Skip to main content

VDAC, a Channel in the Outer Mitochondrial Membrane

  • Chapter
Ion Channels

Part of the book series: Ion Channels ((IC,volume 4))

Abstract

Proteins that form aqueous channels in membranes generate conduction pathways with a variety of shapes and sizes. Perhaps the largest channel-forming protein is the 2-MDa ryanodine receptor while the smallest may be gramicidin. However, the size of the conducting pathway is not correlated with the amount of protein mass needed to make up the structure, as demonstrated by the fact that some of the narrowest conducting pathways are produced by very large amounts of protein (e. g., 0.3 MDa for the Na+/ K+/Ca2+ channel family). In contrast, the focus of this review, the voltage-dependent anion channel (VDAC) of the mitochondrial outer membrane, produces one of the largest aqueous pathways from a single 30-kDa protein. VDAC also demonstrates that functional complexity does not seem to correlate well with the amount of protein used to form a channel. VDAC has a small amount of protein mass but displays complex behavior. It has two voltage-gating processes, can be controlled by metabolites and regulatory proteins, is able to form complexes with other proteins and enzymes, and responds to the protein concentration of the cytoplasm (Colombini, 1994). Thus, many functions are packed into a single, relatively small VDAC protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, V., and McCabe, E. R. B., 1994, Role of porin-kinase interactions in disease, in: Molecular Biology of Mitochondrial Transport Systems, NATO ASI Series, Vol. 83 (M. Forte and M. Colombini, eds.), Springer-Verlag, Berlin, pp. 357–377.

    Chapter  Google Scholar 

  • Adams, V., Griffin, L., Towbin, J., Gelb, B., Worley, K., and McCabe, E. R. B., 1991, Porin interaction with hexokinase and glycerol kinase: Metabolic microcompartmentation at the outer mitochondrial membrane, Biochem. Med. Metabol. Biol. 45: 271–291.

    Article  CAS  Google Scholar 

  • Akabas, M. H., Kaufmann, C., Archdeacon, P., and Karlin, A., 1994a, Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit, Neuron 13: 919–927.

    Article  PubMed  CAS  Google Scholar 

  • Akabas, M. H., Kaufmann, C., Cook, T. A., and Archdeacon, P., 1994b, Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator, J. Biol. Chem. 269: 14865–14868.

    PubMed  CAS  Google Scholar 

  • Benz, R., Kottke, M., and Brdiczka, D., 1990, The cationically selective state of the mitochondrial outer membrane pore: A study with intact mitochondria and reconstituted mitochondrial porin, Biochim. Biophys. Acta 1022: 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M., 1989, Probing the structure of the mitochondrial channel, VDAC., by site-directed mutagenesis: A progress report, J. Bioenerg. Biomembr. 21: 471–483.

    Article  PubMed  CAS  Google Scholar 

  • Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M., 1990, Selectivity changes in site-directed mutants of the VDAC ion channel: Structural implications, Science 247: 1233–1236.

    Article  PubMed  CAS  Google Scholar 

  • Blachly-Dyson, E., Zambrowicz, E. B., Yu, W.-H., Adams, V., McCabe, E. R. B., Adelman, J., Colombini, M., and Forte, M., 1993, Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel, J. Biol. Chem. 268: 1835–1841.

    PubMed  CAS  Google Scholar 

  • Blachly-Dyson, E., Baldini, A., Litt, M., McCabe, E. R. B., and Forte, M., 1994, Human genes encoding the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane: Mapping and identification of two new isoforms, Genomics 20: 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal, A., Kahn, K., Beja, O., Galun, E., Colombini, M., and Breiman, A., 1993, Purification and characterization of the voltage-dependent anion-selective channel protein from wheat mitochondrial membranes, Plant Physiol. 101: 579–587.

    PubMed  CAS  Google Scholar 

  • Brdiczka, D., Kaldis, P., and Wallimann, T., 1994, In vitro complex formation between the octamer of mitochondrial creatine kinase and porin, J. Biol. Chem. 269: 27640–47644.

    PubMed  CAS  Google Scholar 

  • Bureau, M. H., Khrestchatisky, M., Heeren, M. A., Zambrowicz, E. B., Kim, H., Grisar, T. M., Colombini, M., Tobin, A. J., and Olsen, T. W., 1992, Isolation and cloning of a voltage-dependent anion channel-like Mr36,000 polypeptide from mammalian brain, J. Biol Chem. 267: 8679–8684.

    PubMed  CAS  Google Scholar 

  • Colombini, M., 1979, A candidate for the permeability pathway of the outer mitochondrial membrane, Nature 279: 643–645.

    Article  PubMed  CAS  Google Scholar 

  • Colombini, M., 1980a, Pore size and properties of channels from mitochondria isolated from Neurospora crassa, J. Membr. Biol. 53: 79–84.

    Article  CAS  Google Scholar 

  • Colombini, M., 1980b, Structure and mode of action of a voltage-dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane, Ann. N.Y. Acad. Sci. 341: 552–563.

    Article  PubMed  CAS  Google Scholar 

  • Colombini, M., 1989, Voltage gating in the mitochondrial channel, J. Membr. Biol 111: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Colombini, M., 1994, Anion channels in the mitochondrial outer membrane, in: Current Topics in Membranes, Vol. 42 (W. Guggino, ed.), Academic Press, San Diego, pp. 73–101.

    Google Scholar 

  • Colombini, M., Yeung, C. L., Tung, J., and König, T., 1987, The mitochondrial outer membrane channel, VDAC., is regulated by a synthetic polyanion, Biochim. Biophys. Acta 905: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Colombini, M., Holden, M. J., and Mangan, P. S., 1989, Modulation of the mitochondrial channel VDAC by a variety of agents, in: Anion Carriers of Mitochondrial Membranes (A. Azzi et al., eds.), Springer-Verlag, Berlin, pp. 215–224.

    Chapter  Google Scholar 

  • Craigen, W. J., Lovell, R. S., and Sampson, M. J., 1994, Structure and expression of mouse mitochondrial voltage dependent anion channel genes, Am. J. Hum. Genet. 55: (Abstr. 3) supplement.

    Google Scholar 

  • dePinto, V, Jamal, J. A., and Palmieri, F., 1993, Location of the dicyclohexylcarbodiimide-reactive glutamate residue in the bovine heart mitochondrial porin, J. Biol. Chem. 268: 12977–12982.

    CAS  Google Scholar 

  • Dermietzel, R., Hwang, T.-K., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, F. P., Fishman, G. I., Spray, D. C., and Siemen, D., 1994, Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes, Proc. Natl. Acad. Sci. USA 91: 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Dill, E. T., Holden, M. J., and Colombini, M., 1987, Voltage gating in VDAC is markedly inhibited by micromolar quantities of aluminum, J. Membr. Biol. 99: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Doring, C., and Colombini, M., 1985, The mitochondrial voltage-dependent channel, VDAC., is modified asymmetrically by succinic anhydride, J. Membr. Biol. 83: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Durkin, J. T., Koeppe II, R. E., and Anderson, O. S., 1990, Energetics of gramicidin hybrid channel formation: A test for structural equivalence. Side-chain substitutions in the native sequence, J. Mol. Biol. 211: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., and Krasne, S., 1975, The ion selectivity of carrier molecules, membranes and enzymes, in: MTP International Review of Science, Biochemistry Series, Vol. 2 (C. F. Fox, ed.), Butterworths, London, pp. 27–59.

    Google Scholar 

  • Fiek, C., Benz, R., Roos, N., and Brdiczka, D., 1982, Evidence for identity between the hexokinase-binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 688: 429–440.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A., 1985, The ubiquitous presence of channels with wide lumen and their gating by voltage, Ann. N.Y. Acad. Sci. 456: 26–32.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, K., Weber, A., Brink, S., Arbinger, B., Schünemann, D., Borchert, S., Heldt, H. W., Popp, B., Benz, R., Link, T.-A., Eckerskorn, C., and Flügge, U., 1994, Porins from plants: Molecular cloning and functional characterization of two new members of the porin family, J. Biol. Chem. 269: 25754–25760.

    PubMed  CAS  Google Scholar 

  • Florke, H., Thinnes, F. P., Winkelbach, H., Stadtmuller, U., Paetzold, G., Morys-Wortmann, C., Hesse, D., Sternbach, H., Zimmermann, B., and Kaufmann-Kolle, P., 1994, Channel active mammalian porin, purified from crude membrane fractions of B lymphocytes and bovine skeletal muscle, reversibly binds adenosine triphosphate (ATP), Biol. Chem. Hoppe-Seyler 375: 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Gellerich, F. N., Wagner, M., Kapischke, M., Wicker, U., and Brdiczka, D., 1993, Effect of macromolecules on the regulation of the mitochondrial outer membrane pore and the activity of adenylate kinase in the inter-membrane space, Biochim. Biophys. Acta 1142: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Ha, H., Hajek, P., Bedwell, D. M., and Burrows, P. D., 1993, A mitochondrial porin cDNA predicts the existence of multiple human porins, J. Biol Chem. 268: 12143–12149.

    PubMed  CAS  Google Scholar 

  • Heins, L., Mentzel, H., Schmid, A., Benz, R., and Schmitz, U. K., 1994, Biochemical, molecular and functional characterization of two different porins from potato mitochondria, J. Biol. Chem. 264: 26402–26410.

    Google Scholar 

  • Holden, M. J., and Colombini, M., 1988, The mitochondrial outer membrane channel, VDAC., is modulated by a soluble protein, FEBS Lett. 241: 105–109.

    Article  PubMed  CAS  Google Scholar 

  • Holden, M. J., and Colombini, M., 1993, The outer mitochondrial membrane channel, VDAC., is modulated by a protein localized in the intermembrane space, Biochim. Biophys. Acta 1144: 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Kabir, F., and Wilson, J. E., 1994, Mitochondrial hexokinase in brain: Coexistence of forms differing in sensitivity to solubilization by glucose-6-phosphate on the same mitochondria, Arch. Biochem. Biophys. 310: 410–416.

    Article  PubMed  CAS  Google Scholar 

  • Kayser, H., Kratzin, H. D., Thinnes, F. P., Götz, H., Schmidt, W. E., Eckart, K., and Hilschmann, N., 1989, Charakterisierung und primärstruktur eines 31-kDa-porins aus menschlichen B-Lumphozyten (porin 31HL), Biol. Chem. Hoppe-Seyler 370: 1265–1278.

    PubMed  CAS  Google Scholar 

  • Lee, A.-C., Zizi, M., and Colombini, M., 1994, β-NADH decreases the permeability of the mitochondrial outer membrane to ADP by a factor of 6, J. Biol. Chem. 269: 30974–30980.

    PubMed  CAS  Google Scholar 

  • Linden, M., and Gellerfors, P., 1983, Hydrodynamic properties of porin isolated from outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 736: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Linden, M., Gellerfors, P., and Nelson, B. D., 1982, Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical, FEBS Lett. 141: 189–192.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. Y., and Colombini, M., 1991, Voltage gating of the mitochondrial outer membrane channel VDAC is regulated by a very conserved protein, Am. J. Physiol. 260: C371–C374.

    PubMed  CAS  Google Scholar 

  • Liu, M. Y., and Colombini, M., 1992a, Regulation of mitochondrial respiration by controlling the permeability of the outer membrane through the mitochondrial channel, VDAC., Biochim. Biophys. Acta 1098: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. Y., and Colombini, M., 1992b, A soluble protein increases the voltage dependence of the mitochondrial channel, VDAC., J. Bioenerg. Biomembr. 24: 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M. Y., Torgrimson, A., and Colombini, M., 1993, Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria, Biochim. Biophys. Acta 1185: 203–212.

    Google Scholar 

  • Mangan, P., and Colombini, M., 1987, Ultrasteep voltage dependence in a membrane channel, Proc. Natl. Acad. Sci. USA 84: 4896–4900.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A., 1986, Mitochondrial outer membrane channel (VDAC., porin): Two-dimensional crystals from Neurospora, Methods Enzymol. 125: 595–610.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A., 1987, Electron microscopy and image analysis of the mitochondrial outer membrane channel, VDAC., J. Bioenerg. Biomembr. 19: 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A., 1990, Structural analysis of mitochondrial pores, Experientia 46: 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A., and Guo, X. W., 1990, Interaction between the VDAC channel and a polyanionic effector, Biophys. J. 57: 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Mannella, C. A., Forte, M., and Colombini, M., 1992, Toward the molecular structure of the mitochondrial channel, VDAC., J. Bioenerg. Biomembr. 24: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Müller, G., Korndörfer, A., Kornak, U., and Malaisse, W. J., 1994, Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: Identification and regulation of hexokinase binding by the sulfonylurea glimepiride, Arch. Biochem. Biophys. 308: 8–23 (erratum: Ibid. 313: 382).

    Article  PubMed  Google Scholar 

  • Nakashima, R. A., Mangan, P. S., Colombini, M., and Pedersen, P. L., 1986, Hexokinase receptor complex in hepatoma mitochondria: Evidence from N, N’-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC., Biochemistry 25: 1015–1021.

    Article  PubMed  CAS  Google Scholar 

  • Peng, S., Blachly-Dyson, E., Forte, M., and Colombini, M., 1992a, Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel, Biophys. J. 62: 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Peng, S., Blachly-Dyson, E., Forte, M., and Colombini, M., 1992b, Determination of the number of polypeptide subunits in a functional VDAC channel from Saccharomyces cerevisiae, J. Bioenerg. Biomembr. 24: 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Pfaller, R., Freitag, H., Harmey, M. A., Benz, R., and Neupert, W., 1985, A water-soluble form of porin from the mitochondrial outer membrane of Neurospora crassa, J. Biol. Chem. 260: 8188–8193.

    PubMed  CAS  Google Scholar 

  • Rasschaert, J., and Malaisse, W. J., 1990, Hexose metabolism in pancreatic islets: Preferential utilization of mitochondrial ATP for glucose phosphorylation, Biochim. Biophys. Acta 1015: 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Rojo, M., Hovius, R., Demel, R. A., Nicolay, K., and Willimann, T., 1991, Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes, J. Biol. Chem. 266: 20290–20295.

    PubMed  CAS  Google Scholar 

  • Roos, N., Benz, R., and Brdiczka, D., 1982, Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 686: 204–214.

    Article  PubMed  CAS  Google Scholar 

  • Schein, S. J., Colombini, M., and Finkelstein, A., 1976, Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria, J. Membr. Biol. 30: 99–120.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, J., Wyss, M., Schürch, U., Schnyder, T., Quest, A., Wegmann, G., Eppenberger, H. M., and Wallimann, T., 1988, Mitochondrial creatine kinase from cardiac muscle and brain are two distinct isoenzymes but both form octameric molecules, J. Biol. Chem. 263: 16963–16969.

    PubMed  CAS  Google Scholar 

  • Song, J. M., and Colombini, M., 1996, Indications of a common folding pattern for VDAC channels from all sources, J. Bioenerg. Biomembr., in press.

    Google Scholar 

  • Teorell, T., 1953, Transport processes and electrical phenomena in ionic membranes, Prog. Biophys. Biophys. Chem. 3: 305–369.

    CAS  Google Scholar 

  • Thomas, L., Kocsis, E., Colombini, M., Erbe, E., Trus, B. L., and Steven, A. C., 1991, Surface topography and molecular stoichiometry of the mitochondrial channel, VDAC., in crystalline arrays, J. Struct. Biol. 106: 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L., Blachly-Dyson, E., Colombini, M., and Forte, M., 1993, Mapping of residues forming the voltage sensor of the VDAC channel, Proc. Natl. Acad. Sci. USA 90: 5446–5449.

    Article  PubMed  CAS  Google Scholar 

  • Troll, H., Malchow, D., Müller-Taubenberger, A., Humbel, B., Lottspeich, F., Ecke, M., Gerisch, G., Schmid, A., and Benz, R., 1992, Purification, functional characterization, and cDNA sequencing of mitochondrial porin from dictyostelium discoideum, J. Biol. Chem. 267: 21072–21079.

    PubMed  CAS  Google Scholar 

  • Unwin, P. N. T., and Zampighi, G., 1980, Structure of the junction between communicating cells, Nature 283: 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Vodyanoy, I., Bezrukov, S. M., and Colombini, M., 1992, Measurement of ion channel access resistance, Biophys. J. 61: A114.

    Google Scholar 

  • Weiss, M. S., Wacker, T., Weckesser, J., Weite, W, and Schulz, G. E., 1990, The three-dimensional structure of porin from Rhodobacter capsulatus at 3 Ã… resolution, FEBS Lett. 267: 268–272.

    Article  PubMed  CAS  Google Scholar 

  • Xie, G., and Wilson, J. E., 1990, Rat brain hexokinase: The hydrophobic N-terminus of the mitochondrially bound enzyme is inserted in the lipid bilayer, Arch. Biochem. Biophys. 276: 285–293.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G. M., Jurman, M., Abramson, T., and MacKinnon, R., 1991, Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel, Science 251: 939–942.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, M. T., Sener, A., and Malaisse, W. J., 1987, Glycerol phosphorylation and oxidation in pancreatic islets, Mol. Cell. Endocrinol. 52: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Zalman, L. S., Nikaido, H., and Kagawa, Y., 1980, Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels, J. Biol. Chem. 255: 1771–1774.

    PubMed  CAS  Google Scholar 

  • Zambrowicz, E. B., and Colombini, M., 1993, Zero-current potentials in a large membrane channel: A simple theory accounts for complex behavior, Biophys. J. 65: 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. W, and Colombini, M., 1989, Inhibition by aluminum hydroxide of the voltage-dependent closure of the mitochondrial channel, VDAC., Biochim. Biophys. Acta 991: 68–78.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, D. W, and Colombini, M., 1990, Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC., by interacting with a dynamic binding site, Biochim. Biophys. Acta 1025: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg, J., and Parsegian, V. A., 1986, Polymer inaccessible volume changes during opening and closing of a voltage-dependent ionic channel, Nature 323: 36–39.

    Article  PubMed  CAS  Google Scholar 

  • Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M., 1994, NADH regulates the gating of VDAC., the mitochondrial outer membrane channel, J. Biol. Chem. 269: 1614–1616.

    PubMed  CAS  Google Scholar 

  • Zizi, M., Thomas, L., Blachly-Dyson, E., Forte, M., and Colombini, M., 1995, Oriented channel insertion reveals the motion of a transmembrane beta strand during voltage gating of VDAC., J. Membr. Biol. 144: 121–129.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colombini, M., Blachly-Dyson, E., Forte, M. (1996). VDAC, a Channel in the Outer Mitochondrial Membrane. In: Narahashi, T. (eds) Ion Channels. Ion Channels, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1775-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1775-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1777-5

  • Online ISBN: 978-1-4899-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics