Antisense in Abundance: The Ribosome as a Vehicle for Antisense RNA

  • Rosemary Sweeney
  • Qichang Fan
  • Meng-Chao Yao
Part of the Genetic Engineering book series (GEPM, volume 20)


We have developed in Tetrahymena thermophila a new vehicle for introducing antisense RNAs into cells, the “antisense ribosome”. This system allows antisense RNAs to be expressed and to function as part of a very stable and abundant RNA molecule, the large subunit ribosomal RNA (rRNA), without adversely affecting rRNA function (1). Unlike almost all other organisms, the ciliate T. thermophila contains a single copy of its rRNA genes (rDNA) in its silent germline genome (2). It has multiple copies in the form of short, linear chromosomes in its transcribed somatic genome (3, 4). This unique situation plus a transformation system that allows complete replacement of the somatic rDNA have provided convenient ways to study rDNA through traditional and modern genetic methods. The single germline copy of the rDNA makes classical genetic studies possible (5, 6). With the transformation system, rDNA can be altered as desired in vitro and used to transform cells. If functional, the transforming rDNA can totally replace the somatic rDNA in transformed lines (7, 8). A series of studies (8–11) have revealed interesting features of rRNA variable regions leading to the realization that rRNA can be exploited to serve as a carrier of RNA sequences, such as antisense sequences, that can be designed to exert specific effects in the cell. This method of presenting an antisense RNA to a cell may magnify its effects on gene expression since rRNA is very abundant and stable and is in close physical proximity to mRNAs. This article will summarize the relevant features of the rRNA variable regions and describe the creation of “antisense ribosomes” and their potential applications in T. thermophila and other organisms.


Variable Region Antisense Orientation Antisense Sequence Suppress Gene Expression Close Physical Proximity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sweeney, R., Fan, Q. and Yao, M.-C. (1996) Proc. Nat. Acad. Sci. U.S.A. 93, 8518–8523.CrossRefGoogle Scholar
  2. 2.
    Yao, M.-C. and Gall, J.G. (1977) Cell 12, 121–132.PubMedCrossRefGoogle Scholar
  3. 3.
    Yao, M.-C., Kimmel, A.R. and Gorovsky, M.A. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 3082–3086.CrossRefGoogle Scholar
  4. 4.
    Karrer, K.M. and Gall, J.G. (1976) J. Mol. Biol. 104, 421–453.PubMedCrossRefGoogle Scholar
  5. 5.
    Bruns, P.J., Katzen, A.L., Martin, L. and Blackburn, E.H. (1985) Proc. Nat. Acad. Sci. U. S. A. 82, 2844–2846.CrossRefGoogle Scholar
  6. 6.
    Sweeney, R., Yao, C.-H. and Yao, M.-C. (1991) Genetics 127, 327–334.PubMedGoogle Scholar
  7. 7.
    Yao, M.-C. and Yao, C.-H. (1989) Mol. Cell. Biol. 9, 1092–1099.PubMedGoogle Scholar
  8. 8.
    Sweeney, R. and Yao, M.C. (1989) EMBO J. 8, 933–938.PubMedGoogle Scholar
  9. 9.
    Musters, W., Boon, K, van der Sande, C.A.F.M., van Heerikhuizen, H. and Planta, R.J. (1990) EMBO J. 9, 3989–3996.PubMedGoogle Scholar
  10. 10.
    Musters, W., Venema, J., van der Linden, G., van Heerikhuizen, H., Klootwijk, J. and Planta, R.J. (1989) Mol. Cell. Biol. 9, 551–559.PubMedGoogle Scholar
  11. 11.
    Sweeney, R., Chen, L. and Yao, M.-C. (1993) Mol. Cell. Biol. 13, 4814–4825.PubMedGoogle Scholar
  12. 12.
    Gray, M.W. and Schnare, M.N. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 589–597, American Society for Microbiology, Washington, DC.Google Scholar
  13. 13.
    Gerbi, S.A. (1992) in Ribosomal RNA: Structure, Evolution, Processing and Function in Protein Synthesis (Zimmerman, R.A. and Dahlberg, A.E., eds.), pp. 71–87, CRC Press, New York, NY.Google Scholar
  14. 14.
    Clark, C.G., Tague, B.W., Ware, V.C. and Gerbi, S.A. (1984) Nucl. Acids Res. 12, 6197–6220.PubMedCrossRefGoogle Scholar
  15. 15.
    Hassouna, N., Michot, B. and Bachellerie, J.-P. (1984) Nucl. Acids Res. 12, 3563–3583.PubMedCrossRefGoogle Scholar
  16. 16.
    Raue, H.A., Musters, W., Rutgers, C.A., Van’t Riet, J. and Planta, R.J. (1990) in The Ribosome: Structure, Function and Evolution (Hill, W.E., Dahlberg, A., Garrett, R.A., Moore, P.B., Schlessinger, D. and Warner, J.R., eds.), pp. 217–235, American Society for Microbiology, Washington, DC.Google Scholar
  17. 17.
    Gorski, J.L., Gonzalez, I.L. and Schmickel, R.D. (1987) J. Mol. Evol. 24, 236–251.PubMedCrossRefGoogle Scholar
  18. 18.
    Han, H., Schepartz, A., Pellegrini, M. and Dervan, P. (1994) Biochemistry 33, 9831–9844.PubMedCrossRefGoogle Scholar
  19. 19.
    Schnare, M.N., Damberger, S.H., Gray, M.W. and Gutell, R.R. (1996) J. Mol. Biol. 256, 701–719.PubMedCrossRefGoogle Scholar
  20. 20.
    Sweeney, R., Chen, L. and Yao, M.-C (1994) Mol. Cell. Biol. 14, 4203–4215.PubMedGoogle Scholar
  21. 21.
    Jeeninga, R.E., van Delft, Y., de Graff-Vincent, M., Dirks-Mulder, A., Venema, J. and Raue, H.A. (1997) RNA 3, 476–488.PubMedGoogle Scholar
  22. 22.
    van Nues, R.W., Venema, J., Planta, R.J. and Raue, H.A. (1997) Chromosoma 105, 523–531.PubMedCrossRefGoogle Scholar
  23. 23.
    Sullenger, B.A., Lee, T.C., Smith, CA., Ungers, G.E. and Gilboa, E. (1990) Mol. Cell. Biol. 10, 6512–6523.PubMedGoogle Scholar
  24. 24.
    Wagner, R.W., Matteucci, M.D., Lewis, J.G., Gutierrez, A.J., Moulds, C. and Froehler, B.C. (1993) Science 260, 1510–1513.PubMedCrossRefGoogle Scholar
  25. 25.
    Hallberg, R.L. and Bruns, P.J. (1976) J. Cell Biol. 71, 383–394.PubMedCrossRefGoogle Scholar
  26. 26.
    Green, P.J., Pines, O. and Inouye, M. (1986) Annu. Rev. Biochem. 55, 569–597.PubMedCrossRefGoogle Scholar
  27. 27.
    Stein, C.A. and Cheng, Y.-C. (1993) Science 261, 1004–1012.PubMedCrossRefGoogle Scholar
  28. 28.
    van der Krol, A.R., Mol, J.N.M. and Stuitje, A.R. (1988) BioTechniques 6, 958–976.PubMedGoogle Scholar
  29. 29.
    Shen, X., Yu, L., Weir, J.W. and Gorovsky, M.A. (1995) Cell 82, 46–56.CrossRefGoogle Scholar
  30. 30.
    Gaertig, J. and Gorovsky, M.A. (1992) Proc. Nat. Acad. Sci. U.S.A. 89, 9196–9200.CrossRefGoogle Scholar
  31. 31.
    Orias, E., Flacks, M. and Satir, B.H. (1983) J. Cell Sci. 64, 49–67.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Rosemary Sweeney
    • 1
  • Qichang Fan
    • 1
  • Meng-Chao Yao
    • 1
  1. 1.Fred Hutchinson Cancer Research CenterSeattleUSA

Personalised recommendations