Ion Channels pp 377-450 | Cite as

Neuronal Nicotinic Acetylcholine Receptors

  • Jon Lindstrom
Part of the Ion Channels book series (IC, volume 4)


Studies of the structure and function of neuronal nicotinic acetylcholine receptors (AChRs) evolved out of studies of muscle AChRs. This review will begin with a brief summary of muscle type AChRs because they are the archetype for studies of neuronal nicotinic AChRs in particular and ligand-gated ion channels in general.


Acetylcholine Receptor Xenopus Oocyte Nicotinic Receptor Nicotinic Acetylcholine Receptor Neuronal Nicotinic Acetylcholine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, S., Culver, Y., and Taylor, P., 1989, An analog of lophotoxin reacts covalently with Tyrl 90 in the α subunit of the nicotinic acetylcholine receptor, J. Biol. Chem. 264: 1266–1267.Google Scholar
  2. Aceto, M., Awaya, H., Martin, B., and May, E., 1983, Antinociceptive action of nicotine and its methiodide derivatives in mice and rats, Br. J. Pharmacol. 79: 869–876.PubMedGoogle Scholar
  3. Akabas, M., Kaufmann, C., Archdeacon, P., and Karlin, A., 1994, Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the a subunit, Neuron 13: 919–927.PubMedGoogle Scholar
  4. Alkondon, M., and Albuquerque, E., 1991, Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons, J. Recept. Res. 11: 1101–1201.Google Scholar
  5. Alkondon, M., and Albuquerque, E., 1993, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons I: Pharmacological and functional evidence for distinct structural subtypes, J. Pharmacol. Exp. Ther. 265: 1455–1473.PubMedGoogle Scholar
  6. Alkondon, M., and Albuquerque, E., 1995, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons III: Agonist actions of the novel alkaloid epibatidine and analysis of type II current, J. Pharmacol. Exp. Ther. 274: 771–782.PubMedGoogle Scholar
  7. Alkondon, M., Reinhardt, S., Lobron, C., Hermsen, B., Maelicke, A., and Albuquerque, E., 1994, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. II. The rundown and inward rectification of agonist-elicited whole cell currents and identification of receptor subunits by in situ hybridization, J. Pharmacol. Exp. Ther. 271: 494–506.PubMedGoogle Scholar
  8. Anand, R., and Lindstrom, J., 1992, Chromosomal localization of seven neuronal nicotinic receptor subunit genes in humans, Genomics 13: 962–967.PubMedGoogle Scholar
  9. Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., and Lindstrom, J., 1991, Chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure, J. Biol. Chem. 266: 11192–11198.PubMedGoogle Scholar
  10. Anand, R., Bason, L., Saedi, M., Gerzanich, V., Peng, X., and Lindstrom, J., 1993a, Reporter epitopes: A novel approach to examine transmembrane topology of integral membrane proteins applied to the α 1 subunit of the nicotinic acetylcholine receptor, Biochemistry 32: 9975–9984.PubMedGoogle Scholar
  11. Anand, R., Peng, X., Ballesta, J., and Lindstrom, J., 1993b, Pharmacological characterization of α bungarotoxin sensitive AChRs immunoisolated from chick retina: Contrasting properties of α7 and α8 subunit-containing subtypes, Mol. Pharmacol. 44: 1046–1050.PubMedGoogle Scholar
  12. Anand, R., Peng, X., and Lindstrom, J., 1993c, Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex, FEBS Lett. 327: 241–246.PubMedGoogle Scholar
  13. Anderson, D., Blobel, G., Tzartos, S., Bullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3: 1773–1784.PubMedGoogle Scholar
  14. Anholt, R., Fredkin, D., Deerinck, T., Ellisman, M, Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptors into liposomes: Vesicle structure and acetylcholine receptor, J. Biol Chem. 25: 7122–7134.Google Scholar
  15. Appel, S. H., Blosser, J. C., McMaraman, J. L., Ashizawa, T., and Elias, S. B., 1981, The effects of carbamylcholine, calcium and cyclic nucleotides on acetylcholine receptor synthesis in cultured myotubes, Ann. N.Y. Acad. Sci. 377: 189–197.PubMedGoogle Scholar
  16. Arneric, S., Sullivan, J., Briggs, C., Donnelly-Roberts, D., Anderson, D., Roszkiewicz, J., Hughes, M., Cadman, E., Adams, P., Garvey, D., Wasicak, J., and Williams, M, 1994, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT418): A novel cholinergic ligand with cognition-enhancing and anxiolytic activities: 1. in vitro characterization. J. Pharmacol. Exp. Ther. 270: 310–318.PubMedGoogle Scholar
  17. Badio, B., and Daly, J., 1994, Epibatidine, a potent analgesic and nicotinic agonist, Mol. Pharmacol. 45: 563–569.PubMedGoogle Scholar
  18. Barnard, E., 1992, Receptor classes and the transmitter-gated ion channels, Trends Biol Sci. 17: 368–374.Google Scholar
  19. Baron, J., 1995, The epidemiology of cigarette smoking and Parkinson’s disease, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhauser, Basel, pp. 313–319.Google Scholar
  20. Barrantes, G., Rodger, A., Lindstrom, J., and Wonnacott, S., 1995, α Bungarotoxin binding sites in rat hippocampal and cortical cultures: Initial characterization, co-localization with α 7 subunits and up-regulation by chronic nicotine treatment, Brain Res. 672: 228–236.PubMedGoogle Scholar
  21. Benowitz, N., Porchet, H., and Jacob, P., 1990, Pharmacokinetics, metabolism, and pharmacodynamics of nicotine, in: Nicotine Psychopharmacology (S. Wonnocott et al, eds.), Oxford Science Publications, Oxford, pp. 112–157.Google Scholar
  22. Benwell, M., Balfour, D., and Anderson, J., 1988, Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain, J. Neurochem. 50: 1243–1247.PubMedGoogle Scholar
  23. Beroukhim, R., and Unwin, N., 1995, Three dimensional location of the main immunogenic region of the acetylcholine receptor, Neuron 15: 323–331.PubMedGoogle Scholar
  24. Bertrand, D., and Changeux, J. P., 1995, Nicotinic receptor: An allosteric protein specialized for intercellular communication, Neurosciences 7: 75–90.Google Scholar
  25. Bertrand, D., Devillers-Thiery, A., Revah, F., Galzi, J. L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M., and Changeux, J. P., 1992, Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain, Proc. Natl. Acad. Sci. USA 89: 1261–1265.PubMedGoogle Scholar
  26. Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S., and Changeux, J. P., 1993a, Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α 7 nicotinic receptor, Proc. Natl. Acad. Sci. USA 90: 6971–6975.PubMedGoogle Scholar
  27. Bertrand, D., Galzi, U. L., Devillers-Thiery, A., Bertrand, S., and Changeux, V. P., 1993b, Stratification of the channel domain in neurotransmitter receptors, Curr. Opin. Cell Biol. 5: 688–693.PubMedGoogle Scholar
  28. Bessis, A., Savatier, N., Devillers-Thiery, A., Benjamin, A., and Changeux, V. P., 1993, Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor α2 subunit gene, Nucleic Acids Res. 21: 2185–2192.PubMedGoogle Scholar
  29. Betz, H., 1990, Ligand-gated ion channels in the brain: The amino acid receptor superfamily, Neuron 5: 383–392.PubMedGoogle Scholar
  30. Blount, P., and Merlie, J., 1988, Native folding of an acetylcholine receptor a subunit expressed in the absence of other receptor subunits, J. Biol Chem. 262: 4367–4376.Google Scholar
  31. Blount, P., and Merlie, J. P., 1989, Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor, Neuron 3: 349–357.PubMedGoogle Scholar
  32. Blount, P., and Merlie, J. P., 1990, Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly, J. Cell Biol 111: 2612–2622.Google Scholar
  33. Blount, P., and Merlie, J. P., 1991a, BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor, J. Cell Biol 113: 1125–1132.PubMedGoogle Scholar
  34. Blount, P., and Merlie, J. P., 1991b, Characterization of an adult muscle acetylcholine receptor subunit by expression in fibroblasts, J. Biol. Chem. 266: 14692–14696.PubMedGoogle Scholar
  35. Blount, P., Smith, M., and Merlie, J., 1990, Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts, J. Cell Biol 111: 2601–2611.PubMedGoogle Scholar
  36. Bock, G., and Marsh, J. (eds.), 1990, The Biology of Nicotine Dependence, Ciba Foundation Symposium 152, John Wiley and Sons, New York.Google Scholar
  37. Boess, F., Beroukhim, R., and Martin, I., 1995, Ultrastructure of the 5-hydroxytryptamine3 receptor, J. Neurochem. 64: 1401–1405.PubMedGoogle Scholar
  38. Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J., 1986, Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a subunit, Nature 319: 368–374.PubMedGoogle Scholar
  39. Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S., and Patrick, J., 1987, Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family, Proc. Natl. Acad. Sci. USA 84: 7763–7767.PubMedGoogle Scholar
  40. Boulter, J., O’Shea-Greenfield, A., Duvoisin, R., Connolly, J., Wada, E., Jensen, A., Gardner, P., Ballivet, M., Deneris, E., McKinnon, D., Heinemann, S., and Patrick, J., 1990, α3, α5, and β4: Three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster, J. Biol. Chem. 265: 4472–4482.PubMedGoogle Scholar
  41. Brake, A., Wagenbach, M., and Julius, D., 1994, New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor, Nature 371: 519–523.PubMedGoogle Scholar
  42. Britto, L. R., Hamassaki-Britto, D. E., Ferro, E. S., Keyser, K. T., Karten, H. J., and Lindstrom, J. M., 1992a, Neurons of the chick brain and retina expressing both α bungarotoxin-sensitive and a bungarotoxin-insensitive nicotinic acetylcholine receptors: An immunohistochemical analysis, Brain Res. 590: 193–200.PubMedGoogle Scholar
  43. Britto, L., Keyser, K., Lindstrom, J., and Karten, H., 1992b, Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus), J. Comp. Neurol. 317: 325–340.PubMedGoogle Scholar
  44. Britto, L. R., Torrao, A. S., Hamassaki-Britto, D. E., Mpodozis, J., Keyser, K. T., Lindstrom, J. M., and Karten, H. J., 1994, Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system, J. Comp. Neurol. 350: 473–484.PubMedGoogle Scholar
  45. Carbonetto, S., Fambrough, D., and Muller, K., 1978, Nonequivalence of a bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons, Proc. Natl. Acad. Sci. USA 75: 1016–1020.PubMedGoogle Scholar
  46. Changeux, J. P., 1990, Functional architecture and dynamics of the nicotinic acetylcholine receptor: An allosteric ligand-gated ion channel, in: 1988–1989 Fidia Research Foundation: Neuroscience Award Lectures, Vol. 4, pp. 21–168.Google Scholar
  47. Changeux, J. P., 1991, Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis, New Biol. 3: 413–429.PubMedGoogle Scholar
  48. Chavez, R., and Hall, Z., 1991, The transmembrane topology of the amino terminus of the α subunit of the nicotinic acetylcholine receptor, J. Biol. Chem. 266: 15532–15538.PubMedGoogle Scholar
  49. Chavez, R., and Hall, Z., 1992, Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the a and 8 subunits, J. Cell Biol. 116: 385–393.PubMedGoogle Scholar
  50. Chini, B., Raimond, E., Elgoyhen, E., Moralli, D., Bolzaretti, M., and Heinemann, S., 1994, Molecular cloning and chromosomal localization of the human α 7 nicotinic receptor subunit gene (CHRNA 7), Genomics 19: 379–381.PubMedGoogle Scholar
  51. Clarke, P., 1990, Mesolimbic dopamine activation—the key to nicotine reinforcement? in: The Biology of Nicotine Dependence, Ciba Foundation Symposium 152m (G. Bock and J. Marsh, eds.), John Wiley and Sons, Chichester, pp. 153–162.Google Scholar
  52. Clarke, P. B. S., 1992, The fall and rise of neuronal a bungarotoxin binding proteins, Trends Pharmacol. 13: 407–413.Google Scholar
  53. Clarke, P., 1995, Nicotinic receptors and cholinergic transmission in the central nervous system, Ann. N.Y. Acad. Sci, 757: 73–83.PubMedGoogle Scholar
  54. Clarke, P., Schwartz, R., Paul, S., Pert, C., and Pert, A., 1985, Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I] α bungarotoxin, J. Neurosci. 5: 1307–1315.PubMedGoogle Scholar
  55. Clarke, P., Hamill, G., Nadi, N., Jacobwitz, D., and Pert, A., 1986, 3H-Nicotine and 125I-α bungarotoxin-labeled nicotinic receptors in the interpenduncular nucleus of rats. II. Effects of habenular deafferentation, J. Comp. Neurol. 251: 407–413.PubMedGoogle Scholar
  56. Cockcroft, V., Osguthorpe, D., Barnard, E., Friday, A., and Lunt, G., 1992, Ligand-gated ion channels—homology and diversity, Mol. Neurobiol. 4: 129–169.Google Scholar
  57. Cohen, B., Labarca, C., Davidson, N., and Lester, H., 1992, Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations, J. Gen. Physiol. 100: 373–400.PubMedGoogle Scholar
  58. Cohen, J., Sharp, S., and Lu, W., 1991, Structure of the agonist binding site of the nicotinic acetylcholine receptor, J. Biol. Chem. 266: 23354–23364.PubMedGoogle Scholar
  59. Collins, A., Luo, Y., Selvaag, S., and Marks, M., 1994, Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion, J. Pharmacol. Exp. Ther. 271: 125–133.PubMedGoogle Scholar
  60. Conroy, W. G., and Berg, D. K., 1995, Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions, J. Biol. Chem. 270: 4424–4431.PubMedGoogle Scholar
  61. Conroy, W., Saedi, M., and Lindstrom, J., 1990, TE671 cells express an abundance of a partially mature acetylcholine receptor a subunit which has characteristics of an assembly intermediate, J. Biol. Chem. 265: 21642–21651.PubMedGoogle Scholar
  62. Conroy, W., Vernallis, A., and Berg, D., 1992, The α 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain, Neuron 9: 1–20.Google Scholar
  63. Conti-Tronconi, B., Gotti, G., Hunkapiller, M., and Raferty, M., 1982, Mammalian muscle acetylcholine receptor: A supramolecular structure formed by four related proteins, Science 218: 1227–1229.PubMedGoogle Scholar
  64. Conti-Tronconi, B., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. II: Binding to native receptor, Biochemistry 20: 2181–2191.PubMedGoogle Scholar
  65. Conti-Tronconi, B., Dunn, S., Barnard, E., Dolly, J., Lai, F., Ray, N., and Raferty, M, 1985, Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins, Proc. Natl. Acad. Sci. USA 82: 5208–5212.PubMedGoogle Scholar
  66. Cooper, E., Couturier, S., and Ballivet, M., 1991, Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor, Nature 350: 235–238.PubMedGoogle Scholar
  67. Corringer, P. V., Galzi, V. L., Eisele, J. L., Bertrand, S., Changeux, V. P., and Bertrand, D., 1995, Identification of a new component of the agonist binding site of the nicotinic α7 homoligomeric receptor, J. Biol. Chem. 270: 11749–11752.PubMedGoogle Scholar
  68. Corriveau, R., and Berg, D., 1993, Coexpression of multiple acetylcholine receptor genes in neurons: Quantification of transcripts during development, J. Neurosci. 13: 2662–2671.PubMedGoogle Scholar
  69. Corriveau, R., Romano, S., Conroy, W., Olivia, L., and Berg, D., 1995, Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development, J. Neurosci. 15: 1372–1383.PubMedGoogle Scholar
  70. Costa, A., Patrick, J., and Dani, J., 1994, Improved technique for studying ion channels expression in Xenopus oocytes, including fast perfusion, Biophys. J. 67: 1–7.Google Scholar
  71. Couturier, S., Erkman, L., Vaiera, S., Rungger, D., Bertrand, S., Boulter, J., Ballivet, M., and Bertrand, D., 1990a, α5, α3, and non α3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor related subunits, J. Biol. Chem. 265: 17560–17567.PubMedGoogle Scholar
  72. Couturier, S., Bertrand, D., Matter, J., Hernandez, M., Bertrand, S., Millar, N., Vaiera, S., Barkas, T., and Ballivet, M., 1990b, A neuronal nicotinic acetylcholine receptor subunit (α 7) is developmentally regulated and forms a homomeric channel blocked by a bungarotoxin, Neuron 5: 847–856.PubMedGoogle Scholar
  73. Criado, M., Hochschwender, S., Sarin, V., Fox, J. L., and Lindstrom, J., 1985, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. USA 82: 2004–2008.PubMedGoogle Scholar
  74. Criado, M., Witzemann, V., Koenen, M., and Sakmann, B., 1988, Nucleotide sequence of rat muscle acetylcholine receptor epsilon subunit, Nucleic Acids Res. 16: 10920.PubMedGoogle Scholar
  75. Czajkowski, C., and Karlin, A., 1995, Structure of the nicotinic receptor acetylcholine binding site, J. Biol. Chem. 270: 3160–3164.PubMedGoogle Scholar
  76. Czajkowski, C., Kaufmann, C., and Karlin, A., 1993, Negatively charged amino acid residues in the nicotinic receptor δ subunit that contribute to the binding of acetylcholine, Proc. Natl. Acad. Sci. USA 90: 6285–6289.PubMedGoogle Scholar
  77. Daly, J., 1995, The chemistry of poisons in amphibian skin, Proc. Natl. Acad. Sci. USA 92: 9–13.PubMedGoogle Scholar
  78. Das, M., and Lindstrom, J., 1989, The main immunogenic region of the nicotinic acetylcholine receptor: Interaction of monoclonal antibodies with synthetic peptides, Biochem. Biophys. Res. Commun. 165: 865–871.PubMedGoogle Scholar
  79. Das, M., and Lindstrom, J., 1991, Epitope mapping of antibodies to acetylcholine receptor, Biochemistry 30: 2470–2477.PubMedGoogle Scholar
  80. Decker, M., Brioni, J., Sullivan, J., Buckley, M., Rodek, R., Rasziewicz, V., Kang, C., Kim, D., Giardina, W., Wasicak, J., Garvey, D., Williams, M., and Arneric, S., 1994, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT418): A novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. in vivo characterization, J. Pharmacol. Exp. Then 270: 319–328.Google Scholar
  81. Del Toro, E., Juiz, J., Peng, X., Lindstrom, J., and Criado, M., 1994, Immunocytochemical localization of the α 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system, J. Comp. Neurol. 349: 325–342.Google Scholar
  82. Deneris, E., Connolly, J., Rogers, S., and Duvoisin, R., 1991, Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors, Trends Pharmacol. Sci. 12: 34–40.PubMedGoogle Scholar
  83. DiPaola, M., Czajkowski, C., and Karlin, A., 1989, The sideness of the COOH terminus of the acetylcholine δ subunit, J. Biol. Chem. 264: 15457–15463.PubMedGoogle Scholar
  84. DiPaola, M., Kao, P., and Karlin, A., 1990, Mapping the subunit site photolabeled by the noncompetitive inhibitor 3H-quinacrine azide in the active state of the nicotinic acetylcholine receptor, J. Biol. Chem. 265: 11017–11029.PubMedGoogle Scholar
  85. Doncellestamm, L., Monteggia, L., Donnelly-Roberts, D., Wong, M., Lee, J., Tian, J., and Giordano, T., 1993, Cloning and sequence of the human α7 nicotinic acetylcholine receptor, Drug Dev. Res. 30: 252–256.Google Scholar
  86. Dwyer, B., 1991, Topological dispositions of lysine α 380 and lysine γ 486 in the acetylcholine receptor from Torpedo californica, Biochemistry 30: 4105–4112.PubMedGoogle Scholar
  87. Eisile, J. L., Bertrand, S., Galzi, J. L., Devillers-Thiery, A., Changeux, J. P., and Bertrand, D., 1993, Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities, Nature 366: 479–483.Google Scholar
  88. Elgoyhen, A., Johnson, D., Boulter, J., Vetter, D., and Heinemann, S, 1994, α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells, Cell 79: 705–715.PubMedGoogle Scholar
  89. Engel, A., 1990, Congenital disorder of neuromuscular transmission, Seminars Neurol. 10: 12–26.Google Scholar
  90. Engel, A., 1994, Myasthenic syndromes, in: Myology, 2nd edition, Vol. 2, (A. Engel and C. Franzini-Armstrong, eds.), McGraw-Hill, New York, pp. 1798–1835.Google Scholar
  91. Fiodalisi, J., Fetter, C., Ten Harmsel, A., Gigowski, R., Chiappinelli, V., and Grant, G., 1991, Synthesis and expression in Escherichia coli of a gene for κ-bungarotoxin, Biochemistry 30: 10337–10343.Google Scholar
  92. Fletcher, S., Baker, R., Chambers, M., Herbert, R., Hobbs, S., Thomas, S., Verrier, H., Watt, A., and Ball, R., 1994, Total synthesis and determination of the absolute configuration of epibatidine, J. Org. Chem. 59: 1771–1778.Google Scholar
  93. Flores, C., Rogers, S., Pabreza, L., Wolfe, B., and Kellar, K., 1992, A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is upregulated by chronic nicotine treatment, Mol. Pharmacol. 41: 31–37.PubMedGoogle Scholar
  94. Froehner, S., 1991, The submembrane machinery for nicotinic acetylcholine receptor clustering, J. Cell Biol. 114: 1–7.PubMedGoogle Scholar
  95. Froehner, S., 1993, Regulation of ion channel distribution at synapses, Annu. Rev. Neurosci. 16: 347–368.PubMedGoogle Scholar
  96. Fu, D., and Sine, S., 1994, Competitive antagonists bridge α-γ subunit interface of the acetylcholine receptor through quaternary aromatic interactions, J. Biol. Chem. 269: 26152–26157.PubMedGoogle Scholar
  97. Fuchs, P., and Murrow, B., 1992a, Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea, J. Neurosci. 12: 800–809.PubMedGoogle Scholar
  98. Fuchs, P., and Murrow, B., 1992b, A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc. R. Soc. London Ser. B 248: 35–40.Google Scholar
  99. Gahring, L., Twyman, R., Greenlee, J., and Rogers, S., 1995, Autoantibodies to neuronal glutamate receptors in patients with paraneoplastic neurodegenerative syndrome enhance receptor activation, Mol. Med. 1: 245–253.PubMedGoogle Scholar
  100. Galzi, J. L., and Changeux, J. P., 1994, Curr. Opin. Struct. Bio. 4: 554–565.Google Scholar
  101. Galzi, J. L., Revah, F., Black, D., Goeldner, M., Hirth, C., and Changeux, J. P., 1990, Identification of a novel amino acid a tyrosine 93 within the cholinergic ligand-binding sites of the acetylcholine receptor by photoaffinity labeling, J. Biol Chem. 265: 10430–10437.PubMedGoogle Scholar
  102. Galzi, J. L., Bertrand, D., Devillers-Thiery, A., Revah, F., Bertrand, S., and Changeux, J. P., 1991, Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site directed mutagenesis, FEBS Lett. 294: 198–202.PubMedGoogle Scholar
  103. Galzi, J. L., Devillers-Thiery, A., Hussy, N., Bertrand, S., Changeux, J. P., and Bertrand, D., 1992, Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic, Nature 359: 500–505.PubMedGoogle Scholar
  104. Gardner, J. M., and Fambrough, D. M., 1979, Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence against recycling, Cell 16: 661–674.PubMedGoogle Scholar
  105. Gehle, V., and Sumikawa, K., 1991, Site directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits, Mol. Brain Res. 11: 17–25.PubMedGoogle Scholar
  106. Gerzanich, V., Anand, R., and Lindstrom, J., 1994, Homomers of α 8 subunits nicotinic receptors functionally expressed in Xenopus oocytes exhibit similar channel but contrasting binding site properties compared to α 7 homomers, Mol. Pharmacol. 45: 212–220.PubMedGoogle Scholar
  107. Gerzanich, V., Peng, X., Wang, F., Wells, G., Anand, R., Fletcher, S., and Lindstrom, J., 1995, Comparative pharmacology of epibatidine a potent agonist for neuronal nicotinic acetylcholine receptors, Mol. Pharmacol. 48: 774–782.PubMedGoogle Scholar
  108. Giraudat, J., Dennis, M., Heidmann, T., Hanmont, P. Y., Lederer, R, and Changeux, J. P., 1987, Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H] Chlorpromazine labels homologous residues in the β and δ chains, Biochemistry 26: 2410–2418.PubMedGoogle Scholar
  109. Goldman, D., Simmons, D., Swanson, L., Patrick, J., and Heinemann, S., 1986, Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor α subunit cDNAs, Proc. Natl. Acad. Sci. USA 83: 4076–4080.PubMedGoogle Scholar
  110. Grady, S., Marks, M., Wonnacott, S., and Collins, A., 1992, Characterization of nicotinic receptor-mediated 3H-dopamine release from synaptosomes prepared from mouse striatum, J. Neurochem. 59: 848–856.PubMedGoogle Scholar
  111. Grady, S., Marks, M., and Collins, A., 1994, Desensitization of nicotine-stimulated 3H-dopamine release from mouse striatal synaptosomes, J. Neurochem. 62: 1390–1398.PubMedGoogle Scholar
  112. Green, L., Sytkowski, A., Vogel, A., and Nirenberg, M., 1973, a Bungarotoxin used as a probe for acetylcholine receptors of cultured neurons, Nature 243: 163–166.Google Scholar
  113. Green, T., Stouffer, K., and Lummis, S., 1995, Expression of recombinant homo-oligomeric 5-hydroxytryptamine3 receptors provides new insights into their maturation and structure, J. Biol. Chem. 270: 6056–6061.PubMedGoogle Scholar
  114. Greenburg, M., Ziff, E., and Greene, L., 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription, Science 234: 80–83.Google Scholar
  115. Gu, Y., Camacho, P., Gardner, P., and Hall, Z., 1991a, Identification of two amino acid residues in the ε subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells, Neuron 6: 879–887.PubMedGoogle Scholar
  116. Gu, Y., Forsayeth, J., Verrall, S., Yu, X., and Hall, Z., 1991b, Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells, J. Cell Biol. 114: 799–807.PubMedGoogle Scholar
  117. Gullick, W., and Lindstrom, J., 1983, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22: 3312–3320.PubMedGoogle Scholar
  118. Gullick, W., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping, Biochemistry 20: 2173–2180.PubMedGoogle Scholar
  119. Hamassaki-Britto, D., Brzozowska-Prechtl, A., Karten, H., Lindstrom, J., and Keyser, K., 1991, GABA-like immunoreactive cells containing nicotinic acetylcholine receptors in the chick retina, J. Comp. Neurol. 313: 394–408.PubMedGoogle Scholar
  120. Hamassaki-Britto, D., Brzozowska-Prechtl, A., Karten, H., and Lindstrom, J., 1994a, Bipolar cells of the chick retina containing a bungarotoxin-sensitive nicotinic acetylcholine receptors, Vis. Neurosci. 11: 63–70.PubMedGoogle Scholar
  121. Hamassaki-Britto, D., Gardino, P. F., Hokoc, J. N., Keyser, K. T., Karten, H. J., Lindstrom, J. M., and Britto, L. R., 1994b, Differential development of α-bungarotoxin-sensitive and α-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina, J. Comp. Neurol. 347: 161–170.PubMedGoogle Scholar
  122. Harsing, L., Sershen, H., and Lajtha, A., 1992, Dopamine efflux from striatum after chronic nicotine: Evidence for autoreceptor desensitization, J. Neurochem. 59: 48–54.PubMedGoogle Scholar
  123. Henley, J., Lindstrom, J., and Oswald, R., 1986a, Acetylcholine receptor synthesis in retina and transport to the optic tectum in goldfish, Science 232: 1627–1629.PubMedGoogle Scholar
  124. Henley, J., Mynlieff, M., Lindstrom, J., and Oswald, R., 1986b, Interaction of monoclonal antibodies to electroplaque acetylcholine receptors with the a bungarotoxin binding site of goldfish brain, Brain Res. 364: 405–408.PubMedGoogle Scholar
  125. Henley, J. M., Lindstrom, J. M., and Oswald, R. E., 1988, Interaction of monoclonal antibodies with α-bungarotoxin and (−) nicotine binding sites in goldfish brain, J. Biol. Chem. 263: 9686–9691.PubMedGoogle Scholar
  126. Hernandez, M. C., Erkman, L., Matter-Sadzinski, L., Roztocil, T., Ballivet, M., and Matter, J. M., 1995, Characterization of the nicotinic acetylcholine receptor β3 gene, J. Biol. Chem. 270: 3224–3233.PubMedGoogle Scholar
  127. Hill, J., Zoli, M., Bourgeois, J. P., and Changeux, J. P., 1993, Immunocytochemical localization of a neuronal nicotinic receptor: The β2 subunit, J. Neurosci. 13: 1551–1568.PubMedGoogle Scholar
  128. Holtzman, E., Wise, D., Wall, J., and Karlin, A., 1982, Electron microscopy of complexes of isolated acetylcholine receptor, biotinyl-toxin and avidin, Proc. Natl. Acad. Sci. USA 79: 310–314.PubMedGoogle Scholar
  129. Hoover, F., and Goldman, D., 1992, Temporarily correlated expression of nAChR genes during development of the mammalian retina, Exp. Eye Res. 54: 561–570.PubMedGoogle Scholar
  130. Houghtling, R., Davila-Garcia, M., Hurt, S., and Kellar, K., 1994, [3H] Epibatidine binding to nicotinic receptors in brain, Med. Chem. Res. 4: 538–546.Google Scholar
  131. Huang, D., and Shen, T., 1993, A versatile total synthesis of epibatidine and analogs, Tetrahedron Lett. 34: 3251–3254.Google Scholar
  132. Hucho, F., Oberthur, W., and Lottspeich, F., 1986, The ion channel of the nicotinic acetylcholine receptor is formed by homologous helices of the receptor subunits, FEBS Lett. 205: 137–142.PubMedGoogle Scholar
  133. Huganir, R., and Greengard, P., 1990, Regulation of neurotransmitter receptor desensitization by protein phosphorylation, Neuron 5: 555–567.PubMedGoogle Scholar
  134. Hunt, S., and Schmidt, J., 1978, Some observations on the binding patterns of a bungarotoxin in the central nervous system of the rat, Brain Res. 157: 213–232.PubMedGoogle Scholar
  135. Hunter, B., deFiebre, C., Papke, R., Kem, W., and Meyer, E., 1994, A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus, Neurosci. Lett. 168: 130–134.PubMedGoogle Scholar
  136. Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S., 1988, Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance, Nature 335: 645–648.PubMedGoogle Scholar
  137. Jackson, M., 1989, Perfection of a synaptic receptor: Kinetics and energetics of the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 86: 2199–2203.PubMedGoogle Scholar
  138. Jacob, M., and Berg, D., 1983, The ultrastructural localization of a bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons, J. Neurosci. 3: 260–271.PubMedGoogle Scholar
  139. Jacob, M., Berg, D., and Lindstrom, J., 1984, A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons, Proc. Natl. Acad. Sci. USA 81: 3223–3227.PubMedGoogle Scholar
  140. Jacob, M., Lindstrom, J., and Berg, D., 1986, Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor, J. Cell Biol. 103: 205–214.PubMedGoogle Scholar
  141. Kao, P., and Karlin, A., 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues, J. Biol. Chem. 261: 8085–8088.PubMedGoogle Scholar
  142. Kao, P., Dwork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of the α subunit half cysteine specifically labeled by an affinity reagent for the acetylcholine receptor binding site, J. Biol. Chem. 259: 11662–11665.PubMedGoogle Scholar
  143. Karlin, A., 1991, Exploration of the nicotinic acetylcholine receptor, Harvey Lectures Series 85: 71–107.Google Scholar
  144. Karlin, A., 1993, Structure of nicotinic acetylcholine receptors, Curr. Opin. Neurobiol. 3: 299–309.PubMedGoogle Scholar
  145. Karlin, A., and Cowburn, D., 1973, The affinity-labeling of partially purified acetylcholine receptor from electric tissue of Electrophorus, Proc. Natl. Acad. Sci. USA 70: 3636–3640.PubMedGoogle Scholar
  146. Kellaries, K., Ware, D., Smith, S., and Kyte, J., 1989, Assessment of the number of free cysteines and isolation and identification of cysteine-containing peptides from acetylcholine receptor, Biochemistry 28: 3469–3482.Google Scholar
  147. Keyser, K., Hughes, T., Whiting, P., Lindstrom, J., and Karten, H., 1988, Cholinoceptive neurons in the retina of the chick: An immunohistochemical study of the nicotinic acetylcholine receptors, Vis. Neurosci. 1: 349–366.PubMedGoogle Scholar
  148. Keyser, K., Britto, L., Schoepfer, R., Whiting, P., Cooper, J., Conroy, W., Karten, H., Lindstrom, J., 1993, Three subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina, J. Neurosci. 13: 442–454.PubMedGoogle Scholar
  149. Kiefer, H., Lindstrom, J., Lennox, E., and Singer, S., 1970, Photo-affinity labeling of specific acetylcholine binding sites on membranes, Proc. Natl. Acad. Sci. USA 67: 1688–1694.PubMedGoogle Scholar
  150. Kirsch, V., Walters, I., Triller, A., and Betz, H., 1993, Gepherin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons, Nature 366: 745–748.PubMedGoogle Scholar
  151. Konno, T., Busch, C., Von Kitzing, E., Imoto, K., Wang, F., Nakai, J., Mishina, M., Numa, S., and Sakmann, B., 1991, Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel, Proc. R. Soc. London Ser. B 244: 69–79.Google Scholar
  152. Krienkamp, H. J., Maeda, R., Sine, S., and Taylor, P., 1995, Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor, Neuron 14: 635–644.Google Scholar
  153. Kubalek, E., Ralston, S., Lindstrom, J., and Unwin, N., 1987, Location of subunits within the acetylcholine receptor: Analysis of tubular crystals from Torpedo marmorata, J. Cell Biol. 105: 9–18.PubMedGoogle Scholar
  154. Lange, K., Wells, F., Jenner, P., and Marsden, P., 1993, Altered muscarinic and nicotinic receptor densities in cortical and subcortical regions in Parkinson’s disease, J. Neurochem. 60: 197–203.PubMedGoogle Scholar
  155. Langosch, D., Thomas, L., and Betz, H., 1988, Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer, Proc. Natl. Acad. Sci. USA 85: 7394–7398.PubMedGoogle Scholar
  156. Laufer, R., and Changeux, J. P., 1989, Activity-dependent regulation of gene expression in muscle and neuronal cells, Mol. Neurobiol. 3: 1–53.PubMedGoogle Scholar
  157. Lee, C., Tseng, L., and Chiu, T., 1967, Influence of denervation on localization of neurotoxins from clapid venoms in rat diaphragm, Nature 215: 1177–1178.PubMedGoogle Scholar
  158. Lee, Y., Li, L., Lasalde, J., Rojas, L., McNamee, M., Ortiz-Miranda, S., and Pappone, P., 1994, Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function, Biophys. J. 66: 646–653.PubMedGoogle Scholar
  159. Lei, S., Okita, D., and Conti-Fine, B., 1995, Binding of monoclonal antibodies against the carboxyl terminal segment of the nicotinic receptor δ subunit suggests an unusual transmembrane disposition of this sequence region, Biochemistry 34: 6675–6688.PubMedGoogle Scholar
  160. Léna, C., Changeux, J. P., and Mulle, C., 1993, Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus, J. Neurosci. 13: 2680–2688.PubMedGoogle Scholar
  161. Lester, H., 1992, The permeation pathway of neurotransmitter-gated ion channels, Annu. Rev. Biophys. Biomol. Struct. 21: 267–292.PubMedGoogle Scholar
  162. Lindstrom, J., 1995, Nicotinic acetylcholine receptors, in: CRC Handbook of Receptors and Channels, Ligand and Voltage-Gated Ion Channels (A. North, ed.), CRC Press, Boca Raton, pp. 153–175.Google Scholar
  163. Lindstrom, J., and Patrick, J., 1974, Purification of the acetylcholine receptor by affinity chromatography, in: Synoptic Transmission and Neuronal Interaction (M. V. L. Bennet, ed.), Raven Press, New York, pp. 191–216.Google Scholar
  164. Lindstrom, J., Seybold, M., Lennon, V., Whittingham, S., and Duane, D., 1976, Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value, Neurology 26: 1054–1059.PubMedGoogle Scholar
  165. Lindstrom, J., Merlie, J., and Yogeeswaran, 1979, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18: 4465–4470.PubMedGoogle Scholar
  166. Lindstrom, J., Einarson, B., and Tzartos, S., 1981, Production and assay of antibodies to acetylcholine receptors, Methods Enzymol. 74: 432–460.PubMedGoogle Scholar
  167. Lindstrom, J., Shelton, G. D., and Fuji, Y., 1988, Myasthenia gravis, Adv. Immunol. 42: 233–284.PubMedGoogle Scholar
  168. Lindstrom, J., Schoepfer, R., Conroy, W. G., and Whiting, P., 1990, Structural and functional heterogeneity of nicotinic receptors, in: The Biology of Nicotine Dependence, Ciba Foundation Symposium 152 (G. Bock and J. Marsh, eds.), John Wiley and Sons, New York, pp. 43–61.Google Scholar
  169. Lindstrom, J., Anand, R., Peng, X., Gerzanich, V., Wang, F., and Li, Y., 1995, Neuronal nicotinic receptor subtypes, Ann. N.Y. Acad. Sci. 757: 100–116.PubMedGoogle Scholar
  170. Lipton, S., and Kater, S., 1989, Neurotransmitter regulation of neuronal outgrowth, plasticity, and survival, Trends Neurosci. 12: 265–270.PubMedGoogle Scholar
  171. Lipton, S., Aizenman, E., and Loring, R., 1987, Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells, Pflügers Arch. 410: 37–43.PubMedGoogle Scholar
  172. Lipton, S., Frosch, M., Phillips, M., Tauck, D., and Aizenman, E., 1988, Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture, Science 239: 1293–1296.PubMedGoogle Scholar
  173. Lo, D., Pinkham, J., and Stevens, C., 1991, Role of a key cysteine residue in the gating of the acetylcholine receptor, Neuron 6: 31–40.PubMedGoogle Scholar
  174. Luetje, C., and Patrick, J., 1991, Both a and β subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors, J. Neurosci. 11: 837–845.PubMedGoogle Scholar
  175. Lukas, R., Norman, S., and Lucero, L., 1993, Characterization of nicotinic acetylcholine receptors expressed by cells of the SH-SY5Y human neuroblastoma clonal line, Mol. Cell. Neurosci. 4: 1–12.PubMedGoogle Scholar
  176. Luther, M., Schoepfer, R., Whiting, P., Blatt, Y., Montai, M. S., Montal, M., and Lindstrom, J., 1989, Muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671, J. Neurosci 9: 1082–1096.PubMedGoogle Scholar
  177. Maimone, M., and Merlie, J., 1993, Interaction of the 43kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor, Neuron 11: 53–66.PubMedGoogle Scholar
  178. Maneckjie, R., and Minna, J., 1990, Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines, Proc. Natl. Acad. Sci. USA 87: 3294–3298.Google Scholar
  179. Marks, M., Stitzel, J., and Collins, A., 1985, Time course study of the effects of chronic nicotine infusion on drug response and brain receptor, J. Pharmacol. Exp. Ther. 235: 619–628.PubMedGoogle Scholar
  180. Marks, M., Pauly, J., Gross, D., Deneris, E., Hermans-Borgmeyer, I., Heinemann, S., and Collins, A., 1992, Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment, J. Neurosci. 12: 2765–2784.PubMedGoogle Scholar
  181. Marks, M., Grady, S., and Collins, A., 1993, Downregulation of nicotinic receptor function after chronic nicotine infusion. J. Pharmacol. Exp. Ther. 266: 1268–1275.PubMedGoogle Scholar
  182. Matter, J., Matter-Sadzinski, L., and Ballivet, M., 1990, Expression of neuronal nicotinic acetylcholine receptor genes in the developing chick visual system, EMBO J. 9: 1021–1026.PubMedGoogle Scholar
  183. McCrea, P. D., Popot, J. L., and Engelman, D. M., 1987, Transmembrane topography of the nicotinic acetylcholine receptor δ subunit, EMBO J. 6: 3619–3626.PubMedGoogle Scholar
  184. McGehee, D., and Role, L., 1995, Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons, Annu. Rev. Physiol. 57: 521–546.PubMedGoogle Scholar
  185. McLane, K., Wu, X., Lindstrom, J., and Conti-Tronconi, B., 1992, Epitope mapping of polyclonal and monoclonal antibodies against two a bungarotoxin binding subunits from neuronal nicotinic receptors, J. Neuroimmunol. 38: 115–128.PubMedGoogle Scholar
  186. Merlie, J. P., and Lindstrom, J., 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an a subunit species which may be an assembly intermediate, Cell 34: 747–757.PubMedGoogle Scholar
  187. Middleton, R., and Cohen, J., 1991, Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: 3H-nicotine as an agonist photoaffinity label, Biochemistry 30: 6987–6997.PubMedGoogle Scholar
  188. Miles, K., and Huganir, R., 1988, Regulation of nicotinic acetylcholine receptors by protein phosphorylation, Mol. Neurobiol. 2: 91–124.PubMedGoogle Scholar
  189. Mitra, A., McCarthy, M., and Stroud, R., 1989, Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43kD cytoskeletal protein, determined at 22 ¥ by low-dose electron microscopy and x-ray diffraction of 12.5 ¥, J. Cell Biol. 109: 755–774.PubMedGoogle Scholar
  190. Mulle, C., Vidal, C., Benoit, P., and Changeux, J. P., 1991, Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system, J. Neurosci. 11: 2588–2597.PubMedGoogle Scholar
  191. Mulle, C., Choquet, D., Korn, H., and Changeux, J. P., 1992, Calcium influx through nicotinic receptor in rat central neurons and its relevance to cellular regulation, Neuron 8: 135–143.PubMedGoogle Scholar
  192. Nakayama, H., Shirase, M., Nakashima, T., Kurogochi, Y., and Lindstrom, J. M., 1990, Affinity purification of nicotinic acetylcholine receptor from rat brain, Mol. Brain Res. 7: 221–226.PubMedGoogle Scholar
  193. Nakayama, H., Okuda, H., and Nakashima, T., 1993, Phosphorylation of rat brain nicotinic acetylcholine receptor by cAMP-dependent protein kinase in vitro, Mol. Brain Res. 20: 171–177.PubMedGoogle Scholar
  194. Nef, P., Mauron, A., Stalder, R., Alliod, C., and Ballivet, M., 1984, Structure, linkage, and sequence of the two genes encoding the δ and γ subunits of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81: 7975–7979.PubMedGoogle Scholar
  195. Nelson, S., Shelton, G., Lei, S., Lindstrom, J., and Conti-Tronconi, B., 1992, Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor γ subunits, which specifically recognize the ε subunit of mammalian muscle acetylcholine receptor, J. Neuroimmunol. 36: 13–27.PubMedGoogle Scholar
  196. Nobel, M., Brown, T., and Peakcock, J., 1978, Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures, Proc. Natl. Acad. Sci. 75: 3488–3492.Google Scholar
  197. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299: 793–797.PubMedGoogle Scholar
  198. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S., 1983, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α subunit precursor of muscle acetylcholine receptor, Nature 305: 818–823.PubMedGoogle Scholar
  199. Nooney, J., Lambert, J., and Chiappinelli, V., 1992, The interaction of κ-bungarotoxin with the nicotinic receptor of bovine chromaffin cells, Brain Res. 573: 77–82.PubMedGoogle Scholar
  200. Ohno, K., Hutchinson, D., Milone, M., Brengman, J., Bouzat, C., Sine, S., and Engel, A., 1995, Congenital myasthenia syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the s subunit, Proc. Natl. Acad. Sci. USA 92: 758–762.PubMedGoogle Scholar
  201. O’Leary, M., and White, M., 1992, Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor, J. Biol. Chem. 267: 8360–8365.PubMedGoogle Scholar
  202. Palma, E., Bertrand, S., Binzoni, T., and Bertrand, D., 1995, Homomeric neuronal nicotinic α7 receptors present five putative high affinity binding sites for the toxin MLA, in press.Google Scholar
  203. Papke, R., 1993, The kinetic properties of neuronal nicotinic receptor: Genetic basis of functional diversity, Prog. Neurobiol. 41: 509–531.PubMedGoogle Scholar
  204. Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180: 871–872.PubMedGoogle Scholar
  205. Patrick, J., and Stallcup, W., 1977, Immunological distinction between acetylcholine receptor and the α bungarotoxin binding component on sympathetic neurons, Proc. Natl. Acad. Sci. USA 74: 4689–4692.PubMedGoogle Scholar
  206. Patrick, J., Lindstrom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Natl. Acad. Sci. USA 70: 3334–3338.PubMedGoogle Scholar
  207. Pederson, S., and Cohen, J., 1990, D-Tubcurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA 87: 2785–2789.Google Scholar
  208. Pederson, S., Bridgman, P., Sharp, S., Cohen, J., 1990, Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor α subunit by epitope mapping, J. Biol. Chem. 265: 569–581.Google Scholar
  209. Peng, X., Anand, R., Whiting, P., and Lindstrom, J., 1994a, Nicotine-induced upregulation of neuronal nicotinic receptors results from a decrease in the rate of turnover, Mol. Pharmacol. 46: 523–530.PubMedGoogle Scholar
  210. Peng, X., Katz, M., Gerzanich, V., Anand, R., and Lindstrom, J., 1994b, Human α7 acetylcholine receptor: Cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed in Xenopus oocytes, Mol. Pharmacol. 45: 546–554.PubMedGoogle Scholar
  211. Pereira, E., Alkondon, M., Reinhardt-Maelicke, S., Maelicke, A., Peng, X., Lindstrom, J., Whiting, P., and Albuquerque, E., 1994, Physostigmine and galanthamine reveal the presence of the novel binding site on the α4 β2 subtype of neuronal nicotinic acetylcholine receptor stably expressed in fibroblast cells, J. Pharmacol. Exp. Ther. 270: 768–778.PubMedGoogle Scholar
  212. Peto, R., Lopez, A., Boreham, J., Thun, M., and Heath, C., 1992, Mortality from tobacco in developed countries: Indirect estimation from national vital statistics, Lancet 339: 1268–1278.PubMedGoogle Scholar
  213. Picciotto, M., Zoll, M., Léna, C., Bessis, A., Lallemand, Y., LeNovére, N., Vincent, P., Pich, M., Brúlet, P., and Changeux, J. P., 1995, Abnormal avoidance learning in mice lacking functional high affinity nicotine receptor in the brain, Nature 374: 65–67.PubMedGoogle Scholar
  214. Protti, M., Manfredi, A., Horton, R., Bellone, M., and Conti-Tronconi, B., 1993, Myasthenia gravis: Recognition of a human autoantigen at the molecular level, Immunol. Today 14: 363–368.PubMedGoogle Scholar
  215. Pugh, P., and Berg, D., 1994, Neuronal acetylcholine receptors that bind α bungarotoxin mediate neurite retraction in a calcium-dependent manner, J. Neurosci. 14: 889–896.PubMedGoogle Scholar
  216. Quick, M., 1995, Growth related role for the nicotinic α bungarotoxin receptor, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 145–150.Google Scholar
  217. Raferty, M., Hunkapillar, M., Strader, C., and Hood, L., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208: 1454–1457.Google Scholar
  218. Rathouz, M., and Berg, D., 1994, Synaptic-type acetylcholine receptors raise intracellular calcium levels by two mechanisms, J. Neurosci. 14: 6935–6945.PubMedGoogle Scholar
  219. Ratnam, M., Le Nguyen, D., Rivier, J., Sargent, P. B., and Lindstrom, J., 1986a, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical prediction based on hydro-phobicity profiles, Biochemistry 25: 2633–2643.PubMedGoogle Scholar
  220. Ratnam, M., Sargent, P., Sarin, V., Fox, J., Nguyen, D., Rivier, J., Criado, M., and Lindstrom, J., 1986b, Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping, Biochemistry 25: 2621–2632.PubMedGoogle Scholar
  221. Revah, F., Galzi, J. L., Giraudat, J., Haumont, P. Y., Lederer, F., and Changeux, J. P., 1990, The noncompetitive blocker 3H-chlorpromazine labels three amino acids of the acetylcholine receptor γ subunit implications for the a helical organization of region MII and for the structure of the ion channel, Proc. Natl. Acad. Sci. USA 87: 4675–4679.PubMedGoogle Scholar
  222. Revah, F., Bertrand, D., Galzi, J. L., Devillers-Thiery, A, Mulle, C., Hussy, N., Bertrand, S., Ballivet, M., and Changeux, J. P., 1991, Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor, Nature 353: 846–849.PubMedGoogle Scholar
  223. Rogers, S., Andrews, J., Gahring, L., Whisemand, T., Caulay, K., Crain, B., Hughes, T., Heinemann, S., and McNamara, J., 1994, Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis, Science 265: 648–651.PubMedGoogle Scholar
  224. Role, L., 1992, Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels, Curr. Opin. Neurobiol. 2: 254–262.PubMedGoogle Scholar
  225. Saedi, M. S., Anand, R., Conroy, W. G., and Lindstrom, J., 1990, Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis, FEBS Lett. 267: 55–59.PubMedGoogle Scholar
  226. Saedi, M., Conroy, W. G., and Lindstrom, J., 1991, Assembly of Torpedo acetylcholine receptor in Xenopus oocytes, J. Cell Biol. 112: 1007–1015.PubMedGoogle Scholar
  227. Sargent, P., 1993, The diversity of neuronal nicotinic acetylcholine receptors, Annu. Rev. Neurosci. 16: 403–443.PubMedGoogle Scholar
  228. Sargent, P., and Wilson, H., 1995, Distribution of nicotinic acetylcholine receptor subunit immunoreactivities on the surface of chick ciliary ganglion neurons, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 355–361.Google Scholar
  229. Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S., and Lindstrom, J., 1984, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies, J. Cell Biol. 98: 609–618.PubMedGoogle Scholar
  230. Sargent, P., Pike, S., Nadel, D., and Lindstrom, J., 1989, Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog, J. Neurosci. 9: 565–573.PubMedGoogle Scholar
  231. Schoepfer, R., Whiting, P., Esch, F., Blacher, R., Shimasaki, S., and Lindstrom, J., 1988, cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor, Neuron 1: 241–248.PubMedGoogle Scholar
  232. Schoepfer, R., Halvorsen, S., Conroy, W. G., Whiting, P., and Lindstrom, J., 1989, Antisera against an α-3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors, FEBS Lett. 257: 393–399.PubMedGoogle Scholar
  233. Schoepfer, R., Conroy, W G., Whiting, P., Gore, M., and Lindstrom, J., 1990, Brain α-bungarotoxin binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily, Neuron 5: 35–48.PubMedGoogle Scholar
  234. Schuller, H., 1995, Mechanisms of nicotine stimulated cell proliferation in normal and neoplastic neuroendocrine lung cells, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 151–158.Google Scholar
  235. Schwartz, R., and Kellar, K., 1983, Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo, Science 220: 214–216.PubMedGoogle Scholar
  236. Schwartz, R., and Kellar, K., 1985, In vivo regulation of [3H] acetylcholine recognition sites in brain by nicotinic cholinergic drugs, J. Neurochem. 45: 427–433.PubMedGoogle Scholar
  237. Seeburg, P., 1993, The molecular biology of mammalian glutamate receptor channels, Trends Neurosci. 16: 359–364.PubMedGoogle Scholar
  238. Seguela, P., Wadiche, J., Dinelly-Miller, K., Dani, J., and Patrick, J., 1993, Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cation channel highly permeable to calcium, J. Neurosci. 13: 596–604.PubMedGoogle Scholar
  239. Siegel, H., and Lukas, R., 1988, Nicotinic agonists regulate α bungarotoxin binding sites of TE671 human medulloblastoma cells, J. Neurochem. 50: 1272–1278.PubMedGoogle Scholar
  240. Silver, A., Shytle, R., Philipp, M., and Sanberg, P., 1995, Transdermal nicotine in Tourette’s syndrome, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 293–299.Google Scholar
  241. Simpson, J., 1960, Myasthenia gravis: A new hypothesis, Scot. Med. J. 5: 419–436.Google Scholar
  242. Sine, S., 1988, Functional properties of human skeletal muscle acetylcholine receptors expressed by the TE671 cell line, J. Biol. Chem. 263: 18052–18062.PubMedGoogle Scholar
  243. Sine, S., 1993, Molecular dissection of subunit interfaces in the acetylcholine receptor: Identification of residues that determine curare selectivity, Proc. Natl. Acad. Sci. USA 90: 9436–9440.PubMedGoogle Scholar
  244. Sine, S., and Taylor, P., 1980, The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra α-toxin, J. Biol. Chem. 255: 10144–10156.PubMedGoogle Scholar
  245. Sine, S., and Taylor, P., 1982, Local anesthetics and histrionicotoxin are allosteric inhibitors of the acetylcholine receptor, J. Biol Chem. 257: 8106–8114.PubMedGoogle Scholar
  246. Sine, S., Claudio, T., and Sigworth, F., 1990, Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts, J. Gen. Physiol. 96: 395–437.PubMedGoogle Scholar
  247. Smith, M., Stollberg, J., Lindstrom, J., and Berg, D. K., 1985, Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor, J. Neurosci. 5: 2726–2731.PubMedGoogle Scholar
  248. Smith, M., Margiotta, J., Franco, A., Lindstrom, J., and Berg, D., 1986, Cholinergic modulation of an acetylcholine receptor-like antigen on the surface of chick ciliary ganglion neurons in cell culture, J. Neurosci. 6: 946–953.PubMedGoogle Scholar
  249. Smith, M., Lindstrom, J., and Merlie, J. P., 1987, Formation of the α-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum, J. Biol. Chem. 262: 4367–4376.PubMedGoogle Scholar
  250. Sorenson, E., and Chiappinelli, V., 1992, Localization of 3H-nicotine, 125I-κappa-bungarotoxin, and 125I-α-bungarotoxin binding to nicotinic sites in the chicken forebrain and midgrain, J. Comp. Neurol. 323: 1–12.PubMedGoogle Scholar
  251. Spande, T., Carroffo, M., Edwards, M., Yeh, H., Panel, L., and Daly, J., 1992, Epibatidine: A novel (chloropyridyl) azabicyclo-heptane with potent analgesic activity from Ecuadoran poison frog, J. Am. Chem. Soc. 114: 3475–3478.Google Scholar
  252. Stauffer, D., and Karlin, A., 1994, Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding site cysteines with charged methanethiosulfonates, Biochemistry 33: 6840–6849.PubMedGoogle Scholar
  253. Steinlein, O., Mulley, J., Propping, P., Wallace, R., Phillips, H., Sutherland, G., Schffer, J., and Berkovic, S., 1995, A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy, Nature Genetics 11: 201–203.PubMedGoogle Scholar
  254. Steinlein, O., Smigrodzki, R., Lindstrom, J., Anand, R., Kohler, M., Tocharoentanophol, C., and Vogel, F., 1994, Refinement of the localization of the gene for neuronal nicotinic acetylcholine receptor α4 subunit (CHRNA4) to human chromosome 20q 13.2–ql3.3, Genomics 22: 493–495.PubMedGoogle Scholar
  255. Stollberg, J., Whiting, P. J., Lindstrom, J., and Berg, D. K., 1986, Functional blockade of neuronal acetylcholine receptors by antisera to a putative receptor from brain, Brain Res. 378: 179–182.PubMedGoogle Scholar
  256. Sudhof, T. 1995, The synaptic vesicle cycle: A cascade of protein-protein interactions, Nature 375: 645–653.PubMedGoogle Scholar
  257. Sullivan, J., Decker, M., Brioni, J., Donnelly, Roberts, D., Anderson, D., Bannon, A., Kang, C., Adems, P., Piattoni-Kaplan, M., Buckley, M., Gopalakrishnan, M., Williams, M., and Arneric, S., 1994, (±) Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptor, J. Pharmacol. Exp. Ther. 271: 624–663.PubMedGoogle Scholar
  258. Sumikawa, K., and Gehle, V., 1992, Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure, J. Biol. Chem. 267: 6286–6290.PubMedGoogle Scholar
  259. Swanson, L., Lindstrom, J., Tzartos, S., Schmued, L., O’Leary, D., and Cowan, W., 1983, Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick, Proc. Natl. Acad. Sci. USA 80: 4532–4536.PubMedGoogle Scholar
  260. Swanson, L., Simmons, D., Whiting, P., and Lindstrom, J., 1987, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system, J. Neurosci. 7: 3334–3342.PubMedGoogle Scholar
  261. Takamori, M., Hamada, T., Komai, K., Takakashi, M., and Yoshida, A., 1994, Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats, Ann. Neurol. 35: 74–80.PubMedGoogle Scholar
  262. Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M., and Numa, S., 1987, Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function, FEBS Lett. 222: 56–62.PubMedGoogle Scholar
  263. Tomaselli, G., McLaughlin, J., Jurman, M., Hawrot, E., and Yellen, G., 1991, Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor, Biophys. J. 60: 721–727.PubMedGoogle Scholar
  264. Treinin, M., and Chalfie, M., 1995, A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans, Neuron 14: 871–877.PubMedGoogle Scholar
  265. Twyman, R., Gahring, L., Spiess, J., and Rogers, S., 1995, Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site, Neuron 14: 755–762.PubMedGoogle Scholar
  266. Tzartos, S., and Lindstrom, J., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA 77: 755–759.PubMedGoogle Scholar
  267. Tzartos, S., Rand, D., Einarson, B., and Lindstrom, J., 1981, Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256: 8635–8645.PubMedGoogle Scholar
  268. Tzartos, S., Seybold, M., and Lindstrom, J., 1982, Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79: 188–192.PubMedGoogle Scholar
  269. Tzartos, S., Hochschwender, S., Langeberg, L., and Lindstrom, J., 1983, Demonstration of a main immuno-genic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158: 116–118.PubMedGoogle Scholar
  270. Tzartos, S. J., Sophianos, D., and Efthimiadis, A., 1985, Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera, J. Immunol. 134: 2343–2349.PubMedGoogle Scholar
  271. Tzartos, S., Langeberg, L., Hochschwender, S., Swanson, L. W., and Lindstrom, J., 1986, Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: Species, subunit and region specificity, J. Neuroimmunol. 10: 235–253.PubMedGoogle Scholar
  272. Tzartos, S., Hochschwender, S., Vasquez, P., and Lindstrom, J., 1987, Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor, J. Neuroimmunol. 15: 185–194.PubMedGoogle Scholar
  273. Tzartos, S., Barkas, T., Cung, M., Kordossi, A., Loutrari, H., Marraud, M., Papadouli, I., Sakarellos, C., Sophianos, D., and Tsikaris, V., 1991, The main immunogenic region of the acetylcholine receptor, structure and role in myasthenia gravis, Autoimmunity 8: 259–270.PubMedGoogle Scholar
  274. Unwin, N., 1993a, Nicotinic acetylcholine receptor at 9Å resolution, J. Mol. Biol. 229: 1101–1124.PubMedGoogle Scholar
  275. Unwin, N., 1993b, Neurotransmitter action: Opening of ligand-gated ion channels, Cell 10: 31–41.Google Scholar
  276. Unwin, N., 1995, Acetylcholine receptor channel imaged in the open state, Nature 373: 37–43.PubMedGoogle Scholar
  277. Unwin, N., Toyoshima, C., and Kubalek, E., 1988, Arrangement of the acetylcholine receptor subunits in the resting and desensitized states determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes, J. Cell Biol. 107: 1123–1138.PubMedGoogle Scholar
  278. Vaiera, S., Hussy, N., Evans, R., Adami, N., North, R., Surprenant, A., and Buell, G., 1994, A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature 371: 516–519.Google Scholar
  279. Vernallis, A., Conroy, W., and Berg, D., 1993, Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes, Neuron 10: 451–464.PubMedGoogle Scholar
  280. Verrall, S., and Hall, Z., 1992, The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly, Cell 68: 23–31.PubMedGoogle Scholar
  281. Vijayaraghavan, S., Schmid, H., Halvorsen, S., and Berg, D., 1990, Cyclic AMP-dependent phosphorylation of a neuronal acetylcholine receptor a type subunit, J. Neurosci. 10: 3255–3262.PubMedGoogle Scholar
  282. Vijayaraghavan, S., Rathouz, M., Pugh, P., and Berg, D., 1992, Nicotinic receptors that bind a bungarotoxin on neurons raise intracellular free Ca++, Neuron 8: 353–362.PubMedGoogle Scholar
  283. Vincent, A., Lang, B., Newsom-Davis, J., 1989, Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder, Trends Neurosci. 12: 496–502.PubMedGoogle Scholar
  284. Wallace, B., Qu, Z., and Huganir, R., 1991, Agrin induces phosphorylation of the nicotinic acetylcholine receptor, Neuron 6: 869–878.PubMedGoogle Scholar
  285. Watson, J., Adkins-Regan, E., Whiting, P., Lindstrom, J., and Podleski, T., 1988, Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata), J. Comp. Neurol. 274: 255–264.PubMedGoogle Scholar
  286. Whitehouse, P., Martino, A., Marcus, K., Zweig, R., Singer, H., Price, D., and Kellar, K., 1988, Reduction in acetylcholine and nicotine binding in several degenerative diseases, Arch. Neurol. 45: 722–724.PubMedGoogle Scholar
  287. Whiting, P., and Lindstrom, J., 1986a, Purification and characterization of a nicotinic acetylcholine receptor from chick brain, Biochemistry 25: 2082–2093.PubMedGoogle Scholar
  288. Whiting, P., and Lindstrom, J., 1986b, Pharmacological properties of immunoisolated neuronal nicotinic receptors, J. Neurosci. 6: 3061–3069.PubMedGoogle Scholar
  289. Whiting, P. J., and Lindstrom, J., 1987a, Purification and characterization of a nicotinic acetylcholine receptor from rat brain, Proc. Natl. Acad. Sci. USA 84: 595–599.PubMedGoogle Scholar
  290. Whiting, P., and Lindstrom, J., 1987b, Affinity labeling of neuronal acetylcholine receptors localizes the neurotransmitter binding site to the β subunit, FEBS Lett. 213: 55–60.PubMedGoogle Scholar
  291. Whiting, P., and Lindstrom, J., 1988, Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies, J. Neurosci. 8: 3395–3404.PubMedGoogle Scholar
  292. Whiting, P., Esch, F., Shimasaki, S., and Lindstrom, J., 1987a, Neuronal nicotinic acetylcholine receptor β-subunit is coded for by the cDNA clone α4, FEBS Lett. 219: 459–463.PubMedGoogle Scholar
  293. Whiting, P., Liu, R., Morley, B., and Lindstrom, J., 1987b, Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies, J. Neurosci. 7: 4005–4016.PubMedGoogle Scholar
  294. Whiting, P., Cooper, J., and Lindstrom, J., 1987c, Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine receptors from human brain, J. Neuroimmunol. 16: 205–213.PubMedGoogle Scholar
  295. Whiting, P., Schoepfer, R., Swanson, L., Simmons, D., and Lindstrom, J., 1987d, Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors, Nature 327: 515–518.PubMedGoogle Scholar
  296. Whiting, P., Schoepfer, R., Conroy, W., Gore, M., Keyser, K., Shimasaki, S., Esch, F., and Lindstrom, J., 1991a, Differential expression of nicotinic acetylcholine receptor subtypes in brain and retina, Mol. Brain Res. 10: 61–70.PubMedGoogle Scholar
  297. Whiting, P., Schoepfer, R., Lindstrom, J., and Priestly, T., 1991b, Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts, Mol. Pharmacol. 40: 463–472.PubMedGoogle Scholar
  298. Winkler, J., Suhr, S., Gage, F., Thal, L., and Fisher, L., 1995, Essential role of neocortical acetylcholine in spatial memory, Nature 375: 484–487.PubMedGoogle Scholar
  299. Witzemann, V., Barg, B., Nishikawa, Y., Sakmann, B., and Numa, S., 1987, Differential regulation of muscle acetylcholine receptor γ and ε subunit mRNAs, FEBS Lett. 223: 104–112.PubMedGoogle Scholar
  300. Witzemann, V., Stein, E., Barg, B., Konno, T., Koenen, M., Kues, W., Criado, M., Hofmann, M., and Sakmmann, B., 1990, Primary structure and functional expression of α-, β-, γ-, δ-, and ε-subunits of the acetylcholine receptor from rat muscle, Eur. J. Biochem. 194: 437–448.PubMedGoogle Scholar
  301. Wonnacott, S., 1990, The paradox of nicotinic acetylcholine receptor upregulation by nicotine, Trends Pharmacol. Sci. 11: 216–219.PubMedGoogle Scholar
  302. Wonnacott, S., Drasdo, A., Sanderson, E., and Rowell, P. 1990, Presynaptic nicotinic receptors and modulation of transmitter release, in: The Biology of Nicotine Dependence, Ciba Foundation Symposium (G. Bock and J. Marsh, eds.), John Wiley and Sons, Chichester, pp. 87–105.Google Scholar
  303. Wonnacott, S., Albuquerque, E., and Bertrand, D., 1993, Methylcaconitine: A new probe that discriminates between nicotinic receptor subclasses, Methods Neurosci. 12: 263–275.Google Scholar
  304. Yang, C., Wu, W., and Zbuzek, V., 1992, Antinociceptive effect of chronic nicotine and nociceptive effect of its withdrawal measured by hot-plate and tail-flick in rats, Psychopharmacology 106: 417–420.PubMedGoogle Scholar
  305. Yu, X., and Hall, Z., 1994, A sequence in the main cytoplasmic loop of the a subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor, Neuron 13: 247–255.PubMedGoogle Scholar
  306. Zhang, X., Gong, Z., Helstrom-Lindahl, E., and Nordberg, A., 1994, Regulation of α4β2 nicotinic acetylcholine receptors in M10 cells following treatment with nicotinic agents, Neuroreport 6: 313–317.Google Scholar
  307. Zoli, M., Lenovere, N., Hill, J., and Changeux, J. P., 1995, Developmental regulation of nicotinic ACh receptor mRNAs in the central and peripheral nervous systems, J. Neurosci. 15: 1912–1939.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jon Lindstrom
    • 1
  1. 1.Department of NeuroscienceMedical School of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations