., and Binstock, L., 1965, Anomalous rectification in the squid axon injected with tetra-ethylammonium chloride, J. Gen. Physiol. 48: 859–872.

    PubMed  CAS  Google Scholar 

  • Ascher, P., and Erulkar, S., 1983, Cholinergic chloride channels in snail neurones, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 401–407.

    Google Scholar 

  • Ascher, P., Marty, A., and Neild, T. O., 1978a, Life time and elementary conductance of the channels mediating the excitatory effects of acetylcholine in Aplysia neurones, J. Physiol. 278: 177–206.

    PubMed  CAS  Google Scholar 

  • Ascher, P., Marty, A., and Neild, T. O., 1978b, The mode of action of antagonists of the excitatory response to acetylcholine in Aplysia neurones, J. Physiol. 278: 207–235.

    PubMed  CAS  Google Scholar 

  • Bédard, E., and Morris, C. E., 1992, Channels activated by stretch in neurons of a Helix snail, Can. J. Physiol. Pharmacol. 70: 207–213.

    PubMed  Google Scholar 

  • Behrens, M. I., Oberhauser, A., Bezanilla, E, and Latorre, R., 1989, Batrachotoxin-modified sodium channels from the squid optic nerve in planar bilayers, J. Gen. Physiol. 93: 23–41.

    PubMed  CAS  Google Scholar 

  • Belardetti, F., and Siegelbaum, S. A., 1988, Up-and down-modulation of a single K+ channel function by distinct second messengers, Trends Neurosci. 11: 232–238.

    PubMed  CAS  Google Scholar 

  • Belardetti, F., Schacher, S., and Siegelbaum, S. A., 1986, Action potentials, macroscopic and single channel currents recorded from growth cones of Aplysia neurones in culture, J. Physiol. 374: 289–313.

    PubMed  CAS  Google Scholar 

  • Belardetti, F., Kandel, E. R., and Siegelbaum, S. A., 1987, Neuronal inhibition by the peptide FMRFamide involves opening of S-K+ channels, Nature 325: 153–156.

    PubMed  CAS  Google Scholar 

  • Belardetti, F., Schacher, S., Kandel, E. R., and Siegelbaum, S. A., 1986, The growth cones of Aplysia sensory neurons: Modulation by serotonin of action potential duration and single potassium channel currents, Proc. Natl. Acad. Sci. USA 83: 7094–7098.

    PubMed  CAS  Google Scholar 

  • Belardetti, F., Campbell, W. B., Falck, J. R., Demontis, G., and Rosolowsky, M., 1989, Products of heme-catalyzed transformation of the arachidonate derivative 12-HPETE open S-type K+-channels in Aplysia, Neuron 3: 497–505.

    PubMed  CAS  Google Scholar 

  • Bezanilla, F., 1987a, Single sodium channels recorded from the cut-open squid giant axon, Biophys. J. 51(2): 195a.

    Google Scholar 

  • Bezanilla, F., 1987b, Single sodium channels from the squid giant axon, Biophys. J. 52: 1087–1090.

    PubMed  CAS  Google Scholar 

  • Bezanilla, F., and Armstrong, C. M., 1972, Negative conductance caused by entry of sodium and cesium ions into the potassium channels of the squid axons, J. Gen. Physiol. 60: 588–608.

    PubMed  CAS  Google Scholar 

  • Bregestovski, P. D., and Redkozubov, A. E., 1986, Acetylcholine-activated single chloride channels in neurons of the mollusc Lymnaea stagnalis, Biol. Membr. 3: 960–969.

    Google Scholar 

  • Brezden, B. L., and Gardner, D. R., 1986, A potassium-selective channel in isolated Lymnaea stagnalis heart muscle cells, J. Exp. Biol. 123: 175–189.

    Google Scholar 

  • Brezina, V., Eckert, R., and Erxleben, C., 1987, Modulation of potassium conductances by an endogenous neuropeptide in neurones of Aplysia californica, J. Physiol. 382: 267–290.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Camerer, H., Kunze, D. L., and Lux, H. D., 1982, Similarity of unitary Ca2+ currents in three different species, Nature 299: 156–158.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Lux, H. D., and Wilson, D. L., 1984, Activation and inactivation of single calcium channels in snail neurons, J. Gen. Physiol. 83: 751–769.

    PubMed  CAS  Google Scholar 

  • Brown, A. M., Kunze, D. L., and Lux, H. D., 1986, Single calcium channels and their inactivation, Membr. Biochem. 6: 73–81.

    PubMed  CAS  Google Scholar 

  • Buttner, N., Siegelbaum, S. A., and Volterra, A., 1989, Direct modulation of Aplysia S-K+ channels by a 12-lipoxygenase metabolite of arachidonic acid, Nature 342: 553–555.

    PubMed  CAS  Google Scholar 

  • Byerly, L., and Moody, W. J., 1984, Intracellular calcium ions and calcium currents in perfused neurones of the snail, Lymnaea stagnalis, J. Physiol. 352: 637–652.

    PubMed  CAS  Google Scholar 

  • Byerly, L., and Suen, Y., 1989, Characterization of proton currents in neurones of the snail, Lymnaea stagnalis, J. Physiol. 413: 75–89.

    PubMed  CAS  Google Scholar 

  • Camardo, J. S., Shuster, M. J., Siegelbaum, S. A., and Kandel, E. R., 1983, Modulation of a specific potassium channel in sensory neurons of Aplysia by serotonin and cAMP-dependent protein phosphorylation, Cold Spring Harbor Symp. Quant. Biol. 48: 213–220.

    PubMed  CAS  Google Scholar 

  • Camardo, J. S., Shuster, M. J., and Siegelbaum, S.A., 1986, Modulation of a potassium channel in Aplysia sensory neurons: Role of protein phosphorylation, in: Molecular Aspects of Neurobiology (R. L. Montalcini et al., eds.), Springer-Verlag, Berlin, Heidelberg, pp. 106–112.

    Google Scholar 

  • Castellucci, V. F, Kandel, E. R., Schwartz, J. H., Wilson, F D., Nairn, A. C., and Greengard, P., 1980, Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase stimulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77: 7492–7496.

    PubMed  CAS  Google Scholar 

  • Catterall, W. A., 1986, Molecular properties of voltage-sensitive sodium channels, Annu. Rev. Biochem. 55: 953–985.

    PubMed  CAS  Google Scholar 

  • Chagneux, H., Ducreux, C., and Gola, M., 1989, Voltage-dependent opening of single calcium-activated potassium channels in Helix neurons, Brain Res. 488: 336–340.

    PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais, D., 1983, Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurons, J. Physiol. 342: 277–308.

    PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais, D., 1984, Two types of chloride channels in outside-out patches from Aplysia neurones, J. Physiol. 357: 64P.

    Google Scholar 

  • Chesnoy-Marchais, D., 1985a, Single channels permeable to calcium in Aplysia neurones, J. Physiol. 365: 83P.

    Google Scholar 

  • Chesnoy-Marchais, D., 1985b, Kinetic properties and selectivity of calcium-permeable single channels in Aplysia neurones, J. Physiol. 367: 457–488.

    PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais, D., and Evans, M. G., 1986a, Chloride channels activated by hyperpolarization in Aplysia neurones, Pflügers Arch. 407: 694–696.

    PubMed  CAS  Google Scholar 

  • Chesnoy-Marchais, D., and Evans, M. G., 1986b, Nonselective ionic channels in Aplysia neurons, J. Membr. Biol. 93: 75–83.

    PubMed  CAS  Google Scholar 

  • Cohan, C. S., Haydon, P. G., and Kater, S. B., 1985, Single channel activity differs in growing and nongrowing growth cones of isolated identified neurons of Helisoma, J. Neurosci. Res. 13: 285–300.

    PubMed  CAS  Google Scholar 

  • Connor, J. A., and Stevens, C. F., 1971, Prediction of repetitive firing behavior from voltage clamp data on an isolated neurone soma, J. Physiol. 213: 31–53.

    PubMed  CAS  Google Scholar 

  • Conti, F., and Neher, E., 1980, Single channel recordings of K+ currents in squid axons, Nature 285: 140–143.

    PubMed  CAS  Google Scholar 

  • Cooper, E., and Shrier, A., 1985, Single-channel analysis of fast transient potassium currents from rat nodose neurons, J. Physiol. 369: 199–208.

    PubMed  CAS  Google Scholar 

  • Correa, A. M., and Bezanilla, F., 1988, Properties of BTX-treated single Na channels in squid axon, Biophys. J. 53: 226a.

    Google Scholar 

  • Correa, A. M., and Bezanilla, F., 1994, Gating of the squid sodium channel at positive potentials: II. Single channels reveal two open states, Biophys. J. 66: 1864–1878.

    PubMed  CAS  Google Scholar 

  • Correa, A. M., Latorre, R., and Bezanilla, F., 1989, Na-dependence and temperature effects on BTX-treated sodium channels in squid axon, Biophys. J. 55: 403a.

    Google Scholar 

  • Correa, A. M., Latorre, R., and Bezanilla, F., 1991, Ion permeation in normal and batrachotoxin-modified Na+ channels in the squid giant axon, J. Gen. Physiol. 97: 605–625.

    PubMed  CAS  Google Scholar 

  • Correa, A. M., Bezanilla, F., and Latorre, R., 1992, Gating kinetics of batrachotoxin-modified Na+ channels in the squid giant axon, Biophys. J. 61: 1332–1352.

    PubMed  CAS  Google Scholar 

  • Cottrell, G. A., Davies, N. W., and Green, K. A., 1984, Multiple actions of a molluscan cardioexcitatory neuropeptide and related peptides on identified Helix neurones, J. Physiol. 356: 315–333.

    PubMed  CAS  Google Scholar 

  • Cottrell, G. A., Green, K. A., and Davies, N. W., 1990, The neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) can activate a ligand-gated ion channel in Helix neurones, Pflügers Arch. 416: 612–614.

    PubMed  CAS  Google Scholar 

  • Coyne, M. D., Dagan, D., and Levitan, I. B., 1987, Calcium and Barium permeable channels from Aplysia nervous system reconstituted in lipid bilayers, J. Membr. Biol. 97: 205–213.

    PubMed  CAS  Google Scholar 

  • Crest, M., and Gola, M., 1993, Large conductance Ca2+-activated K+ channels are involved in both spike shaping and firing regulation in Helix neurones, J. Physiol. (London) 465: 265–287.

    CAS  Google Scholar 

  • Crest, M., Jacquet, G., Gola, M., Zerrouk, H., Benslimane, A., Rochat, H., Mansuelle, P., and Martin-Eauclaire, M.-F, 1992, Kalitoxin, a novel peptidyl inhibitor of neuronal BK-type Ca2+-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom, J. Biol. Chem. 267: 1640–1647.

    PubMed  CAS  Google Scholar 

  • Decoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D., 1987, Two types of potassium channels in murine T lymphocytes, J. Gen. Physiol. 89: 379–404.

    PubMed  CAS  Google Scholar 

  • DePeyer, J., Cachelin, A., Levitan, I. B., and Reuter, H., 1982, Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylations, Proc. Natl. Acad. Sci. USA 79: 4207–4211.

    CAS  Google Scholar 

  • Eckert, R., and Chad, J. E., 1984, Inactivation of Ca channels, Prog. Biophys. Mol. Biol. 44: 215–267.

    PubMed  CAS  Google Scholar 

  • Edmonds, B., Klein, M., Dale, N., and Kandel, E. R., 1990, Contributions of two types of calcium channels to synaptic transmission and plasticity, Science 250: 1142–1147.

    PubMed  CAS  Google Scholar 

  • Ewald, D. A., Williams, A., and Levitan, I. B., 1985, Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation, Nature 315: 503–506.

    PubMed  CAS  Google Scholar 

  • Fejtl, M., and Carpenter, D. O., 1991, Acetylcholine-activated single channel currents in cultured Aplysia neurons, Soc. Neurosci. Abstr. 17: 583.

    Google Scholar 

  • Fejtl, M., Györi, J., and Carpenter, D. O., 1994a, Hg2+ increases the open probability of carbachol-activated Cl channels in Aplysia neurons, Neuroreport 5: 2317–2320.

    PubMed  CAS  Google Scholar 

  • Fejtl, M., Györi, J., and Carpenter, D. O., 1994b, Mercuric (II) chloride modulates single channel properties of carbachol-activated Cl channels in cultured neurons of Aplysia califomica, Cell Mol. Neurobiol. 14: 665–674.

    PubMed  CAS  Google Scholar 

  • Fink, L., Connor, J. A., and Kaczmarek, L. K., 1987, Inositol triphosphate activates K+ channels through elevation of intracellular calcium in peptidergic neurons of Aplysia, Soc. Neurosci. Abstr. 13: 152.

    Google Scholar 

  • Fink, L. A., Connor, J. A., and Kaczmarek, L. K., 1988, Inositol triphosphate releases intracellularly stored calcium and modulates ion channels in molluscan neurons, J. Neurosci. 8: 2544–2555.

    PubMed  CAS  Google Scholar 

  • Fishman, H. M., and Tewari, K. P., 1990, Single Ca2+ channels in patches of axosomes from transfected squid axon, Biophys. J. 57: 523a.

    Google Scholar 

  • Fukushima, Y., 1982, Blocking kinetics of the anomalous potassium rectifier of tunicate eggs studied by single channel recording, J. Physiol. 331: 311–331.

    PubMed  CAS  Google Scholar 

  • Furukawa, Y., and Kobayashi, M., 1988, Two serotonin-sensitive potassium channels in the identified heart excitatory neurone of the African giant snail, Achatina fulica Ferussac, Experientia 44: 738–740.

    PubMed  CAS  Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1983, Discrete character of potassium channel conductance in Lymnaea stagnalis neurons, Biofizika 28: 994–998.

    CAS  Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1985, Single Cl channels in molluscan neurones: Multiplicity of the conductance states, J. Membr. Biol. 86: 9–15.

    PubMed  CAS  Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1987, Discreteness of the parameters of current oscillations in single ion channels, Biophysics 32: 290–294.

    Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1989, Single potential-dependent K+ channels and their oligomers in molluscan glial cells, Biochim. Biophys. Acta 98: 343–350.

    Google Scholar 

  • Geletyuk, V. I., Kazachenko, V. N., and Tseeb, B. E., 1988, Quantization of kinetic parameters of single ion channels, Dokl. Akad, Nauk. SSSR 301: 465–469.

    CAS  Google Scholar 

  • Gola, M., Ducreux, C., and Chaux, H., 1990, Ca2+-activated K+ current involvement in neuronal function revealed by in situ single-channel analysis in Helix neurones, J. Physiol. 420: 73–109.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1980, Potassium conductance and internal calcium accumulation in a molluscan neurone, J. Physiol. 308: 287–313.

    PubMed  CAS  Google Scholar 

  • Green, D. J., and Gillette, R., 1983, Patch-and voltage-clamp analysis of cyclic AMP-stimulated inward current underlying neurone bursting, Nature 306: 784–785.

    PubMed  CAS  Google Scholar 

  • Green, K. A., Cadogan, A., and Cottrell, G. A., 1989, Nicotinic-type unitary currents in Helix neurons, Comp. Biochem. Physiol. 93A: 47–51.

    CAS  Google Scholar 

  • Green, K. A., Powell, B., and Cottrell, G. A., 1990, Unitary K+ currents in growth cones and perikaryon of identified Helix neurones in culture, J. Exp. Biol. 149: 79–94.

    Google Scholar 

  • Guharay, F., and Sachs, F., 1984, Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscles, J. Physiol. 352: 685–701.

    PubMed  CAS  Google Scholar 

  • Györi, J., Osipenko, O. N., and Kiss, T., 1993, Voltage-clamp and single channel analysis of Pb2+-induced current in isolated snail neurons, Acta Biol. Hung. 44: 3–7.

    PubMed  Google Scholar 

  • Hagiwara, S., Kusano, K., and Saito, N., 1961, Membrane changes of Onchidium nerve cell in potassium-rich media, J. Physiol. 155: 470–489.

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflügers Arch. 391: 85–100.

    PubMed  CAS  Google Scholar 

  • Harden, T. K., 1983, Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase, Pharmacol. Rev. 35: 5–32.

    PubMed  CAS  Google Scholar 

  • Harris, G. L., Henderson, L. P., and Spitzer, N. C., 1988, Changes in densities and kinetics of delayed rectifier potassium channels during neuronal differentiation, Neuron 1: 739–750.

    PubMed  CAS  Google Scholar 

  • Hermann, A., 1986, Selective blockade of a Ca-activated K-current in Aplysia neurons by charybdotoxin, Pflügers Arch. 406(Suppl): R54.

    Google Scholar 

  • Hermann, A., and Erxleben, C., 1987, Charybdotoxin selectively blocks small Ca-activated K channels in Aplysia neurons, J. Gen. Physiol. 90: 27–47.

    PubMed  CAS  Google Scholar 

  • Heyer, C. B., and Lux, H. D., 1976, Control of the delayed outward potassium currents in bursting pacemaker neurones of the snail Helix pomatia, J. Physiol. 262: 349–382.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117: 500–544.

    PubMed  CAS  Google Scholar 

  • Horn, R., and Vandenberg, C. A., 1984, Statistical properties of single sodium channels, J. Gen. Physiol. 84: 505–534.

    PubMed  CAS  Google Scholar 

  • Ikemoto, Y., and Akaike, N., 1988, Kinetic analysis of acetylcholine-induced chloride current in isolated Aplysia neurones, Pflügers Arch. 412: 240–247.

    PubMed  CAS  Google Scholar 

  • Johnson, J. W., and Thompson, S., 1989, Measurement of nonuniform current densities and current kinetics in Aplysia neurons using a large patch method, Biophys. J. 55: 299–308.

    PubMed  CAS  Google Scholar 

  • Kachman, A. N., Samoilova, M. V., and Snetkov, V. A., 1989, A single potassium channel of anomalous (inward) rectification in molluscan neurons, Neirofiziologiya 21: 31–38.

    CAS  Google Scholar 

  • Kachman, A. N., Frolova, E. V., and Gapon, S. A., 1990, Chloride channels activated by suberyldicholine in mollusc neurons, Neirofiziologiya 22: 697–700.

    CAS  Google Scholar 

  • Kasai, H., 1985, Single transient potassium currents in mammalian sensory neurons studied using patch clamp techniques, Soc. Neurosci. Abstr. 11: 955.

    Google Scholar 

  • Kazachenko, V. I., and Geletyuk, V. I., 1983, Single potential-dependent potassium channel in the neurons of mollusc Lymnaea stagnalis, Biofizika 28: 270–273.

    CAS  Google Scholar 

  • Kazachenko, V. N., and Geletyuk, V. I., 1984, The potential-dependent K+ channel in molluscan neurones is organized in a cluster of elementary channels, Biochim. Biophys. Acta 773: 132–142.

    PubMed  CAS  Google Scholar 

  • Kehoe, J. S., 1972, Three acetylcholine receptors in Aplysia neurons, J. Physiol. 225: 115–146.

    PubMed  CAS  Google Scholar 

  • Khodorov, B. I., 1985, Batrachotoxin as a tool to study voltage-sensitive sodium channels of excitable membranes, Prog. Biophys. Mol. Biol. 45: 57–148.

    PubMed  CAS  Google Scholar 

  • Klein, M., Camardo, J., and Kandel, E. R., 1982, Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia, Proc. Natl. Acad. Sci. USA 79: 5713–5717.

    PubMed  CAS  Google Scholar 

  • Kramer, R. H., 1990, Patch cramming: Monitoring intracellular messengers in intact cells with membrane patches containing detector ion channels, Neuron 2: 335–341.

    Google Scholar 

  • Latorre, R., Oberhauser, A., Condrescu, M., DiPolo, R., and Bezanilla, F., 1987, Incorporation of sodium channels from squid optic nerve into planar lipid bilayers, Biophys. J. 51: 195a.

    Google Scholar 

  • Levis, R. A., Bezanilla, F., and Torres, R. M., 1984, Estimate of the squid axon sodium channel conductance with improved frequency resolution, Biophys. J. 45: 11a.

    Google Scholar 

  • Llano, I., and Bezanilla, F., 1984, Analysis of sodium current fluctuations in the cut-open squid giant axon, J. Gen. Physiol. 83: 133–142.

    PubMed  CAS  Google Scholar 

  • Llano, I., and Bezanilla, F., 1985, Two types of potassium channels in the cut-open squid giant axon, Biophys. J. 47: 221a.

    Google Scholar 

  • Llano, I., and Bezanilla, F., 1986, Batrachotoxin-modified single sodium channels in squid axon, Biophys. J. 49: 43a.

    Google Scholar 

  • Llano, I., and Bookman, R. J., 1985, The K+ conductance of squid giant fibre lobe neurons, Biophys. J. 47: 223a.

    Google Scholar 

  • Llano, I., and Bookman, R. J., 1986, Ionic conductances of squid giant fiber lobe neurons, J. Gen. Physiol. 88: 543–569.

    PubMed  CAS  Google Scholar 

  • Llano, I., Bookman, R. J., and Armstrong, C. M., 1986, Single K channels recorded from squid GFL neurons, Biophys. J. 49(2): 216a.

    Google Scholar 

  • Llano, I., Webb, C. K., and Bezanilla, F., 1988, Potassium conductance of the squid giant axon. Single-channel studies, J. Gen. Physiol. 92: 179–196.

    PubMed  CAS  Google Scholar 

  • Llinàs, R., Sugimori, M., Lin, J.-W., and Cherksey, B., 1989, Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison, Proc. Natl. Acad. Sci. USA 86: 1689–1693.

    PubMed  Google Scholar 

  • Lux, H. D., and Brown, A. M., 1984a, Single channel studies on inactivation of calcium currents, Science 225: 432–434.

    PubMed  CAS  Google Scholar 

  • Lux, H. D., and Brown, A. M., 1984b, Patch and whole cell calcium currents recorded simultaneously in snail neurons, J. Gen. Physiol. 83: 727–750.

    PubMed  CAS  Google Scholar 

  • Lux, H. D., and Hofmeier, G., 1982, Activation characteristics of the calcium-dependent outward potassium current in Helix, Pflügers Arch. 394: 70–77.

    PubMed  CAS  Google Scholar 

  • Lux, H. D., and Nagy, K., 1981, Single channel Ca2+ currents in Helix pomatia neurons, Pflügers Arch. 391: 252–254.

    PubMed  CAS  Google Scholar 

  • Lux, H. D., Neher, E., and Marty, A., 1981, Single channel activity associated with the calcium dependent outward current in Helix pomatia, Pflügers Arch. 389: 293–295.

    PubMed  CAS  Google Scholar 

  • Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx, J. Physiol. 249: 211–239.

    PubMed  CAS  Google Scholar 

  • Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M., 1985, Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature 313: 316–318.

    PubMed  CAS  Google Scholar 

  • Morris, C. E., 1990, Mechanosensitive ion channels, J. Membr. Biol. 113: 93–107.

    PubMed  CAS  Google Scholar 

  • Morris, C. E., 1992, Are stretch-sensitive ion channels in molluscan cells and elsewhere physiological mechanotransducers?. Experientia 48: 852–858.

    PubMed  CAS  Google Scholar 

  • Morris, C. E., and Horn, R., 1991, Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies, Science 251: 1246–1249.

    PubMed  CAS  Google Scholar 

  • Morris, C. E., and Sigurdson, W. J., 1989, Stretch-inactivated ion channels coexist with stretch-activated ion channels, Science 234: 807–809.

    Google Scholar 

  • Nealey, T., Spires, S., Eatock, R. A., and Begenisich, T., 1993, Potassium channels in squid neuron cell bodies: Comparison to axonal channels, J. Membr. Biol. 132: 13–25.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1976, Single channel currents recorded from membrane of denervated frog muscle fibres, Nature 260: 799–802.

    PubMed  CAS  Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, M., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312: 121–127.

    PubMed  CAS  Google Scholar 

  • Oberhauser, A., 1989, Single ion channels recorded from squid GFL neurons, Biophys. J. 55: 172a.

    Google Scholar 

  • Ohmori, S., Yoshida, S., and Hagiwara, S., 1981, Single K+-channel currents of anomalous rectification in cultured rat myotube, Proc. Natl. Acad. Sci. USA 78: 4960–4964.

    PubMed  CAS  Google Scholar 

  • Osipenko, O. N., Györi, J., and Kiss, T., 1992, Lead ions close steady-state sodium channels in Helix neurons, Neuroscience 50: 483–489.

    PubMed  CAS  Google Scholar 

  • Perozo, E., Jong, D. S., and Bezanilla, F., 1990, Single channel analysis of the phosphorylation of the squid axon delayed rectifier, Biophys. J. 57: 22a.

    Google Scholar 

  • Perozo, E., Vandenberg, C. A., Jong, D. S., and Bezanilla, F., 1991a, Single channel studies of the phosphorylation of K+ channels in the squid giant axon. I. Steady-state conditions, J. Gen. Physiol. 98: 1–17.

    PubMed  CAS  Google Scholar 

  • Perozo, E., Jong, D. S., and Bezanilla, F, 1991b, Single channel studies of the phosphorylation of K+ channels in the squid giant axon. II. Nonstationary conditions, J. Gen. Physiol. 98: 19–34.

    PubMed  CAS  Google Scholar 

  • Piomelli, D., Volterra, A., Dale, N., Siegelbaum, S. A., Kandel, E. R., Schwartz, J. H., and Belardetti, F, 1987, Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells, Nature 328: 38–43.

    PubMed  CAS  Google Scholar 

  • Pollock, J. D., and Camardo, J. S., 1987, Regulation of single potassium channels by serotonin in the cell bodies of the tail mechanosensory neurons of Aplysia californica, Brain Res. 410: 367–370.

    PubMed  CAS  Google Scholar 

  • Premack, B. A., Thompson, S., and Coombs-Hahn, J., 1989, Clustered distribution and variability in kinetics of transient K channels in molluscan neuron cell bodies, J. Neurosci. 2: 4089–4099.

    Google Scholar 

  • Prestipino, G., Valdivia, H. H., Liévano, A., Darszon, A., Ramirez, A. N., and Possani, L. D., 1989, Purification and reconstitution of potassium channel proteins from squid axon membranes, FEBS Lett. 250: 570–574.

    PubMed  CAS  Google Scholar 

  • Quandt, F., 1988, Three kinetically distinct potassium channels in mouse neuroblastoma cells, J. Physiol. 395: 401–418.

    PubMed  CAS  Google Scholar 

  • Quandt, F., and Narahashi, T., 1982, Modifications of single Na+ channels by batrachotoxin, Proc. Natl. Acad. Sci. USA 79: 6732–6736.

    PubMed  CAS  Google Scholar 

  • Ram, J. L., and Dagan, D., 1987, Inactivating and non-inactivating outward current channels in cell-attached patches of Helix neurons, Brain Res. 405: 16–25.

    PubMed  CAS  Google Scholar 

  • Reuter, H., and Stevens, C. F., 1980, Ion conductance and ion selectivity of potassium channels in snail neurones, J. Membr. Biol. 57: 103–118.

    PubMed  CAS  Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25: 729–749.

    PubMed  CAS  Google Scholar 

  • Sakmann, B., and Trübe, G., 1984, Conductance properties of single inwardly potassium channels in ventricular cells from guinea-pig heart, J. Physiol. 347: 659–683.

    PubMed  CAS  Google Scholar 

  • Salánki, J., Osipenko, O. N., Kiss, T., and Györi, J., 1991, Effect of Cu2+ and Pb2+ on membrane excitability of snail neurons, in: Molluscan Neurobiology. Symposium on Molluscan Neurobiology (K. S. Kits et al., eds.), North-Holland, Amsterdam, pp. 214–220.

    Google Scholar 

  • Serrano, E. E., and Getting, P. A., 1989, Diversity of the transient outward potassium current in somata of identified molluscan neurons, J. Neurosci. 9: 4021–4032.

    PubMed  CAS  Google Scholar 

  • Shuster, M. J., and Siegelbaum, S. A., 1987, Pharmacological characterization of the serotonin-sensitive potassium channel of Aplysia sensory neurons, J. Gen. Physiol. 90: 587–608.

    PubMed  CAS  Google Scholar 

  • Shuster, M. J., Camardo, J. S., Siegelbaum, S. A., Eppler, C. M., and Kandel, E. R., 1984, Modulation of the serotonin-sensitive potassium channel by cAMP-dependent protein kinase, Soc. Neurosci. Abstr. 10: 145.

    Google Scholar 

  • Shuster, M. J., Camardo, J. S., Siegelbaum, S. A., and Kandel, E. R., 1985, Cyclic AMP—dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches, Nature 313: 392–395.

    PubMed  CAS  Google Scholar 

  • Shuster, M. J., Camardo, J. S., and Siegelbaum, S. A., 1991, Comparison of the serotonin-sensitive and Ca++-activated K+ channels in Aplysia sensory neurons, J. Physiol. 440: 601–621.

    PubMed  CAS  Google Scholar 

  • Siegelbaum, S.A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones, Nature 299: 413–417.

    PubMed  CAS  Google Scholar 

  • Siegelbaum, S. A., Belardetti, F., Camardo, J. S., and Shuster, M. J., 1986, Modulation of the serotonin-sensitive potassium channel in Aplysia sensory neurone cell body and growth cone, J. Exp. Biol. 124 287–306.

    PubMed  CAS  Google Scholar 

  • Sigurdson, W. J., and Morris, C. E., 1989, Stretch-activated ion channels in growth cones of snail neurons, J. Neurosci. 9: 2801–2808.

    PubMed  CAS  Google Scholar 

  • Small, D. L., and Morris, C. E., 1994, Delayed activation of single mechanosensitive channels in Lymnaea neurons, Am. J. Physiol. 267: C598–C606.

    PubMed  CAS  Google Scholar 

  • Spires, S., Eatock, R. A., Nealey, T., and Begenisich, T., 1988, Chemical modification of K channels: Macroscopic ionic, gating, and single channel currents, Biophys. J. 53: 261a.

    Google Scholar 

  • Strong, J. A., and Scott, S. A., 1992, Divalent-selective voltage-independent calcium channels in Lymnaea neurons: Permeation properties and inhibition by intracellular magnesium, J. Neurosci. 12: 2993–3003.

    PubMed  CAS  Google Scholar 

  • Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarek, L. K., 1987a, Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons, Nature 325: 714–717.

    PubMed  CAS  Google Scholar 

  • Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarek, L. K., 1987b, Formation of cell-free patches unmasks a large divalent-permeable, voltage-independent channel in Aplysia neurons, Soc. Neurosci. Abstr. 13: 1011.

    Google Scholar 

  • Sudlow, L. C., Huang, R.-C., Green, D. J., and Gillette, R., 1993, cAMP-activated Na+ current of molluscan neurons is resistant to kinase inhibitors and is gated by cAMP in the isolated patch, J. Neurosci. 13: 5188–5193.

    PubMed  CAS  Google Scholar 

  • Taylor, P. S., 1987, Selectivity and patch measurements of A-current channels in Helix aspersa neurones, J. Physiol. 388: 437–447.

    PubMed  CAS  Google Scholar 

  • Taylor, R. E., Armstrong, C. M., and Bezanilla, F., 1976, Block of sodium channels by external calcium ions, Biophys. J. 16: 27a.

    Google Scholar 

  • Thomas, R. C., and Meech, R. W., 1982, Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones, Nature 299: 826–828.

    PubMed  CAS  Google Scholar 

  • Thompson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurons, J. Physiol. 265: 465–488.

    PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., and Bezanilla, F., 1991, A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon, Biophys. J. 60: 1511–1533.

    PubMed  CAS  Google Scholar 

  • Vandenberg, C. A., Perozo, E., and Bezanilla, F., 1989, ATP modulation of the K current in squid giant axon. A single channel study, Biophys. J. 49: 215a.

    Google Scholar 

  • Vandorpe, D. H., and Morris, C. E., 1992, Stretch-activation of the Aplysia S-channel, J. Membr. Biol 127: 205–214.

    PubMed  CAS  Google Scholar 

  • Vandorpe, D. H., Small, D. L., Dabrowski, A. R., and Morris, C. E., 1994, FMRFamide and membrane stretch as activators of the Aplysia S-channel, Biophys. J. 66: 46–58.

    PubMed  CAS  Google Scholar 

  • Wilson, D. L., Morimoto, K., Tsuda, Y., and Brown, A. M., 1983, Interaction between calcium ions and surface charge as it relates to calcium currents, J. Membr. Biol 72: 309–324.

    Google Scholar 

  • Wonderlin, W. F., and French, R. J., 1991, Ion channel in transit: Voltage-gated Na+ and K+ channels in axoplasmic organelles of the squid Loligo pealei, Proc. Natl. Acad. Sci. USA 88: 4391–4395.

    PubMed  CAS  Google Scholar 

  • Yazejian, B., and Byerly, L., 1987, Single channel Ba currents in neurons of the snail Lymnaea stagnalis, Biophys. J. 51: 423a.

    Google Scholar 

  • Yazejian, B., and Byerly, L., 1989, Voltage-independent barium-permeable channel activated in Lymnaea neurons by internal perfusion or patch excision, J. Membr. Biol. 107: 63–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fejtl, M., Carpenter, D.O. (1996). Single-Channel Studies in Molluscan Neurons. In: Narahashi, T. (eds) Ion Channels. Ion Channels, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1775-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1775-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1777-5

  • Online ISBN: 978-1-4899-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics