Skip to main content

Renaturation and Reconstitution of Functional Holoenzyme From Recombinant Subunits of Casein Kinase II Expressed as Inclusion Bodies in E. Coli

  • Chapter
Genetic Engineering

Part of the book series: Genetic Engineering ((GEPM,volume 18))

Abstract

Casein kinase II (protein kinase CKII) is a heterotetramer consisting of two α and two β subunits (1,2). The α subunit can be expressed as two different gene products which are present as α and/or α′, depending on the tissue and species of origin. The β subunit is a single gene product in higher eukaryotes. A comparison of the sequences from a number of different species shows the α and β subunits are highly conserved (1,3). The heterotetramer is stable and the structure is dissociable only under denaturing conditions. Thus, complete physical, chemical and functional analysis of the enzyme at the molecular level is dependent on obtaining subunits capable of reconstituting into active CKII. This reconstituted CKII must have the capacity to interact with and react to the surrounding environment in an appropriate manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuazon, P.T. and Traugh, J.A. (1991) in Advances in Second Messenger and Phosphoprotein Research (Greengard, P. and Robison, G.A., eds.), Vol. 23, pp. 123–164, Raven Press, New York, NY.

    Google Scholar 

  2. Pinna, L.A. (1990) Biochim. Biophys. Acta 1054, 267–284.

    Article  PubMed  CAS  Google Scholar 

  3. Issinger, O.-G. (1993) Pharmac. Ther. 59, 1–30.

    Article  CAS  Google Scholar 

  4. Hanks, S.K., Quinn, A.M. and Hunter, T.(1988) Science 241, 42–52.

    Article  PubMed  CAS  Google Scholar 

  5. Lin, W.-J., Tuazon, P.T. and Traugh, J.A. (1991) J. Biol. Chem. 266, 5664–5669.

    PubMed  CAS  Google Scholar 

  6. Meggio, F., Donella-Deana, A., Brunati, A.M. and Pinna, L.A. (1982) FEBS Lett. 141, 257–262.

    Article  PubMed  CAS  Google Scholar 

  7. Hu, E. and Rubin, CS. (1990) J. Biol. Chem. 265, 20509–20615.

    Google Scholar 

  8. Grankowski, N., Boldyreff, B. and Issinger, O-G. (1991) Eur. J. Biochem. 198, 25–30.

    Article  PubMed  CAS  Google Scholar 

  9. Lin, W-J. and Traugh, J.A. (1993) Protein Express. Purific. 4, 256–264.

    Article  CAS  Google Scholar 

  10. Jakobi, R. and Traugh, J.A. (1992) J. Biol. Chem. 267, 23894–23902.

    PubMed  CAS  Google Scholar 

  11. Buchner, J. and Rudolph, R. (1991) Bio/Technology 9, 157–162.

    Article  PubMed  CAS  Google Scholar 

  12. Hathaway, G.M., Lundak, T.S., Tahara, S.M. and Traugh, J.A. (1979) Methods Enzymol. 60, 495–511.

    Article  PubMed  CAS  Google Scholar 

  13. Palen, E. and Traugh, J.A. (1991) Biochemistry, 30, 5586–5590.

    Article  PubMed  CAS  Google Scholar 

  14. Jakobi, R. and Pyerin, W. (1989) Eur. J. Biochem. 183, 227–233.

    Article  PubMed  CAS  Google Scholar 

  15. Lin, W-J., Sheu, G-T. and Traugh, J.A. (1994) Biochemistry 33, 6998–7004.

    Article  PubMed  CAS  Google Scholar 

  16. Studier, F.W., Rosenberg, A.H., Dunn, J.J. and Dubendorff, J.W. (1990) Methods Enzymol. 185, 60–89.

    Article  PubMed  CAS  Google Scholar 

  17. Tabor, S. and Brent, R. (1990) in Current Protocols in Molecular Biology (Ausubel, F.A., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K., eds) pp. 16.2.1–16.2.11, Greene Publishing and Wiley-Interscience, New York, NY.

    Google Scholar 

  18. Lin, W-J., Jakobi, R. and Traugh, J.A. (1994) J. Prot. Chem. 13, 217–225.

    Article  CAS  Google Scholar 

  19. Glover, C.V.C., Shelton, E.R. and Brutlag, D.L. (1983) J. Biol. Chem. 258, 3258–3265.

    PubMed  CAS  Google Scholar 

  20. Hathaway, G.M. and Traugh, J.A. (1979) J. Biol. Chem. 254, 762–768.

    PubMed  CAS  Google Scholar 

  21. Hathaway, G.M. and Traugh, J.A. (1984) Arch. Biochem. Biophys. 233, 133–138.

    Article  PubMed  CAS  Google Scholar 

  22. Jakobi, R. and Traugh, J.A. (1995) Eur. J. Biochem. 230, 111–117.

    Article  Google Scholar 

  23. Rudolph, R. (1990) in Modern Methods in Protein and Nucleic Acid Analysis. (Tschesche, H., ed.), pp. 149–171, Walter de Gruyter, Berlin and New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, WJ., Jakobi, R., Traugh, J.A. (1996). Renaturation and Reconstitution of Functional Holoenzyme From Recombinant Subunits of Casein Kinase II Expressed as Inclusion Bodies in E. Coli . In: Setlow, J.K. (eds) Genetic Engineering. Genetic Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1766-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1766-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1768-3

  • Online ISBN: 978-1-4899-1766-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics