Skip to main content
Book cover

Ion Channels pp 377–450Cite as

Neuronal Nicotinic Acetylcholine Receptors

  • Chapter

Part of the book series: Ion Channels ((IC,volume 4))

Abstract

Studies of the structure and function of neuronal nicotinic acetylcholine receptors (AChRs) evolved out of studies of muscle AChRs. This review will begin with a brief summary of muscle type AChRs because they are the archetype for studies of neuronal nicotinic AChRs in particular and ligand-gated ion channels in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, S., Culver, Y., and Taylor, P., 1989, An analog of lophotoxin reacts covalently with Tyrl 90 in the α subunit of the nicotinic acetylcholine receptor, J. Biol. Chem. 264: 1266–1267.

    Google Scholar 

  • Aceto, M., Awaya, H., Martin, B., and May, E., 1983, Antinociceptive action of nicotine and its methiodide derivatives in mice and rats, Br. J. Pharmacol. 79: 869–876.

    PubMed  CAS  Google Scholar 

  • Akabas, M., Kaufmann, C., Archdeacon, P., and Karlin, A., 1994, Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the a subunit, Neuron 13: 919–927.

    PubMed  CAS  Google Scholar 

  • Alkondon, M., and Albuquerque, E., 1991, Initial characterization of the nicotinic acetylcholine receptors in rat hippocampal neurons, J. Recept. Res. 11: 1101–1201.

    Google Scholar 

  • Alkondon, M., and Albuquerque, E., 1993, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons I: Pharmacological and functional evidence for distinct structural subtypes, J. Pharmacol. Exp. Ther. 265: 1455–1473.

    PubMed  CAS  Google Scholar 

  • Alkondon, M., and Albuquerque, E., 1995, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons III: Agonist actions of the novel alkaloid epibatidine and analysis of type II current, J. Pharmacol. Exp. Ther. 274: 771–782.

    PubMed  CAS  Google Scholar 

  • Alkondon, M., Reinhardt, S., Lobron, C., Hermsen, B., Maelicke, A., and Albuquerque, E., 1994, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. II. The rundown and inward rectification of agonist-elicited whole cell currents and identification of receptor subunits by in situ hybridization, J. Pharmacol. Exp. Ther. 271: 494–506.

    PubMed  CAS  Google Scholar 

  • Anand, R., and Lindstrom, J., 1992, Chromosomal localization of seven neuronal nicotinic receptor subunit genes in humans, Genomics 13: 962–967.

    PubMed  CAS  Google Scholar 

  • Anand, R., Conroy, W. G., Schoepfer, R., Whiting, P., and Lindstrom, J., 1991, Chicken neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure, J. Biol. Chem. 266: 11192–11198.

    PubMed  CAS  Google Scholar 

  • Anand, R., Bason, L., Saedi, M., Gerzanich, V., Peng, X., and Lindstrom, J., 1993a, Reporter epitopes: A novel approach to examine transmembrane topology of integral membrane proteins applied to the α 1 subunit of the nicotinic acetylcholine receptor, Biochemistry 32: 9975–9984.

    PubMed  CAS  Google Scholar 

  • Anand, R., Peng, X., Ballesta, J., and Lindstrom, J., 1993b, Pharmacological characterization of α bungarotoxin sensitive AChRs immunoisolated from chick retina: Contrasting properties of α7 and α8 subunit-containing subtypes, Mol. Pharmacol. 44: 1046–1050.

    PubMed  CAS  Google Scholar 

  • Anand, R., Peng, X., and Lindstrom, J., 1993c, Homomeric and native α7 acetylcholine receptors exhibit remarkably similar but non-identical pharmacological properties, suggesting that the native receptor is a heteromeric protein complex, FEBS Lett. 327: 241–246.

    PubMed  CAS  Google Scholar 

  • Anderson, D., Blobel, G., Tzartos, S., Bullick, W., and Lindstrom, J., 1983, Transmembrane orientation of an early biosynthetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies, J. Neurosci. 3: 1773–1784.

    PubMed  CAS  Google Scholar 

  • Anholt, R., Fredkin, D., Deerinck, T., Ellisman, M, Montai, M., and Lindstrom, J., 1982, Incorporation of acetylcholine receptors into liposomes: Vesicle structure and acetylcholine receptor, J. Biol Chem. 25: 7122–7134.

    Google Scholar 

  • Appel, S. H., Blosser, J. C., McMaraman, J. L., Ashizawa, T., and Elias, S. B., 1981, The effects of carbamylcholine, calcium and cyclic nucleotides on acetylcholine receptor synthesis in cultured myotubes, Ann. N.Y. Acad. Sci. 377: 189–197.

    PubMed  CAS  Google Scholar 

  • Arneric, S., Sullivan, J., Briggs, C., Donnelly-Roberts, D., Anderson, D., Roszkiewicz, J., Hughes, M., Cadman, E., Adams, P., Garvey, D., Wasicak, J., and Williams, M, 1994, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT418): A novel cholinergic ligand with cognition-enhancing and anxiolytic activities: 1. in vitro characterization. J. Pharmacol. Exp. Ther. 270: 310–318.

    PubMed  CAS  Google Scholar 

  • Badio, B., and Daly, J., 1994, Epibatidine, a potent analgesic and nicotinic agonist, Mol. Pharmacol. 45: 563–569.

    PubMed  CAS  Google Scholar 

  • Barnard, E., 1992, Receptor classes and the transmitter-gated ion channels, Trends Biol Sci. 17: 368–374.

    CAS  Google Scholar 

  • Baron, J., 1995, The epidemiology of cigarette smoking and Parkinson’s disease, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhauser, Basel, pp. 313–319.

    Google Scholar 

  • Barrantes, G., Rodger, A., Lindstrom, J., and Wonnacott, S., 1995, α Bungarotoxin binding sites in rat hippocampal and cortical cultures: Initial characterization, co-localization with α 7 subunits and up-regulation by chronic nicotine treatment, Brain Res. 672: 228–236.

    PubMed  CAS  Google Scholar 

  • Benowitz, N., Porchet, H., and Jacob, P., 1990, Pharmacokinetics, metabolism, and pharmacodynamics of nicotine, in: Nicotine Psychopharmacology (S. Wonnocott et al, eds.), Oxford Science Publications, Oxford, pp. 112–157.

    Google Scholar 

  • Benwell, M., Balfour, D., and Anderson, J., 1988, Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain, J. Neurochem. 50: 1243–1247.

    PubMed  CAS  Google Scholar 

  • Beroukhim, R., and Unwin, N., 1995, Three dimensional location of the main immunogenic region of the acetylcholine receptor, Neuron 15: 323–331.

    PubMed  CAS  Google Scholar 

  • Bertrand, D., and Changeux, J. P., 1995, Nicotinic receptor: An allosteric protein specialized for intercellular communication, Neurosciences 7: 75–90.

    CAS  Google Scholar 

  • Bertrand, D., Devillers-Thiery, A., Revah, F., Galzi, J. L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M., and Changeux, J. P., 1992, Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain, Proc. Natl. Acad. Sci. USA 89: 1261–1265.

    PubMed  CAS  Google Scholar 

  • Bertrand, D., Galzi, J. L., Devillers-Thiery, A., Bertrand, S., and Changeux, J. P., 1993a, Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α 7 nicotinic receptor, Proc. Natl. Acad. Sci. USA 90: 6971–6975.

    PubMed  CAS  Google Scholar 

  • Bertrand, D., Galzi, U. L., Devillers-Thiery, A., Bertrand, S., and Changeux, V. P., 1993b, Stratification of the channel domain in neurotransmitter receptors, Curr. Opin. Cell Biol. 5: 688–693.

    PubMed  CAS  Google Scholar 

  • Bessis, A., Savatier, N., Devillers-Thiery, A., Benjamin, A., and Changeux, V. P., 1993, Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor α2 subunit gene, Nucleic Acids Res. 21: 2185–2192.

    PubMed  CAS  Google Scholar 

  • Betz, H., 1990, Ligand-gated ion channels in the brain: The amino acid receptor superfamily, Neuron 5: 383–392.

    PubMed  CAS  Google Scholar 

  • Blount, P., and Merlie, J., 1988, Native folding of an acetylcholine receptor a subunit expressed in the absence of other receptor subunits, J. Biol Chem. 262: 4367–4376.

    Google Scholar 

  • Blount, P., and Merlie, J. P., 1989, Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor, Neuron 3: 349–357.

    PubMed  CAS  Google Scholar 

  • Blount, P., and Merlie, J. P., 1990, Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly, J. Cell Biol 111: 2612–2622.

    Google Scholar 

  • Blount, P., and Merlie, J. P., 1991a, BIP associates with newly synthesized subunits of the mouse muscle nicotinic receptor, J. Cell Biol 113: 1125–1132.

    PubMed  CAS  Google Scholar 

  • Blount, P., and Merlie, J. P., 1991b, Characterization of an adult muscle acetylcholine receptor subunit by expression in fibroblasts, J. Biol. Chem. 266: 14692–14696.

    PubMed  CAS  Google Scholar 

  • Blount, P., Smith, M., and Merlie, J., 1990, Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts, J. Cell Biol 111: 2601–2611.

    PubMed  CAS  Google Scholar 

  • Bock, G., and Marsh, J. (eds.), 1990, The Biology of Nicotine Dependence, Ciba Foundation Symposium 152, John Wiley and Sons, New York.

    Google Scholar 

  • Boess, F., Beroukhim, R., and Martin, I., 1995, Ultrastructure of the 5-hydroxytryptamine3 receptor, J. Neurochem. 64: 1401–1405.

    PubMed  CAS  Google Scholar 

  • Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J., 1986, Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a subunit, Nature 319: 368–374.

    PubMed  CAS  Google Scholar 

  • Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S., and Patrick, J., 1987, Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family, Proc. Natl. Acad. Sci. USA 84: 7763–7767.

    PubMed  CAS  Google Scholar 

  • Boulter, J., O’Shea-Greenfield, A., Duvoisin, R., Connolly, J., Wada, E., Jensen, A., Gardner, P., Ballivet, M., Deneris, E., McKinnon, D., Heinemann, S., and Patrick, J., 1990, α3, α5, and β4: Three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster, J. Biol. Chem. 265: 4472–4482.

    PubMed  CAS  Google Scholar 

  • Brake, A., Wagenbach, M., and Julius, D., 1994, New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor, Nature 371: 519–523.

    PubMed  CAS  Google Scholar 

  • Britto, L. R., Hamassaki-Britto, D. E., Ferro, E. S., Keyser, K. T., Karten, H. J., and Lindstrom, J. M., 1992a, Neurons of the chick brain and retina expressing both α bungarotoxin-sensitive and a bungarotoxin-insensitive nicotinic acetylcholine receptors: An immunohistochemical analysis, Brain Res. 590: 193–200.

    PubMed  CAS  Google Scholar 

  • Britto, L., Keyser, K., Lindstrom, J., and Karten, H., 1992b, Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus), J. Comp. Neurol. 317: 325–340.

    PubMed  CAS  Google Scholar 

  • Britto, L. R., Torrao, A. S., Hamassaki-Britto, D. E., Mpodozis, J., Keyser, K. T., Lindstrom, J. M., and Karten, H. J., 1994, Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system, J. Comp. Neurol. 350: 473–484.

    PubMed  CAS  Google Scholar 

  • Carbonetto, S., Fambrough, D., and Muller, K., 1978, Nonequivalence of a bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons, Proc. Natl. Acad. Sci. USA 75: 1016–1020.

    PubMed  CAS  Google Scholar 

  • Changeux, J. P., 1990, Functional architecture and dynamics of the nicotinic acetylcholine receptor: An allosteric ligand-gated ion channel, in: 1988–1989 Fidia Research Foundation: Neuroscience Award Lectures, Vol. 4, pp. 21–168.

    Google Scholar 

  • Changeux, J. P., 1991, Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis, New Biol. 3: 413–429.

    PubMed  CAS  Google Scholar 

  • Chavez, R., and Hall, Z., 1991, The transmembrane topology of the amino terminus of the α subunit of the nicotinic acetylcholine receptor, J. Biol. Chem. 266: 15532–15538.

    PubMed  CAS  Google Scholar 

  • Chavez, R., and Hall, Z., 1992, Expression of fusion proteins of the nicotinic acetylcholine receptor from mammalian muscle identifies the membrane-spanning regions in the a and 8 subunits, J. Cell Biol. 116: 385–393.

    PubMed  CAS  Google Scholar 

  • Chini, B., Raimond, E., Elgoyhen, E., Moralli, D., Bolzaretti, M., and Heinemann, S., 1994, Molecular cloning and chromosomal localization of the human α 7 nicotinic receptor subunit gene (CHRNA 7), Genomics 19: 379–381.

    PubMed  CAS  Google Scholar 

  • Clarke, P., 1990, Mesolimbic dopamine activation—the key to nicotine reinforcement? in: The Biology of Nicotine Dependence, Ciba Foundation Symposium 152m (G. Bock and J. Marsh, eds.), John Wiley and Sons, Chichester, pp. 153–162.

    Google Scholar 

  • Clarke, P. B. S., 1992, The fall and rise of neuronal a bungarotoxin binding proteins, Trends Pharmacol. 13: 407–413.

    CAS  Google Scholar 

  • Clarke, P., 1995, Nicotinic receptors and cholinergic transmission in the central nervous system, Ann. N.Y. Acad. Sci, 757: 73–83.

    PubMed  CAS  Google Scholar 

  • Clarke, P., Schwartz, R., Paul, S., Pert, C., and Pert, A., 1985, Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I] α bungarotoxin, J. Neurosci. 5: 1307–1315.

    PubMed  CAS  Google Scholar 

  • Clarke, P., Hamill, G., Nadi, N., Jacobwitz, D., and Pert, A., 1986, 3H-Nicotine and 125I-α bungarotoxin-labeled nicotinic receptors in the interpenduncular nucleus of rats. II. Effects of habenular deafferentation, J. Comp. Neurol. 251: 407–413.

    PubMed  CAS  Google Scholar 

  • Cockcroft, V., Osguthorpe, D., Barnard, E., Friday, A., and Lunt, G., 1992, Ligand-gated ion channels—homology and diversity, Mol. Neurobiol. 4: 129–169.

    Google Scholar 

  • Cohen, B., Labarca, C., Davidson, N., and Lester, H., 1992, Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations, J. Gen. Physiol. 100: 373–400.

    PubMed  CAS  Google Scholar 

  • Cohen, J., Sharp, S., and Lu, W., 1991, Structure of the agonist binding site of the nicotinic acetylcholine receptor, J. Biol. Chem. 266: 23354–23364.

    PubMed  CAS  Google Scholar 

  • Collins, A., Luo, Y., Selvaag, S., and Marks, M., 1994, Sensitivity to nicotine and brain nicotinic receptors are altered by chronic nicotine and mecamylamine infusion, J. Pharmacol. Exp. Ther. 271: 125–133.

    PubMed  CAS  Google Scholar 

  • Conroy, W. G., and Berg, D. K., 1995, Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions, J. Biol. Chem. 270: 4424–4431.

    PubMed  CAS  Google Scholar 

  • Conroy, W., Saedi, M., and Lindstrom, J., 1990, TE671 cells express an abundance of a partially mature acetylcholine receptor a subunit which has characteristics of an assembly intermediate, J. Biol. Chem. 265: 21642–21651.

    PubMed  CAS  Google Scholar 

  • Conroy, W., Vernallis, A., and Berg, D., 1992, The α 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain, Neuron 9: 1–20.

    Google Scholar 

  • Conti-Tronconi, B., Gotti, G., Hunkapiller, M., and Raferty, M., 1982, Mammalian muscle acetylcholine receptor: A supramolecular structure formed by four related proteins, Science 218: 1227–1229.

    PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. II: Binding to native receptor, Biochemistry 20: 2181–2191.

    PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B., Dunn, S., Barnard, E., Dolly, J., Lai, F., Ray, N., and Raferty, M, 1985, Brain and muscle nicotinic acetylcholine receptors are different but homologous proteins, Proc. Natl. Acad. Sci. USA 82: 5208–5212.

    PubMed  CAS  Google Scholar 

  • Cooper, E., Couturier, S., and Ballivet, M., 1991, Pentameric structure and subunit stoichiometry of a neuronal nicotinic acetylcholine receptor, Nature 350: 235–238.

    PubMed  CAS  Google Scholar 

  • Corringer, P. V., Galzi, V. L., Eisele, J. L., Bertrand, S., Changeux, V. P., and Bertrand, D., 1995, Identification of a new component of the agonist binding site of the nicotinic α7 homoligomeric receptor, J. Biol. Chem. 270: 11749–11752.

    PubMed  CAS  Google Scholar 

  • Corriveau, R., and Berg, D., 1993, Coexpression of multiple acetylcholine receptor genes in neurons: Quantification of transcripts during development, J. Neurosci. 13: 2662–2671.

    PubMed  CAS  Google Scholar 

  • Corriveau, R., Romano, S., Conroy, W., Olivia, L., and Berg, D., 1995, Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development, J. Neurosci. 15: 1372–1383.

    PubMed  CAS  Google Scholar 

  • Costa, A., Patrick, J., and Dani, J., 1994, Improved technique for studying ion channels expression in Xenopus oocytes, including fast perfusion, Biophys. J. 67: 1–7.

    Google Scholar 

  • Couturier, S., Erkman, L., Vaiera, S., Rungger, D., Bertrand, S., Boulter, J., Ballivet, M., and Bertrand, D., 1990a, α5, α3, and non α3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor related subunits, J. Biol. Chem. 265: 17560–17567.

    PubMed  CAS  Google Scholar 

  • Couturier, S., Bertrand, D., Matter, J., Hernandez, M., Bertrand, S., Millar, N., Vaiera, S., Barkas, T., and Ballivet, M., 1990b, A neuronal nicotinic acetylcholine receptor subunit (α 7) is developmentally regulated and forms a homomeric channel blocked by a bungarotoxin, Neuron 5: 847–856.

    PubMed  CAS  Google Scholar 

  • Criado, M., Hochschwender, S., Sarin, V., Fox, J. L., and Lindstrom, J., 1985, Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits, Proc. Natl. Acad. Sci. USA 82: 2004–2008.

    PubMed  CAS  Google Scholar 

  • Criado, M., Witzemann, V., Koenen, M., and Sakmann, B., 1988, Nucleotide sequence of rat muscle acetylcholine receptor epsilon subunit, Nucleic Acids Res. 16: 10920.

    PubMed  CAS  Google Scholar 

  • Czajkowski, C., and Karlin, A., 1995, Structure of the nicotinic receptor acetylcholine binding site, J. Biol. Chem. 270: 3160–3164.

    PubMed  CAS  Google Scholar 

  • Czajkowski, C., Kaufmann, C., and Karlin, A., 1993, Negatively charged amino acid residues in the nicotinic receptor δ subunit that contribute to the binding of acetylcholine, Proc. Natl. Acad. Sci. USA 90: 6285–6289.

    PubMed  CAS  Google Scholar 

  • Daly, J., 1995, The chemistry of poisons in amphibian skin, Proc. Natl. Acad. Sci. USA 92: 9–13.

    PubMed  CAS  Google Scholar 

  • Das, M., and Lindstrom, J., 1989, The main immunogenic region of the nicotinic acetylcholine receptor: Interaction of monoclonal antibodies with synthetic peptides, Biochem. Biophys. Res. Commun. 165: 865–871.

    PubMed  CAS  Google Scholar 

  • Das, M., and Lindstrom, J., 1991, Epitope mapping of antibodies to acetylcholine receptor, Biochemistry 30: 2470–2477.

    PubMed  CAS  Google Scholar 

  • Decker, M., Brioni, J., Sullivan, J., Buckley, M., Rodek, R., Rasziewicz, V., Kang, C., Kim, D., Giardina, W., Wasicak, J., Garvey, D., Williams, M., and Arneric, S., 1994, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT418): A novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. in vivo characterization, J. Pharmacol. Exp. Then 270: 319–328.

    CAS  Google Scholar 

  • Del Toro, E., Juiz, J., Peng, X., Lindstrom, J., and Criado, M., 1994, Immunocytochemical localization of the α 7 subunit of the nicotinic acetylcholine receptor in the rat central nervous system, J. Comp. Neurol. 349: 325–342.

    Google Scholar 

  • Deneris, E., Connolly, J., Rogers, S., and Duvoisin, R., 1991, Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors, Trends Pharmacol. Sci. 12: 34–40.

    PubMed  CAS  Google Scholar 

  • DiPaola, M., Czajkowski, C., and Karlin, A., 1989, The sideness of the COOH terminus of the acetylcholine δ subunit, J. Biol. Chem. 264: 15457–15463.

    PubMed  CAS  Google Scholar 

  • DiPaola, M., Kao, P., and Karlin, A., 1990, Mapping the subunit site photolabeled by the noncompetitive inhibitor 3H-quinacrine azide in the active state of the nicotinic acetylcholine receptor, J. Biol. Chem. 265: 11017–11029.

    PubMed  CAS  Google Scholar 

  • Doncellestamm, L., Monteggia, L., Donnelly-Roberts, D., Wong, M., Lee, J., Tian, J., and Giordano, T., 1993, Cloning and sequence of the human α7 nicotinic acetylcholine receptor, Drug Dev. Res. 30: 252–256.

    Google Scholar 

  • Dwyer, B., 1991, Topological dispositions of lysine α 380 and lysine γ 486 in the acetylcholine receptor from Torpedo californica, Biochemistry 30: 4105–4112.

    PubMed  CAS  Google Scholar 

  • Eisile, J. L., Bertrand, S., Galzi, J. L., Devillers-Thiery, A., Changeux, J. P., and Bertrand, D., 1993, Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities, Nature 366: 479–483.

    Google Scholar 

  • Elgoyhen, A., Johnson, D., Boulter, J., Vetter, D., and Heinemann, S, 1994, α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells, Cell 79: 705–715.

    PubMed  CAS  Google Scholar 

  • Engel, A., 1990, Congenital disorder of neuromuscular transmission, Seminars Neurol. 10: 12–26.

    CAS  Google Scholar 

  • Engel, A., 1994, Myasthenic syndromes, in: Myology, 2nd edition, Vol. 2, (A. Engel and C. Franzini-Armstrong, eds.), McGraw-Hill, New York, pp. 1798–1835.

    Google Scholar 

  • Fiodalisi, J., Fetter, C., Ten Harmsel, A., Gigowski, R., Chiappinelli, V., and Grant, G., 1991, Synthesis and expression in Escherichia coli of a gene for κ-bungarotoxin, Biochemistry 30: 10337–10343.

    Google Scholar 

  • Fletcher, S., Baker, R., Chambers, M., Herbert, R., Hobbs, S., Thomas, S., Verrier, H., Watt, A., and Ball, R., 1994, Total synthesis and determination of the absolute configuration of epibatidine, J. Org. Chem. 59: 1771–1778.

    CAS  Google Scholar 

  • Flores, C., Rogers, S., Pabreza, L., Wolfe, B., and Kellar, K., 1992, A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is upregulated by chronic nicotine treatment, Mol. Pharmacol. 41: 31–37.

    PubMed  CAS  Google Scholar 

  • Froehner, S., 1991, The submembrane machinery for nicotinic acetylcholine receptor clustering, J. Cell Biol. 114: 1–7.

    PubMed  CAS  Google Scholar 

  • Froehner, S., 1993, Regulation of ion channel distribution at synapses, Annu. Rev. Neurosci. 16: 347–368.

    PubMed  CAS  Google Scholar 

  • Fu, D., and Sine, S., 1994, Competitive antagonists bridge α-γ subunit interface of the acetylcholine receptor through quaternary aromatic interactions, J. Biol. Chem. 269: 26152–26157.

    PubMed  CAS  Google Scholar 

  • Fuchs, P., and Murrow, B., 1992a, Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea, J. Neurosci. 12: 800–809.

    PubMed  CAS  Google Scholar 

  • Fuchs, P., and Murrow, B., 1992b, A novel cholinergic receptor mediates inhibition of chick cochlear hair cells. Proc. R. Soc. London Ser. B 248: 35–40.

    CAS  Google Scholar 

  • Gahring, L., Twyman, R., Greenlee, J., and Rogers, S., 1995, Autoantibodies to neuronal glutamate receptors in patients with paraneoplastic neurodegenerative syndrome enhance receptor activation, Mol. Med. 1: 245–253.

    PubMed  CAS  Google Scholar 

  • Galzi, J. L., and Changeux, J. P., 1994, Curr. Opin. Struct. Bio. 4: 554–565.

    CAS  Google Scholar 

  • Galzi, J. L., Revah, F., Black, D., Goeldner, M., Hirth, C., and Changeux, J. P., 1990, Identification of a novel amino acid a tyrosine 93 within the cholinergic ligand-binding sites of the acetylcholine receptor by photoaffinity labeling, J. Biol Chem. 265: 10430–10437.

    PubMed  CAS  Google Scholar 

  • Galzi, J. L., Bertrand, D., Devillers-Thiery, A., Revah, F., Bertrand, S., and Changeux, J. P., 1991, Functional significance of aromatic amino acids from three peptide loops of the α7 neuronal nicotinic receptor site investigated by site directed mutagenesis, FEBS Lett. 294: 198–202.

    PubMed  CAS  Google Scholar 

  • Galzi, J. L., Devillers-Thiery, A., Hussy, N., Bertrand, S., Changeux, J. P., and Bertrand, D., 1992, Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic, Nature 359: 500–505.

    PubMed  CAS  Google Scholar 

  • Gardner, J. M., and Fambrough, D. M., 1979, Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence against recycling, Cell 16: 661–674.

    PubMed  CAS  Google Scholar 

  • Gehle, V., and Sumikawa, K., 1991, Site directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits, Mol. Brain Res. 11: 17–25.

    PubMed  CAS  Google Scholar 

  • Gerzanich, V., Anand, R., and Lindstrom, J., 1994, Homomers of α 8 subunits nicotinic receptors functionally expressed in Xenopus oocytes exhibit similar channel but contrasting binding site properties compared to α 7 homomers, Mol. Pharmacol. 45: 212–220.

    PubMed  CAS  Google Scholar 

  • Gerzanich, V., Peng, X., Wang, F., Wells, G., Anand, R., Fletcher, S., and Lindstrom, J., 1995, Comparative pharmacology of epibatidine a potent agonist for neuronal nicotinic acetylcholine receptors, Mol. Pharmacol. 48: 774–782.

    PubMed  CAS  Google Scholar 

  • Giraudat, J., Dennis, M., Heidmann, T., Hanmont, P. Y., Lederer, R, and Changeux, J. P., 1987, Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: [3H] Chlorpromazine labels homologous residues in the β and δ chains, Biochemistry 26: 2410–2418.

    PubMed  CAS  Google Scholar 

  • Goldman, D., Simmons, D., Swanson, L., Patrick, J., and Heinemann, S., 1986, Mapping of brain areas expressing RNA homologous to two different acetylcholine receptor α subunit cDNAs, Proc. Natl. Acad. Sci. USA 83: 4076–4080.

    PubMed  CAS  Google Scholar 

  • Grady, S., Marks, M., Wonnacott, S., and Collins, A., 1992, Characterization of nicotinic receptor-mediated 3H-dopamine release from synaptosomes prepared from mouse striatum, J. Neurochem. 59: 848–856.

    PubMed  CAS  Google Scholar 

  • Grady, S., Marks, M., and Collins, A., 1994, Desensitization of nicotine-stimulated 3H-dopamine release from mouse striatal synaptosomes, J. Neurochem. 62: 1390–1398.

    PubMed  CAS  Google Scholar 

  • Green, L., Sytkowski, A., Vogel, A., and Nirenberg, M., 1973, a Bungarotoxin used as a probe for acetylcholine receptors of cultured neurons, Nature 243: 163–166.

    Google Scholar 

  • Green, T., Stouffer, K., and Lummis, S., 1995, Expression of recombinant homo-oligomeric 5-hydroxytryptamine3 receptors provides new insights into their maturation and structure, J. Biol. Chem. 270: 6056–6061.

    PubMed  CAS  Google Scholar 

  • Greenburg, M., Ziff, E., and Greene, L., 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription, Science 234: 80–83.

    Google Scholar 

  • Gu, Y., Camacho, P., Gardner, P., and Hall, Z., 1991a, Identification of two amino acid residues in the ε subunit that promote mammalian muscle acetylcholine receptor assembly in COS cells, Neuron 6: 879–887.

    PubMed  CAS  Google Scholar 

  • Gu, Y., Forsayeth, J., Verrall, S., Yu, X., and Hall, Z., 1991b, Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells, J. Cell Biol. 114: 799–807.

    PubMed  CAS  Google Scholar 

  • Gullick, W., and Lindstrom, J., 1983, Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica, Biochemistry 22: 3312–3320.

    PubMed  CAS  Google Scholar 

  • Gullick, W., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping, Biochemistry 20: 2173–2180.

    PubMed  CAS  Google Scholar 

  • Hamassaki-Britto, D., Brzozowska-Prechtl, A., Karten, H., Lindstrom, J., and Keyser, K., 1991, GABA-like immunoreactive cells containing nicotinic acetylcholine receptors in the chick retina, J. Comp. Neurol. 313: 394–408.

    PubMed  CAS  Google Scholar 

  • Hamassaki-Britto, D., Brzozowska-Prechtl, A., Karten, H., and Lindstrom, J., 1994a, Bipolar cells of the chick retina containing a bungarotoxin-sensitive nicotinic acetylcholine receptors, Vis. Neurosci. 11: 63–70.

    PubMed  CAS  Google Scholar 

  • Hamassaki-Britto, D., Gardino, P. F., Hokoc, J. N., Keyser, K. T., Karten, H. J., Lindstrom, J. M., and Britto, L. R., 1994b, Differential development of α-bungarotoxin-sensitive and α-bungarotoxin-insensitive nicotinic acetylcholine receptors in the chick retina, J. Comp. Neurol. 347: 161–170.

    PubMed  CAS  Google Scholar 

  • Harsing, L., Sershen, H., and Lajtha, A., 1992, Dopamine efflux from striatum after chronic nicotine: Evidence for autoreceptor desensitization, J. Neurochem. 59: 48–54.

    PubMed  CAS  Google Scholar 

  • Henley, J., Lindstrom, J., and Oswald, R., 1986a, Acetylcholine receptor synthesis in retina and transport to the optic tectum in goldfish, Science 232: 1627–1629.

    PubMed  CAS  Google Scholar 

  • Henley, J., Mynlieff, M., Lindstrom, J., and Oswald, R., 1986b, Interaction of monoclonal antibodies to electroplaque acetylcholine receptors with the a bungarotoxin binding site of goldfish brain, Brain Res. 364: 405–408.

    PubMed  CAS  Google Scholar 

  • Henley, J. M., Lindstrom, J. M., and Oswald, R. E., 1988, Interaction of monoclonal antibodies with α-bungarotoxin and (−) nicotine binding sites in goldfish brain, J. Biol. Chem. 263: 9686–9691.

    PubMed  CAS  Google Scholar 

  • Hernandez, M. C., Erkman, L., Matter-Sadzinski, L., Roztocil, T., Ballivet, M., and Matter, J. M., 1995, Characterization of the nicotinic acetylcholine receptor β3 gene, J. Biol. Chem. 270: 3224–3233.

    PubMed  CAS  Google Scholar 

  • Hill, J., Zoli, M., Bourgeois, J. P., and Changeux, J. P., 1993, Immunocytochemical localization of a neuronal nicotinic receptor: The β2 subunit, J. Neurosci. 13: 1551–1568.

    PubMed  CAS  Google Scholar 

  • Holtzman, E., Wise, D., Wall, J., and Karlin, A., 1982, Electron microscopy of complexes of isolated acetylcholine receptor, biotinyl-toxin and avidin, Proc. Natl. Acad. Sci. USA 79: 310–314.

    PubMed  CAS  Google Scholar 

  • Hoover, F., and Goldman, D., 1992, Temporarily correlated expression of nAChR genes during development of the mammalian retina, Exp. Eye Res. 54: 561–570.

    PubMed  CAS  Google Scholar 

  • Houghtling, R., Davila-Garcia, M., Hurt, S., and Kellar, K., 1994, [3H] Epibatidine binding to nicotinic receptors in brain, Med. Chem. Res. 4: 538–546.

    CAS  Google Scholar 

  • Huang, D., and Shen, T., 1993, A versatile total synthesis of epibatidine and analogs, Tetrahedron Lett. 34: 3251–3254.

    Google Scholar 

  • Hucho, F., Oberthur, W., and Lottspeich, F., 1986, The ion channel of the nicotinic acetylcholine receptor is formed by homologous helices of the receptor subunits, FEBS Lett. 205: 137–142.

    PubMed  CAS  Google Scholar 

  • Huganir, R., and Greengard, P., 1990, Regulation of neurotransmitter receptor desensitization by protein phosphorylation, Neuron 5: 555–567.

    PubMed  CAS  Google Scholar 

  • Hunt, S., and Schmidt, J., 1978, Some observations on the binding patterns of a bungarotoxin in the central nervous system of the rat, Brain Res. 157: 213–232.

    PubMed  CAS  Google Scholar 

  • Hunter, B., deFiebre, C., Papke, R., Kem, W., and Meyer, E., 1994, A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus, Neurosci. Lett. 168: 130–134.

    PubMed  CAS  Google Scholar 

  • Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mori, Y., Fukuda, K., and Numa, S., 1988, Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance, Nature 335: 645–648.

    PubMed  CAS  Google Scholar 

  • Jackson, M., 1989, Perfection of a synaptic receptor: Kinetics and energetics of the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 86: 2199–2203.

    PubMed  CAS  Google Scholar 

  • Jacob, M., and Berg, D., 1983, The ultrastructural localization of a bungarotoxin binding sites in relation to synapses on chick ciliary ganglion neurons, J. Neurosci. 3: 260–271.

    PubMed  CAS  Google Scholar 

  • Jacob, M., Berg, D., and Lindstrom, J., 1984, A shared antigenic determinant between the Electrophorus acetylcholine receptor and a synaptic component on chick ciliary ganglion neurons, Proc. Natl. Acad. Sci. USA 81: 3223–3227.

    PubMed  CAS  Google Scholar 

  • Jacob, M., Lindstrom, J., and Berg, D., 1986, Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor, J. Cell Biol. 103: 205–214.

    PubMed  CAS  Google Scholar 

  • Kao, P., and Karlin, A., 1986, Acetylcholine receptor binding site contains a disulfide crosslink between adjacent half-cystinyl residues, J. Biol. Chem. 261: 8085–8088.

    PubMed  CAS  Google Scholar 

  • Kao, P., Dwork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin, A., 1984, Identification of the α subunit half cysteine specifically labeled by an affinity reagent for the acetylcholine receptor binding site, J. Biol. Chem. 259: 11662–11665.

    PubMed  CAS  Google Scholar 

  • Karlin, A., 1991, Exploration of the nicotinic acetylcholine receptor, Harvey Lectures Series 85: 71–107.

    CAS  Google Scholar 

  • Karlin, A., 1993, Structure of nicotinic acetylcholine receptors, Curr. Opin. Neurobiol. 3: 299–309.

    PubMed  CAS  Google Scholar 

  • Karlin, A., and Cowburn, D., 1973, The affinity-labeling of partially purified acetylcholine receptor from electric tissue of Electrophorus, Proc. Natl. Acad. Sci. USA 70: 3636–3640.

    PubMed  CAS  Google Scholar 

  • Kellaries, K., Ware, D., Smith, S., and Kyte, J., 1989, Assessment of the number of free cysteines and isolation and identification of cysteine-containing peptides from acetylcholine receptor, Biochemistry 28: 3469–3482.

    Google Scholar 

  • Keyser, K., Hughes, T., Whiting, P., Lindstrom, J., and Karten, H., 1988, Cholinoceptive neurons in the retina of the chick: An immunohistochemical study of the nicotinic acetylcholine receptors, Vis. Neurosci. 1: 349–366.

    PubMed  CAS  Google Scholar 

  • Keyser, K., Britto, L., Schoepfer, R., Whiting, P., Cooper, J., Conroy, W., Karten, H., Lindstrom, J., 1993, Three subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina, J. Neurosci. 13: 442–454.

    PubMed  CAS  Google Scholar 

  • Kiefer, H., Lindstrom, J., Lennox, E., and Singer, S., 1970, Photo-affinity labeling of specific acetylcholine binding sites on membranes, Proc. Natl. Acad. Sci. USA 67: 1688–1694.

    PubMed  CAS  Google Scholar 

  • Kirsch, V., Walters, I., Triller, A., and Betz, H., 1993, Gepherin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons, Nature 366: 745–748.

    PubMed  CAS  Google Scholar 

  • Konno, T., Busch, C., Von Kitzing, E., Imoto, K., Wang, F., Nakai, J., Mishina, M., Numa, S., and Sakmann, B., 1991, Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor channel, Proc. R. Soc. London Ser. B 244: 69–79.

    CAS  Google Scholar 

  • Krienkamp, H. J., Maeda, R., Sine, S., and Taylor, P., 1995, Intersubunit contacts governing assembly of the mammalian nicotinic acetylcholine receptor, Neuron 14: 635–644.

    Google Scholar 

  • Kubalek, E., Ralston, S., Lindstrom, J., and Unwin, N., 1987, Location of subunits within the acetylcholine receptor: Analysis of tubular crystals from Torpedo marmorata, J. Cell Biol. 105: 9–18.

    PubMed  CAS  Google Scholar 

  • Lange, K., Wells, F., Jenner, P., and Marsden, P., 1993, Altered muscarinic and nicotinic receptor densities in cortical and subcortical regions in Parkinson’s disease, J. Neurochem. 60: 197–203.

    PubMed  CAS  Google Scholar 

  • Langosch, D., Thomas, L., and Betz, H., 1988, Conserved quaternary structure of ligand-gated ion channels: The postsynaptic glycine receptor is a pentamer, Proc. Natl. Acad. Sci. USA 85: 7394–7398.

    PubMed  CAS  Google Scholar 

  • Laufer, R., and Changeux, J. P., 1989, Activity-dependent regulation of gene expression in muscle and neuronal cells, Mol. Neurobiol. 3: 1–53.

    PubMed  CAS  Google Scholar 

  • Lee, C., Tseng, L., and Chiu, T., 1967, Influence of denervation on localization of neurotoxins from clapid venoms in rat diaphragm, Nature 215: 1177–1178.

    PubMed  CAS  Google Scholar 

  • Lee, Y., Li, L., Lasalde, J., Rojas, L., McNamee, M., Ortiz-Miranda, S., and Pappone, P., 1994, Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function, Biophys. J. 66: 646–653.

    PubMed  CAS  Google Scholar 

  • Lei, S., Okita, D., and Conti-Fine, B., 1995, Binding of monoclonal antibodies against the carboxyl terminal segment of the nicotinic receptor δ subunit suggests an unusual transmembrane disposition of this sequence region, Biochemistry 34: 6675–6688.

    PubMed  CAS  Google Scholar 

  • Léna, C., Changeux, J. P., and Mulle, C., 1993, Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus, J. Neurosci. 13: 2680–2688.

    PubMed  Google Scholar 

  • Lester, H., 1992, The permeation pathway of neurotransmitter-gated ion channels, Annu. Rev. Biophys. Biomol. Struct. 21: 267–292.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., 1995, Nicotinic acetylcholine receptors, in: CRC Handbook of Receptors and Channels, Ligand and Voltage-Gated Ion Channels (A. North, ed.), CRC Press, Boca Raton, pp. 153–175.

    Google Scholar 

  • Lindstrom, J., and Patrick, J., 1974, Purification of the acetylcholine receptor by affinity chromatography, in: Synoptic Transmission and Neuronal Interaction (M. V. L. Bennet, ed.), Raven Press, New York, pp. 191–216.

    Google Scholar 

  • Lindstrom, J., Seybold, M., Lennon, V., Whittingham, S., and Duane, D., 1976, Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value, Neurology 26: 1054–1059.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Merlie, J., and Yogeeswaran, 1979, Biochemical properties of acetylcholine receptor subunits from Torpedo californica, Biochemistry 18: 4465–4470.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Einarson, B., and Tzartos, S., 1981, Production and assay of antibodies to acetylcholine receptors, Methods Enzymol. 74: 432–460.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Shelton, G. D., and Fuji, Y., 1988, Myasthenia gravis, Adv. Immunol. 42: 233–284.

    PubMed  CAS  Google Scholar 

  • Lindstrom, J., Schoepfer, R., Conroy, W. G., and Whiting, P., 1990, Structural and functional heterogeneity of nicotinic receptors, in: The Biology of Nicotine Dependence, Ciba Foundation Symposium 152 (G. Bock and J. Marsh, eds.), John Wiley and Sons, New York, pp. 43–61.

    Google Scholar 

  • Lindstrom, J., Anand, R., Peng, X., Gerzanich, V., Wang, F., and Li, Y., 1995, Neuronal nicotinic receptor subtypes, Ann. N.Y. Acad. Sci. 757: 100–116.

    PubMed  CAS  Google Scholar 

  • Lipton, S., and Kater, S., 1989, Neurotransmitter regulation of neuronal outgrowth, plasticity, and survival, Trends Neurosci. 12: 265–270.

    PubMed  CAS  Google Scholar 

  • Lipton, S., Aizenman, E., and Loring, R., 1987, Neural nicotinic acetylcholine responses in solitary mammalian retinal ganglion cells, Pflügers Arch. 410: 37–43.

    PubMed  CAS  Google Scholar 

  • Lipton, S., Frosch, M., Phillips, M., Tauck, D., and Aizenman, E., 1988, Nicotinic antagonists enhance process outgrowth by rat retinal ganglion cells in culture, Science 239: 1293–1296.

    PubMed  CAS  Google Scholar 

  • Lo, D., Pinkham, J., and Stevens, C., 1991, Role of a key cysteine residue in the gating of the acetylcholine receptor, Neuron 6: 31–40.

    PubMed  CAS  Google Scholar 

  • Luetje, C., and Patrick, J., 1991, Both a and β subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors, J. Neurosci. 11: 837–845.

    PubMed  CAS  Google Scholar 

  • Lukas, R., Norman, S., and Lucero, L., 1993, Characterization of nicotinic acetylcholine receptors expressed by cells of the SH-SY5Y human neuroblastoma clonal line, Mol. Cell. Neurosci. 4: 1–12.

    PubMed  CAS  Google Scholar 

  • Luther, M., Schoepfer, R., Whiting, P., Blatt, Y., Montai, M. S., Montal, M., and Lindstrom, J., 1989, Muscle acetylcholine receptor is expressed in the human cerebellar medulloblastoma cell line TE671, J. Neurosci 9: 1082–1096.

    PubMed  CAS  Google Scholar 

  • Maimone, M., and Merlie, J., 1993, Interaction of the 43kd postsynaptic protein with all subunits of the muscle nicotinic acetylcholine receptor, Neuron 11: 53–66.

    PubMed  CAS  Google Scholar 

  • Maneckjie, R., and Minna, J., 1990, Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines, Proc. Natl. Acad. Sci. USA 87: 3294–3298.

    Google Scholar 

  • Marks, M., Stitzel, J., and Collins, A., 1985, Time course study of the effects of chronic nicotine infusion on drug response and brain receptor, J. Pharmacol. Exp. Ther. 235: 619–628.

    PubMed  CAS  Google Scholar 

  • Marks, M., Pauly, J., Gross, D., Deneris, E., Hermans-Borgmeyer, I., Heinemann, S., and Collins, A., 1992, Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment, J. Neurosci. 12: 2765–2784.

    PubMed  CAS  Google Scholar 

  • Marks, M., Grady, S., and Collins, A., 1993, Downregulation of nicotinic receptor function after chronic nicotine infusion. J. Pharmacol. Exp. Ther. 266: 1268–1275.

    PubMed  CAS  Google Scholar 

  • Matter, J., Matter-Sadzinski, L., and Ballivet, M., 1990, Expression of neuronal nicotinic acetylcholine receptor genes in the developing chick visual system, EMBO J. 9: 1021–1026.

    PubMed  CAS  Google Scholar 

  • McCrea, P. D., Popot, J. L., and Engelman, D. M., 1987, Transmembrane topography of the nicotinic acetylcholine receptor δ subunit, EMBO J. 6: 3619–3626.

    PubMed  CAS  Google Scholar 

  • McGehee, D., and Role, L., 1995, Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons, Annu. Rev. Physiol. 57: 521–546.

    PubMed  CAS  Google Scholar 

  • McLane, K., Wu, X., Lindstrom, J., and Conti-Tronconi, B., 1992, Epitope mapping of polyclonal and monoclonal antibodies against two a bungarotoxin binding subunits from neuronal nicotinic receptors, J. Neuroimmunol. 38: 115–128.

    PubMed  CAS  Google Scholar 

  • Merlie, J. P., and Lindstrom, J., 1983, Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an a subunit species which may be an assembly intermediate, Cell 34: 747–757.

    PubMed  CAS  Google Scholar 

  • Middleton, R., and Cohen, J., 1991, Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: 3H-nicotine as an agonist photoaffinity label, Biochemistry 30: 6987–6997.

    PubMed  CAS  Google Scholar 

  • Miles, K., and Huganir, R., 1988, Regulation of nicotinic acetylcholine receptors by protein phosphorylation, Mol. Neurobiol. 2: 91–124.

    PubMed  CAS  Google Scholar 

  • Mitra, A., McCarthy, M., and Stroud, R., 1989, Three-dimensional structure of the nicotinic acetylcholine receptor and location of the major associated 43kD cytoskeletal protein, determined at 22 ¥ by low-dose electron microscopy and x-ray diffraction of 12.5 ¥, J. Cell Biol. 109: 755–774.

    PubMed  CAS  Google Scholar 

  • Mulle, C., Vidal, C., Benoit, P., and Changeux, J. P., 1991, Existence of different subtypes of nicotinic acetylcholine receptors in the rat habenulo-interpeduncular system, J. Neurosci. 11: 2588–2597.

    PubMed  CAS  Google Scholar 

  • Mulle, C., Choquet, D., Korn, H., and Changeux, J. P., 1992, Calcium influx through nicotinic receptor in rat central neurons and its relevance to cellular regulation, Neuron 8: 135–143.

    PubMed  CAS  Google Scholar 

  • Nakayama, H., Shirase, M., Nakashima, T., Kurogochi, Y., and Lindstrom, J. M., 1990, Affinity purification of nicotinic acetylcholine receptor from rat brain, Mol. Brain Res. 7: 221–226.

    PubMed  CAS  Google Scholar 

  • Nakayama, H., Okuda, H., and Nakashima, T., 1993, Phosphorylation of rat brain nicotinic acetylcholine receptor by cAMP-dependent protein kinase in vitro, Mol. Brain Res. 20: 171–177.

    PubMed  CAS  Google Scholar 

  • Nef, P., Mauron, A., Stalder, R., Alliod, C., and Ballivet, M., 1984, Structure, linkage, and sequence of the two genes encoding the δ and γ subunits of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA 81: 7975–7979.

    PubMed  CAS  Google Scholar 

  • Nelson, S., Shelton, G., Lei, S., Lindstrom, J., and Conti-Tronconi, B., 1992, Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor γ subunits, which specifically recognize the ε subunit of mammalian muscle acetylcholine receptor, J. Neuroimmunol. 36: 13–27.

    PubMed  CAS  Google Scholar 

  • Nobel, M., Brown, T., and Peakcock, J., 1978, Regulation of acetylcholine receptor levels by a cholinergic agonist in mouse muscle cell cultures, Proc. Natl. Acad. Sci. 75: 3488–3492.

    Google Scholar 

  • Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T., and Numa, S., 1982, Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence, Nature 299: 793–797.

    PubMed  CAS  Google Scholar 

  • Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S., and Numa, S., 1983, Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α subunit precursor of muscle acetylcholine receptor, Nature 305: 818–823.

    PubMed  CAS  Google Scholar 

  • Nooney, J., Lambert, J., and Chiappinelli, V., 1992, The interaction of κ-bungarotoxin with the nicotinic receptor of bovine chromaffin cells, Brain Res. 573: 77–82.

    PubMed  CAS  Google Scholar 

  • Ohno, K., Hutchinson, D., Milone, M., Brengman, J., Bouzat, C., Sine, S., and Engel, A., 1995, Congenital myasthenia syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the s subunit, Proc. Natl. Acad. Sci. USA 92: 758–762.

    PubMed  CAS  Google Scholar 

  • O’Leary, M., and White, M., 1992, Mutational analysis of ligand-induced activation of the Torpedo acetylcholine receptor, J. Biol. Chem. 267: 8360–8365.

    PubMed  Google Scholar 

  • Palma, E., Bertrand, S., Binzoni, T., and Bertrand, D., 1995, Homomeric neuronal nicotinic α7 receptors present five putative high affinity binding sites for the toxin MLA, in press.

    Google Scholar 

  • Papke, R., 1993, The kinetic properties of neuronal nicotinic receptor: Genetic basis of functional diversity, Prog. Neurobiol. 41: 509–531.

    PubMed  CAS  Google Scholar 

  • Patrick, J., and Lindstrom, J., 1973, Autoimmune response to acetylcholine receptor, Science 180: 871–872.

    PubMed  CAS  Google Scholar 

  • Patrick, J., and Stallcup, W., 1977, Immunological distinction between acetylcholine receptor and the α bungarotoxin binding component on sympathetic neurons, Proc. Natl. Acad. Sci. USA 74: 4689–4692.

    PubMed  CAS  Google Scholar 

  • Patrick, J., Lindstrom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Natl. Acad. Sci. USA 70: 3334–3338.

    PubMed  CAS  Google Scholar 

  • Pederson, S., and Cohen, J., 1990, D-Tubcurarine binding sites are located at α-γ and α-δ subunit interfaces of the nicotinic acetylcholine receptor, Proc. Natl. Acad. Sci. USA 87: 2785–2789.

    Google Scholar 

  • Pederson, S., Bridgman, P., Sharp, S., Cohen, J., 1990, Identification of a cytoplasmic region of the Torpedo nicotinic acetylcholine receptor α subunit by epitope mapping, J. Biol. Chem. 265: 569–581.

    Google Scholar 

  • Peng, X., Anand, R., Whiting, P., and Lindstrom, J., 1994a, Nicotine-induced upregulation of neuronal nicotinic receptors results from a decrease in the rate of turnover, Mol. Pharmacol. 46: 523–530.

    PubMed  CAS  Google Scholar 

  • Peng, X., Katz, M., Gerzanich, V., Anand, R., and Lindstrom, J., 1994b, Human α7 acetylcholine receptor: Cloning of the α7 subunit from the SH-SY5Y cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed in Xenopus oocytes, Mol. Pharmacol. 45: 546–554.

    PubMed  CAS  Google Scholar 

  • Pereira, E., Alkondon, M., Reinhardt-Maelicke, S., Maelicke, A., Peng, X., Lindstrom, J., Whiting, P., and Albuquerque, E., 1994, Physostigmine and galanthamine reveal the presence of the novel binding site on the α4 β2 subtype of neuronal nicotinic acetylcholine receptor stably expressed in fibroblast cells, J. Pharmacol. Exp. Ther. 270: 768–778.

    PubMed  CAS  Google Scholar 

  • Peto, R., Lopez, A., Boreham, J., Thun, M., and Heath, C., 1992, Mortality from tobacco in developed countries: Indirect estimation from national vital statistics, Lancet 339: 1268–1278.

    PubMed  CAS  Google Scholar 

  • Picciotto, M., Zoll, M., Léna, C., Bessis, A., Lallemand, Y., LeNovére, N., Vincent, P., Pich, M., Brúlet, P., and Changeux, J. P., 1995, Abnormal avoidance learning in mice lacking functional high affinity nicotine receptor in the brain, Nature 374: 65–67.

    PubMed  CAS  Google Scholar 

  • Protti, M., Manfredi, A., Horton, R., Bellone, M., and Conti-Tronconi, B., 1993, Myasthenia gravis: Recognition of a human autoantigen at the molecular level, Immunol. Today 14: 363–368.

    PubMed  CAS  Google Scholar 

  • Pugh, P., and Berg, D., 1994, Neuronal acetylcholine receptors that bind α bungarotoxin mediate neurite retraction in a calcium-dependent manner, J. Neurosci. 14: 889–896.

    PubMed  CAS  Google Scholar 

  • Quick, M., 1995, Growth related role for the nicotinic α bungarotoxin receptor, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 145–150.

    Google Scholar 

  • Raferty, M., Hunkapillar, M., Strader, C., and Hood, L., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208: 1454–1457.

    Google Scholar 

  • Rathouz, M., and Berg, D., 1994, Synaptic-type acetylcholine receptors raise intracellular calcium levels by two mechanisms, J. Neurosci. 14: 6935–6945.

    PubMed  CAS  Google Scholar 

  • Ratnam, M., Le Nguyen, D., Rivier, J., Sargent, P. B., and Lindstrom, J., 1986a, Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical prediction based on hydro-phobicity profiles, Biochemistry 25: 2633–2643.

    PubMed  CAS  Google Scholar 

  • Ratnam, M., Sargent, P., Sarin, V., Fox, J., Nguyen, D., Rivier, J., Criado, M., and Lindstrom, J., 1986b, Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping, Biochemistry 25: 2621–2632.

    PubMed  CAS  Google Scholar 

  • Revah, F., Galzi, J. L., Giraudat, J., Haumont, P. Y., Lederer, F., and Changeux, J. P., 1990, The noncompetitive blocker 3H-chlorpromazine labels three amino acids of the acetylcholine receptor γ subunit implications for the a helical organization of region MII and for the structure of the ion channel, Proc. Natl. Acad. Sci. USA 87: 4675–4679.

    PubMed  CAS  Google Scholar 

  • Revah, F., Bertrand, D., Galzi, J. L., Devillers-Thiery, A, Mulle, C., Hussy, N., Bertrand, S., Ballivet, M., and Changeux, J. P., 1991, Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor, Nature 353: 846–849.

    PubMed  CAS  Google Scholar 

  • Rogers, S., Andrews, J., Gahring, L., Whisemand, T., Caulay, K., Crain, B., Hughes, T., Heinemann, S., and McNamara, J., 1994, Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis, Science 265: 648–651.

    PubMed  CAS  Google Scholar 

  • Role, L., 1992, Diversity in primary structure and function of neuronal nicotinic acetylcholine receptor channels, Curr. Opin. Neurobiol. 2: 254–262.

    PubMed  CAS  Google Scholar 

  • Saedi, M. S., Anand, R., Conroy, W. G., and Lindstrom, J., 1990, Determination of amino acids critical to the main immunogenic region of intact acetylcholine receptors by in vitro mutagenesis, FEBS Lett. 267: 55–59.

    PubMed  CAS  Google Scholar 

  • Saedi, M., Conroy, W. G., and Lindstrom, J., 1991, Assembly of Torpedo acetylcholine receptor in Xenopus oocytes, J. Cell Biol. 112: 1007–1015.

    PubMed  CAS  Google Scholar 

  • Sargent, P., 1993, The diversity of neuronal nicotinic acetylcholine receptors, Annu. Rev. Neurosci. 16: 403–443.

    PubMed  CAS  Google Scholar 

  • Sargent, P., and Wilson, H., 1995, Distribution of nicotinic acetylcholine receptor subunit immunoreactivities on the surface of chick ciliary ganglion neurons, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 355–361.

    Google Scholar 

  • Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S., and Lindstrom, J., 1984, The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscles revealed by crossreacting monoclonal antibodies, J. Cell Biol. 98: 609–618.

    PubMed  CAS  Google Scholar 

  • Sargent, P., Pike, S., Nadel, D., and Lindstrom, J., 1989, Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog, J. Neurosci. 9: 565–573.

    PubMed  CAS  Google Scholar 

  • Schoepfer, R., Whiting, P., Esch, F., Blacher, R., Shimasaki, S., and Lindstrom, J., 1988, cDNA clones coding for the structural subunit of a chicken brain nicotinic acetylcholine receptor, Neuron 1: 241–248.

    PubMed  CAS  Google Scholar 

  • Schoepfer, R., Halvorsen, S., Conroy, W. G., Whiting, P., and Lindstrom, J., 1989, Antisera against an α-3 fusion protein bind to ganglionic but not to brain nicotinic acetylcholine receptors, FEBS Lett. 257: 393–399.

    PubMed  CAS  Google Scholar 

  • Schoepfer, R., Conroy, W G., Whiting, P., Gore, M., and Lindstrom, J., 1990, Brain α-bungarotoxin binding protein cDNAs and mAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily, Neuron 5: 35–48.

    PubMed  CAS  Google Scholar 

  • Schuller, H., 1995, Mechanisms of nicotine stimulated cell proliferation in normal and neoplastic neuroendocrine lung cells, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 151–158.

    Google Scholar 

  • Schwartz, R., and Kellar, K., 1983, Nicotinic cholinergic receptor binding sites in the brain: Regulation in vivo, Science 220: 214–216.

    PubMed  CAS  Google Scholar 

  • Schwartz, R., and Kellar, K., 1985, In vivo regulation of [3H] acetylcholine recognition sites in brain by nicotinic cholinergic drugs, J. Neurochem. 45: 427–433.

    PubMed  CAS  Google Scholar 

  • Seeburg, P., 1993, The molecular biology of mammalian glutamate receptor channels, Trends Neurosci. 16: 359–364.

    PubMed  CAS  Google Scholar 

  • Seguela, P., Wadiche, J., Dinelly-Miller, K., Dani, J., and Patrick, J., 1993, Molecular cloning, functional properties, and distribution of rat brain α7: A nicotinic cation channel highly permeable to calcium, J. Neurosci. 13: 596–604.

    PubMed  CAS  Google Scholar 

  • Siegel, H., and Lukas, R., 1988, Nicotinic agonists regulate α bungarotoxin binding sites of TE671 human medulloblastoma cells, J. Neurochem. 50: 1272–1278.

    PubMed  CAS  Google Scholar 

  • Silver, A., Shytle, R., Philipp, M., and Sanberg, P., 1995, Transdermal nicotine in Tourette’s syndrome, in: Effects of Nicotine on Biological Systems II (P. Clarke et al., eds.), Birkhäuser, Basel, pp. 293–299.

    Google Scholar 

  • Simpson, J., 1960, Myasthenia gravis: A new hypothesis, Scot. Med. J. 5: 419–436.

    Google Scholar 

  • Sine, S., 1988, Functional properties of human skeletal muscle acetylcholine receptors expressed by the TE671 cell line, J. Biol. Chem. 263: 18052–18062.

    PubMed  CAS  Google Scholar 

  • Sine, S., 1993, Molecular dissection of subunit interfaces in the acetylcholine receptor: Identification of residues that determine curare selectivity, Proc. Natl. Acad. Sci. USA 90: 9436–9440.

    PubMed  CAS  Google Scholar 

  • Sine, S., and Taylor, P., 1980, The relationship between agonist occupation and the permeability response of the cholinergic receptor revealed by bound cobra α-toxin, J. Biol. Chem. 255: 10144–10156.

    PubMed  CAS  Google Scholar 

  • Sine, S., and Taylor, P., 1982, Local anesthetics and histrionicotoxin are allosteric inhibitors of the acetylcholine receptor, J. Biol Chem. 257: 8106–8114.

    PubMed  CAS  Google Scholar 

  • Sine, S., Claudio, T., and Sigworth, F., 1990, Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts, J. Gen. Physiol. 96: 395–437.

    PubMed  CAS  Google Scholar 

  • Smith, M., Stollberg, J., Lindstrom, J., and Berg, D. K., 1985, Characterization of a component in chick ciliary ganglia that cross-reacts with monoclonal antibodies to muscle and electric organ acetylcholine receptor, J. Neurosci. 5: 2726–2731.

    PubMed  CAS  Google Scholar 

  • Smith, M., Margiotta, J., Franco, A., Lindstrom, J., and Berg, D., 1986, Cholinergic modulation of an acetylcholine receptor-like antigen on the surface of chick ciliary ganglion neurons in cell culture, J. Neurosci. 6: 946–953.

    PubMed  CAS  Google Scholar 

  • Smith, M., Lindstrom, J., and Merlie, J. P., 1987, Formation of the α-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum, J. Biol. Chem. 262: 4367–4376.

    PubMed  CAS  Google Scholar 

  • Sorenson, E., and Chiappinelli, V., 1992, Localization of 3H-nicotine, 125I-κappa-bungarotoxin, and 125I-α-bungarotoxin binding to nicotinic sites in the chicken forebrain and midgrain, J. Comp. Neurol. 323: 1–12.

    PubMed  CAS  Google Scholar 

  • Spande, T., Carroffo, M., Edwards, M., Yeh, H., Panel, L., and Daly, J., 1992, Epibatidine: A novel (chloropyridyl) azabicyclo-heptane with potent analgesic activity from Ecuadoran poison frog, J. Am. Chem. Soc. 114: 3475–3478.

    CAS  Google Scholar 

  • Stauffer, D., and Karlin, A., 1994, Electrostatic potential of the acetylcholine binding sites in the nicotinic receptor probed by reactions of binding site cysteines with charged methanethiosulfonates, Biochemistry 33: 6840–6849.

    PubMed  CAS  Google Scholar 

  • Steinlein, O., Mulley, J., Propping, P., Wallace, R., Phillips, H., Sutherland, G., Schffer, J., and Berkovic, S., 1995, A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy, Nature Genetics 11: 201–203.

    PubMed  CAS  Google Scholar 

  • Steinlein, O., Smigrodzki, R., Lindstrom, J., Anand, R., Kohler, M., Tocharoentanophol, C., and Vogel, F., 1994, Refinement of the localization of the gene for neuronal nicotinic acetylcholine receptor α4 subunit (CHRNA4) to human chromosome 20q 13.2–ql3.3, Genomics 22: 493–495.

    PubMed  CAS  Google Scholar 

  • Stollberg, J., Whiting, P. J., Lindstrom, J., and Berg, D. K., 1986, Functional blockade of neuronal acetylcholine receptors by antisera to a putative receptor from brain, Brain Res. 378: 179–182.

    PubMed  CAS  Google Scholar 

  • Sudhof, T. 1995, The synaptic vesicle cycle: A cascade of protein-protein interactions, Nature 375: 645–653.

    PubMed  CAS  Google Scholar 

  • Sullivan, J., Decker, M., Brioni, J., Donnelly, Roberts, D., Anderson, D., Bannon, A., Kang, C., Adems, P., Piattoni-Kaplan, M., Buckley, M., Gopalakrishnan, M., Williams, M., and Arneric, S., 1994, (±) Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptor, J. Pharmacol. Exp. Ther. 271: 624–663.

    PubMed  CAS  Google Scholar 

  • Sumikawa, K., and Gehle, V., 1992, Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure, J. Biol. Chem. 267: 6286–6290.

    PubMed  CAS  Google Scholar 

  • Swanson, L., Lindstrom, J., Tzartos, S., Schmued, L., O’Leary, D., and Cowan, W., 1983, Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick, Proc. Natl. Acad. Sci. USA 80: 4532–4536.

    PubMed  CAS  Google Scholar 

  • Swanson, L., Simmons, D., Whiting, P., and Lindstrom, J., 1987, Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system, J. Neurosci. 7: 3334–3342.

    PubMed  CAS  Google Scholar 

  • Takamori, M., Hamada, T., Komai, K., Takakashi, M., and Yoshida, A., 1994, Synaptotagmin can cause an immune-mediated model of Lambert-Eaton myasthenic syndrome in rats, Ann. Neurol. 35: 74–80.

    PubMed  CAS  Google Scholar 

  • Tobimatsu, T., Fujita, Y., Fukuda, K., Tanaka, K., Mori, Y., Konno, T., Mishina, M., and Numa, S., 1987, Effects of substitution of putative transmembrane segments on nicotinic acetylcholine receptor function, FEBS Lett. 222: 56–62.

    PubMed  CAS  Google Scholar 

  • Tomaselli, G., McLaughlin, J., Jurman, M., Hawrot, E., and Yellen, G., 1991, Mutations affecting agonist sensitivity of the nicotinic acetylcholine receptor, Biophys. J. 60: 721–727.

    PubMed  CAS  Google Scholar 

  • Treinin, M., and Chalfie, M., 1995, A mutated acetylcholine receptor subunit causes neuronal degeneration in C. elegans, Neuron 14: 871–877.

    PubMed  CAS  Google Scholar 

  • Twyman, R., Gahring, L., Spiess, J., and Rogers, S., 1995, Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site, Neuron 14: 755–762.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., and Lindstrom, J., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA 77: 755–759.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Rand, D., Einarson, B., and Lindstrom, J., 1981, Mapping of surface structures on Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256: 8635–8645.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Seybold, M., and Lindstrom, J., 1982, Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79: 188–192.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Hochschwender, S., Langeberg, L., and Lindstrom, J., 1983, Demonstration of a main immuno-genic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor, FEBS Lett. 158: 116–118.

    PubMed  CAS  Google Scholar 

  • Tzartos, S. J., Sophianos, D., and Efthimiadis, A., 1985, Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera, J. Immunol. 134: 2343–2349.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Langeberg, L., Hochschwender, S., Swanson, L. W., and Lindstrom, J., 1986, Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: Species, subunit and region specificity, J. Neuroimmunol. 10: 235–253.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Hochschwender, S., Vasquez, P., and Lindstrom, J., 1987, Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor, J. Neuroimmunol. 15: 185–194.

    PubMed  CAS  Google Scholar 

  • Tzartos, S., Barkas, T., Cung, M., Kordossi, A., Loutrari, H., Marraud, M., Papadouli, I., Sakarellos, C., Sophianos, D., and Tsikaris, V., 1991, The main immunogenic region of the acetylcholine receptor, structure and role in myasthenia gravis, Autoimmunity 8: 259–270.

    PubMed  CAS  Google Scholar 

  • Unwin, N., 1993a, Nicotinic acetylcholine receptor at 9Å resolution, J. Mol. Biol. 229: 1101–1124.

    PubMed  CAS  Google Scholar 

  • Unwin, N., 1993b, Neurotransmitter action: Opening of ligand-gated ion channels, Cell 10: 31–41.

    Google Scholar 

  • Unwin, N., 1995, Acetylcholine receptor channel imaged in the open state, Nature 373: 37–43.

    PubMed  CAS  Google Scholar 

  • Unwin, N., Toyoshima, C., and Kubalek, E., 1988, Arrangement of the acetylcholine receptor subunits in the resting and desensitized states determined by cryoelectron microscopy of crystallized Torpedo postsynaptic membranes, J. Cell Biol. 107: 1123–1138.

    PubMed  CAS  Google Scholar 

  • Vaiera, S., Hussy, N., Evans, R., Adami, N., North, R., Surprenant, A., and Buell, G., 1994, A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP, Nature 371: 516–519.

    Google Scholar 

  • Vernallis, A., Conroy, W., and Berg, D., 1993, Neurons assemble acetylcholine receptors with as many as three kinds of subunits while maintaining subunit segregation among receptor subtypes, Neuron 10: 451–464.

    PubMed  CAS  Google Scholar 

  • Verrall, S., and Hall, Z., 1992, The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly, Cell 68: 23–31.

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan, S., Schmid, H., Halvorsen, S., and Berg, D., 1990, Cyclic AMP-dependent phosphorylation of a neuronal acetylcholine receptor a type subunit, J. Neurosci. 10: 3255–3262.

    PubMed  CAS  Google Scholar 

  • Vijayaraghavan, S., Rathouz, M., Pugh, P., and Berg, D., 1992, Nicotinic receptors that bind a bungarotoxin on neurons raise intracellular free Ca++, Neuron 8: 353–362.

    PubMed  CAS  Google Scholar 

  • Vincent, A., Lang, B., Newsom-Davis, J., 1989, Autoimmunity to the voltage-gated calcium channel underlies the Lambert-Eaton myasthenic syndrome, a paraneoplastic disorder, Trends Neurosci. 12: 496–502.

    PubMed  CAS  Google Scholar 

  • Wallace, B., Qu, Z., and Huganir, R., 1991, Agrin induces phosphorylation of the nicotinic acetylcholine receptor, Neuron 6: 869–878.

    PubMed  CAS  Google Scholar 

  • Watson, J., Adkins-Regan, E., Whiting, P., Lindstrom, J., and Podleski, T., 1988, Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata), J. Comp. Neurol. 274: 255–264.

    PubMed  CAS  Google Scholar 

  • Whitehouse, P., Martino, A., Marcus, K., Zweig, R., Singer, H., Price, D., and Kellar, K., 1988, Reduction in acetylcholine and nicotine binding in several degenerative diseases, Arch. Neurol. 45: 722–724.

    PubMed  CAS  Google Scholar 

  • Whiting, P., and Lindstrom, J., 1986a, Purification and characterization of a nicotinic acetylcholine receptor from chick brain, Biochemistry 25: 2082–2093.

    PubMed  CAS  Google Scholar 

  • Whiting, P., and Lindstrom, J., 1986b, Pharmacological properties of immunoisolated neuronal nicotinic receptors, J. Neurosci. 6: 3061–3069.

    PubMed  CAS  Google Scholar 

  • Whiting, P. J., and Lindstrom, J., 1987a, Purification and characterization of a nicotinic acetylcholine receptor from rat brain, Proc. Natl. Acad. Sci. USA 84: 595–599.

    PubMed  CAS  Google Scholar 

  • Whiting, P., and Lindstrom, J., 1987b, Affinity labeling of neuronal acetylcholine receptors localizes the neurotransmitter binding site to the β subunit, FEBS Lett. 213: 55–60.

    PubMed  CAS  Google Scholar 

  • Whiting, P., and Lindstrom, J., 1988, Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies, J. Neurosci. 8: 3395–3404.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Esch, F., Shimasaki, S., and Lindstrom, J., 1987a, Neuronal nicotinic acetylcholine receptor β-subunit is coded for by the cDNA clone α4, FEBS Lett. 219: 459–463.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Liu, R., Morley, B., and Lindstrom, J., 1987b, Structurally different neuronal nicotinic acetylcholine receptor subtypes purified and characterized using monoclonal antibodies, J. Neurosci. 7: 4005–4016.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Cooper, J., and Lindstrom, J., 1987c, Antibodies in sera from patients with myasthenia gravis do not bind to acetylcholine receptors from human brain, J. Neuroimmunol. 16: 205–213.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Schoepfer, R., Swanson, L., Simmons, D., and Lindstrom, J., 1987d, Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors, Nature 327: 515–518.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Schoepfer, R., Conroy, W., Gore, M., Keyser, K., Shimasaki, S., Esch, F., and Lindstrom, J., 1991a, Differential expression of nicotinic acetylcholine receptor subtypes in brain and retina, Mol. Brain Res. 10: 61–70.

    PubMed  CAS  Google Scholar 

  • Whiting, P., Schoepfer, R., Lindstrom, J., and Priestly, T., 1991b, Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts, Mol. Pharmacol. 40: 463–472.

    PubMed  CAS  Google Scholar 

  • Winkler, J., Suhr, S., Gage, F., Thal, L., and Fisher, L., 1995, Essential role of neocortical acetylcholine in spatial memory, Nature 375: 484–487.

    PubMed  CAS  Google Scholar 

  • Witzemann, V., Barg, B., Nishikawa, Y., Sakmann, B., and Numa, S., 1987, Differential regulation of muscle acetylcholine receptor γ and ε subunit mRNAs, FEBS Lett. 223: 104–112.

    PubMed  CAS  Google Scholar 

  • Witzemann, V., Stein, E., Barg, B., Konno, T., Koenen, M., Kues, W., Criado, M., Hofmann, M., and Sakmmann, B., 1990, Primary structure and functional expression of α-, β-, γ-, δ-, and ε-subunits of the acetylcholine receptor from rat muscle, Eur. J. Biochem. 194: 437–448.

    PubMed  CAS  Google Scholar 

  • Wonnacott, S., 1990, The paradox of nicotinic acetylcholine receptor upregulation by nicotine, Trends Pharmacol. Sci. 11: 216–219.

    PubMed  CAS  Google Scholar 

  • Wonnacott, S., Drasdo, A., Sanderson, E., and Rowell, P. 1990, Presynaptic nicotinic receptors and modulation of transmitter release, in: The Biology of Nicotine Dependence, Ciba Foundation Symposium (G. Bock and J. Marsh, eds.), John Wiley and Sons, Chichester, pp. 87–105.

    Google Scholar 

  • Wonnacott, S., Albuquerque, E., and Bertrand, D., 1993, Methylcaconitine: A new probe that discriminates between nicotinic receptor subclasses, Methods Neurosci. 12: 263–275.

    CAS  Google Scholar 

  • Yang, C., Wu, W., and Zbuzek, V., 1992, Antinociceptive effect of chronic nicotine and nociceptive effect of its withdrawal measured by hot-plate and tail-flick in rats, Psychopharmacology 106: 417–420.

    PubMed  CAS  Google Scholar 

  • Yu, X., and Hall, Z., 1994, A sequence in the main cytoplasmic loop of the a subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor, Neuron 13: 247–255.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Gong, Z., Helstrom-Lindahl, E., and Nordberg, A., 1994, Regulation of α4β2 nicotinic acetylcholine receptors in M10 cells following treatment with nicotinic agents, Neuroreport 6: 313–317.

    Google Scholar 

  • Zoli, M., Lenovere, N., Hill, J., and Changeux, J. P., 1995, Developmental regulation of nicotinic ACh receptor mRNAs in the central and peripheral nervous systems, J. Neurosci. 15: 1912–1939.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lindstrom, J. (1996). Neuronal Nicotinic Acetylcholine Receptors. In: Narahashi, T. (eds) Ion Channels. Ion Channels, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1775-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1775-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1777-5

  • Online ISBN: 978-1-4899-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics