Relationships between the Defense Systems of Plants and Insects

The Cyanogenic System of the Moth Zygaena trifolii
  • Adolf Nahrstedt
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 30)


Several secondary constituents which are produced by higher plants are used both by plants and also by insects for defense. For example, pyrrolizidine alkaloids accumulate in many Asteraeae and are taken up from the plant tissues by Nymphaelidae or Arctiidae and stored in their body tissues, thus becoming toxic to insectivores.1 The same is true for: cardiac glycosides, produced by Asclepidaceae and used by the monarch butterfly;2,3 mustard oils, produced by Brassicaceae and used by Pieridae;4 quinolizidines, produced by Fabaceae and used by Pyralidae;5,6 the azoxymethanol glucoside cycasin, produced by Cy-cadaceae and used by Lycaenidae.7 Additionally, iridoids,3,8 alkaloidal glycosi-dase inhibitors,9 tropane alkaloids,10 butenolides,11 aristolochic acids,12 and cyanogenic glycosides13,14 also are all exploited to some degree by insects.


Aristolochic Acid Silk Gland Tropane Alkaloid Cyanogenic Glycoside Monarch Butterfly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BOPPRE, M. 1986. Insects pharmacophagously utilizing defensive plant chemicals (Pyrrolizidine alkaloids). Naturwissenschaften 73: 17–26.CrossRefGoogle Scholar
  2. 2.
    MACOLM, S. B. 1990. Chemical defense in chewing and sucking insect herbivores: plant-derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1: 12–21.CrossRefGoogle Scholar
  3. 3.
    PASTEELS, J. M., BRAEKMAN, J.-C., DALOZE, D. 1988. Chemical defense in the Chrysomelidae. In: (P. Jolivet, E. Petitpierre, T. H. Hsiao, eds.), Biology of Chrysomelidae. Kluwer Academic Pub. pp. 233–252.CrossRefGoogle Scholar
  4. 4.
    APLIN, R. T., d’Arcy Ward, R., Rothschild, M., 1975. Examination of the large white and small white butterflies (Pieris spp) for the presence of mustard oils and mustard oil glycosides. J. Entomol. (A) 50: 73–78.Google Scholar
  5. 5.
    WINK, M. 1985. Chemische Verteidigung der Lupinen: Zur biologischen Bedeutung der Chinolizidinalkaloide. Pl. Syst. Evol. 150: 65–81.CrossRefGoogle Scholar
  6. 6.
    MONTLLOR, C. B., BERNAYS, E. A., BARBEHENN, R. V. 1990. Importance of quinolizid-ine alkaloids in the relationship between larvae of Vresiphita reversalis (Lepidoptera: Pyrali-dae) and a host plant, Genista monspessulana. J. Chem. Ecol. 16: 1853–1865.CrossRefGoogle Scholar
  7. 7.
    NASH, R. J., BELL, E. A., ACKERY, P. R., 1992. The protective role of cycasin in cycad-feed-ing Lepidoptera. Phytochemistry 31: 1955–1957.CrossRefGoogle Scholar
  8. 8.
    STERMITZ, F. R. 1988. Iridoid glycosides and aglykones as chiral synthons, bioactive compounds and lepidopteran defenses. ACS Symp. Ser. 380: 397–402.CrossRefGoogle Scholar
  9. 9.
    FELLOWS, L. E., KITE, G. C., NASH, R. J., SIMMONDS, M. S. J., SCOFIELD, A. 1992. Distribution and biological activity of alkaloidal glycosidase inhibitors from plants. In: (K. Mengel, D. J. Philbeam, eds.), Nitrogen metabolism of plants. Oxford Science Publ., Oxford, pp. 271–82.Google Scholar
  10. 10.
    ROTHSCHILD, M., APHIN, R., BAKER, J., MARSH, N. 1979. Toxicity induced in the tobacco hornworm (Manduca sexta L., Sphingidae, Lepidoptera). Nature 280: 487–488.CrossRefGoogle Scholar
  11. 11.
    FUNG, S. Y, HERREBOUT, W. M., VERPOORTE, R., FISCHER, F. C. 1988. Butenolides in small ermine moths, Yponomeuta spp. (Lepidoptera : Yponomeutidae), and spindle tree (Euony-mus europaeus, Celastraceae). J. Chem. Ecol. 14: 1099–1 111.Google Scholar
  12. 12.
    NISHIDA, R., FUKAMI, H. 1989. Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids. J. Chem. Ecol. 15: 2549–2563.CrossRefGoogle Scholar
  13. 13.
    DAVIS, R. H., NAHRSTEDT, A. 1985. Cyanogenesis in insects. In: (G. A. Kerkut, L. I. Gilbert, eds), Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol 11. Pergamon Press, Oxford, pp. 635–654.Google Scholar
  14. 14.
    NAHRSTEDT, A. 1988. Cyanogenesis and the role of cyanogenic compounds in insects. In: (Ciba Foundation, ed.), Cyanide Compounds in Biology, Vol 140. Wiley, Chichester, pp. 131–145.Google Scholar
  15. 15.
    HEGNAUER, R. (1964–1992). Chemotaxonomie der Pflanzen, Vol I–X. Birkhäuser Verlag, Basel.Google Scholar
  16. 16.
    POULTON, J. E. 1990. Cyanogenesis in plants. Plant Physiol. 94: 401–405.PubMedCrossRefGoogle Scholar
  17. 17.
    NAHRSTEDT, A. 1993. Cyanogenesis and food plants. In: (T. van Beek, H. Breteler, eds), Proc. Phytochem. Soc. Europe. Phytochemistry and Agriculture, Vol 34. Oxford University Press, Oxford, pp. 107–129.Google Scholar
  18. 18.
    LUETHY, B., MATILE, P. 1984. The mustard oil bomb: Rectified analysis of the subcellular organisation of the myrosinase system. Biochem. Physiol. Pflanzen 179: 5–12.CrossRefGoogle Scholar
  19. 19.
    NAHRSTEDT, A. 1985. Cyanogenic compounds as protecting agents for organisms. Plant Syst. Evol. 150: 35–47.CrossRefGoogle Scholar
  20. 20.
    DUFFEY, S. S. 1981. Cyanide and arthrodpods. In: (B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, F. Wissing, eds.), Cyanide in Biology, Academic Press, London, pp. 385–414.Google Scholar
  21. 21.
    DAVIS, R. H., NAHRSTEDT, A. 1986. (R)Mandelonitrile and prunasin, the sources of hydrogen cyanide in all stages of Paropsis atomaria (Coleoptera:Chrysomelidae). Z. Natur-forsch. 41c: 928–934.Google Scholar
  22. 22.
    RAUBENHEIMER, D. 1987. Kiggelaria africana, Acraea horta and the use of cyanide as a chemical defense. Veld and Flora p. 27.Google Scholar
  23. 23.
    RAUBENHEIMER, D. 1989. Cyanoglucoside gynocardin from Acraea horta (L) (Lepidoptera: Acraeinae): Possible implications for evolution of Acraeinae host choice. J. Chem. Ecol. 15: 2177–2189.CrossRefGoogle Scholar
  24. 24.
    BRAEKMAN, J. C., DALOZE, D., PASTEELS, J. M. 1982. Cyanogenic and other glucosides in a Neo-Guinean bug Leptocoris isolata: possible precursors in its host plant. Biochem. Syst. Ecol. 10:355–364.CrossRefGoogle Scholar
  25. 25.
    BURGEFF, H. 1915. Zur Frage des Tötens der Zygaenen. Entomol. Z. 29: 49–50.Google Scholar
  26. 26.
    JAROSZEWSKI, J. W., JENSEN, P. S., CORNETT, C., BYBERG, J. R. 1988. Occurrence of lotaustralin in Berberidopsis beckleri and its relation to the chemical evolution of Flacour-tiaceae. Biochem. Syst. Ecol. 16: 23–28.CrossRefGoogle Scholar
  27. 27.
    DAVIS, R. H., NAHRSTEDT, A. 1979. Linamarin and lotaustralin as the source of cyanide in Zygaena filipendulae L (Lepidoptera). Comp. Biochem. Physiol. 64B: 395–397.Google Scholar
  28. 28.
    DAVIS, R. H., AND NAHRSTEDT, A. 1982. Occurrence and variation of the cyanogenic glucosides linamarin and lotaustralin in species of the Zygaenidae (Insecta.Lepidoptera). Comp. Biochem. Physiol. 71B: 329–332.CrossRefGoogle Scholar
  29. 29.
    WITTHOHN, K., NAUMANN, C. M. 1987. Cyanogenesis — a general phenomenon in the Lepidoptera? J. Chem. Ecol. 13: 1789–1809.CrossRefGoogle Scholar
  30. 30.
    SEIPEL, H. 1980. Zygaena trifolii ssp barcelonensis f. loc. saleria Burgeff, Nachr. Ent. Ver. Apollo, N. F. 1:2–4.Google Scholar
  31. 31.
    FRANZL, S., NAUMANN, C. M., AND NAHRSTEDT, A. 1988. Cyanoglucoside storing cuticle of Zygaena larvae (Insecta, Lepidoptera). Zoomorphology 108: 183–190.CrossRefGoogle Scholar
  32. 32.
    WITTHOHN, K., NAUMANN, C. M. 1984. Qualitative and quantitative studies on the compounds of the larval defensive secretion of Zygaena trifolii (Esper, 1783) (Insecta, Lepidoptera, Zygaenidae). Comp. Biochem. Physiol. 79c: 103–106.Google Scholar
  33. 33.
    FRANZL, S., NAHRSTEDT, A., NAUMANN, C. M. 1986. Evidence for site of biosynthesis and transport of the cyanoglucosides linamarin and lotaustralin in larvae of Zygaena trifolii (Insecta.Lepidoptera). J. Insect Physiol. 32: 705–709.CrossRefGoogle Scholar
  34. 34.
    RAMMERT, U. 1992. The reaction of birds to the larval defense system of Zygaena trifolii. In (C. Dutreix, C. M. Naumann, W. G. Tremewan, eds), Recent Advances in the Burnet Moth Research 1987. Koelz Scient. Koenigstein, pp. 38–52.Google Scholar
  35. 35.
    NAHRSTEDT, A., DAVIS, R. H. 1986. Uptake of linamarin and lotaustralin from their foodplant by larvae of Zygaena trifolii. Phytochemistry 25: 2299–2302.CrossRefGoogle Scholar
  36. 36.
    CONN, E. E. 1991. The metabolism of a natural product: lessons learned from cyanogenic glycosides. Planta Med. 57: S1–S9.CrossRefGoogle Scholar
  37. 37.
    KOCH, B., NIELSEN, V. S., HALKIER, B. A., OLSEN, C. E., MOLLER, B. L. 1992. The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz). Arch. Biochem. Biophys. 292: 141–150.PubMedCrossRefGoogle Scholar
  38. 38.
    WRAY, V., DAVIS, R. H., NAHRSTEDT, A. 1983. Biosynthesis of cyanogenic glycosides in butterflies and moths: Incorporation of valine and isoleucine into linamarin and lotaustralin by Zygaena and Heliconius species. Z. Naturforsch. 38c: 583–588.Google Scholar
  39. 39.
    DAVIS, R. H., NAHRSTEDT, A. 1987. Biosynthesis of cyanogenic glucosides in butterflies and moths Effective incorporation of 2-methylpropanenitrile and 2-methylbutanenitrile into linamarin and lotaustralin by Zygaena and Heliconius species. Insect Biochem. 17: 689–693.CrossRefGoogle Scholar
  40. 40.
    HOLZKAMP, G., NAHRSTEDT, A. 1994. Biosynthesis of cyanogenic glucosides in the Lepidoptera. Incorporation of [U-14C]-2-methylpropanealdoxime, 2S-[U-14C]-methylbu-tanealdoxime and D,L-[U-14C]-N-hydroxyisoleucine into linamarin and lotaustralin by the larvae of Zygaena trifolii. Insect Biochem. Molec. Biol. 24: 161–165.Google Scholar
  41. 41.
    CUTLER, A. J., STERNBERG, M., CONN, E. E. 1985. Properties of a microsomal enzyme system from Linum usitatissimum which oxidases valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Arch. Biochem. Biophys. 238: 272–279.PubMedCrossRefGoogle Scholar
  42. 42.
    HOESEL, W., NAHRSTEDT, A. 1980. In vitro biosynthesis of the cyanogenic glucoside taxiphyllin in Triglochin maritima. Arch. Biochem. Biophys. 203: 753–757.CrossRefGoogle Scholar
  43. 43.
    COLLINGE, D., HUGHES, M. A. 1982. In vitro characterization of the Ac locus in white clover (Trifolium repens L.). Arch. Biochem. Biophys. 218: 38–45.PubMedCrossRefGoogle Scholar
  44. 44.
    COLLINGE, D. B., HUGHES, M. A. 1984. Evidence that linamarin and lotaustralin, the two cyanogenic glucosides of Trifolium repens L, are synthesized by a single set of microsomal enzymes controlled by the Ac/ac locus. Plant Sci. Lett. 34: 119–125.CrossRefGoogle Scholar
  45. 45.
    HOLZKAMP, G. 1994. Untersuchungen zur Biosynthesesequenz cyanogener Glukoside an lebenden Larven sowie am isolierten Fettkörper von Zygaena trifolii (Lepidoptera: Zygaeni-dae). PhD-thesis, Muenster, pp. 108–159.Google Scholar
  46. 46.
    OLAFSDOTTIR, E. S., JORGENSEN, L. B., JAROSZEWSKI, J. W. 1992. Substrate specificity in the biosynthesis of cyclopentanoid cyanohydrin glucosides. Phytochemistry 31: 4129–4134.CrossRefGoogle Scholar
  47. 47.
    Halkier, B. A., MØLLER, B. L. 1990. The biosynthesis of cyanogenic glucosides in higher plants — Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L) Moench and the involvement of l-aci-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. J. Biol. Chem. 265: 21114–21121.PubMedGoogle Scholar
  48. 48.
    FRANZL, S., ACKERMANN, I., AND NAHRSTEDT, A. 1989. Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper, 1783 (Insecta, Lepidoptera). Experientia 45: 712–718.CrossRefGoogle Scholar
  49. 49.
    MUELLER, E. 1992. Untersuchungen zur Enzymologie der Cyanogenese und zum Metabolismus von Blausäure in den Larven von Zygaena trifolii (Esper, 1783) (Insecta, Lepidoptera). PhD-thesis, Univ. Muenster, pp. 13–17 (Hnl), pp. 59–64 (linamarase).Google Scholar
  50. 50.
    SELMAR, D., LIEBEREI, R., BIEHL, B. 1987. Hevea linamarase — a nonspecific β-glycosi-dase. Plant Physiol. 83: 557–563.PubMedCrossRefGoogle Scholar
  51. 51.
    FAN, T. W. M., CONN, E. E. 1985. Isolation and characterization of two cyanogenic β-glu-cosidases from flax seeds. Arch. Biochem. Biophys. 243: 361–373.PubMedCrossRefGoogle Scholar
  52. 52.
    MKPONG, O. E., YAN, H., CHISM, G., SAYRE, R. T. 1990. Purification, characterization and localization of linamarase in Cassava. Plant Physiol. 93: 176–181.PubMedCrossRefGoogle Scholar
  53. 53.
    ITHO-NASHIDA, T., HIRAIWA, M., UDA, Y. 1987. Purification and properties of β-D-glu-cosidase (linamarase) from the butter bean, Phaseolus lunatus. J. Biochem. 101: 847–854.Google Scholar
  54. 54.
    MUELLER, E., NAHRSTEDT, A. 1990. Purification and characterization of a alpha-hy-droxynitrile lyase from the hemolymph of the larvae of Zygaena trifolii. Planta Med. 56: 611–612.CrossRefGoogle Scholar
  55. 55.
    SELMAR, D., LIEBEREI, R., BIEHL, B., CONN, E. E., 1989. alpha-Hydroxynitrile lyase in Hevea brasiliensis and its significance for rapid cyanogenesis. Physiol. Plant. 75: 97–101.CrossRefGoogle Scholar
  56. 56.
    XU, L.-L., SINGH, B. K., CONN, E. E. 1988. Purification and characterization of acetone cyanohydrin lyase from Linum usitatissimum. Arch. Biochem. Biophys. 263: 256–263.PubMedCrossRefGoogle Scholar
  57. 57.
    XU, L.-L., SINGH, B. K., CONN, E. E. 1986. Purification and characterization of mandeloni-trile lyase from Prunus lyonii. Arch. Biochem. Biophys. 250: 322–328.PubMedCrossRefGoogle Scholar
  58. 58.
    POULTON, J. E. 1988. Localization and catabolism of cyanogenic glycosides. In: (CIBA Foundation, ed.), Cyanide Compounds in Biology, Vol 140. J. Wiley, Cichester, pp. 67–91.Google Scholar
  59. 59.
    KAKES, P. 1985. Linamarase and other β-glucosidases are present in the cell walls of Trifolium repens L leaves. Planta 166: 156–160.CrossRefGoogle Scholar
  60. 60.
    THAYER, S. S., CONN, E. E. 1981. Subcellular localization of dhurrin β-glucosidase and hydroxy nitrile lyase in the mesophyll cells of Sorghum leaf blades. Plant Physiol. 67: 617–622.PubMedCrossRefGoogle Scholar
  61. 61.
    NAHRSTEDT, A., MUELLER, E. 1993. β-Glucosidase (linamarase) of the larvae of the moth Zygaena trifolii and its inhibition by some alkaline earth metal ions. In: (A. Esen, ed.), β-Glucosidases. Biochemistry and Molecular Biology, Vol 533. American Chemical Society, Washington, pp. 132–44.CrossRefGoogle Scholar
  62. 62.
    NISHIDA, R., ROTHSCHILD, M., MUMMERY, R. 1994. A cyanoglucoside, sarmentosin, from the magpie moth, Abraxas grossulariata, Geometridae : Lepidoptera. Phytochemistry 36: 37–38.CrossRefGoogle Scholar
  63. 63.
    NISHIDA, R., ROTHSCHILD, M. 1995. A cyanoglucoside stored by a Sedum-feeding Apollo butterfly, Parnassius phoebus. Experientia 51: 267–269.CrossRefGoogle Scholar
  64. 64.
    NAHRSTEDT, A., DAVIS, R. H. 1981. The occurrence of the cyanoglucosides linamarin and lotaustralin in Acraea and Heliconius butterflies. Comp. Biochem. Physiol. 68B: 575–577.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Adolf Nahrstedt
    • 1
  1. 1.Institut für Pharmazeutische Biologie und Phytochemie der Westf. Wilhelms-UniversitätMünsterGermany

Personalised recommendations