Functions and Structures of Ribonuclease H Enzymes

  • Shigenori Kanaya
  • Morio Ikehara
Part of the Subcellular Biochemistry book series (SCBI, volume 24)

Abstract

Ribonuclease H* (RNase H, EC 3.1.26.4) is an endonuclease that specifically hydrolyzes an RNA hybridized to a complementary DNA to produce an oli-goribonucleotide with 5′-phosphate and 3′-hydroxyl groups (Fig. 1). It requires divalent cations, such as Mg2+ and Mn2+, for activity. The enzyme was first isolated from calf thymus (Stein and Hausen, 1969; Hausen and Stein, 1970). Since then, the enzyme has been shown to be present in viruses, phages, and various organisms from Escherichia coli to human (Crouch and Dirksen, 1982; Wintersberger, 1990).

Keywords

Hydrolysis Urea Amide Titration Cysteine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendes, J., Carl, P. L., and Sugino, A., 1982, A mutation in the rnh-locus of Escherichia coli affects the structural gene for RNase H, J. Biol. Chem. 257:4719–4722.PubMedGoogle Scholar
  2. Arnold, E., Jacobo-Molina, A., Nanni, R. G., Williams, R. L., Lu, X., Ding, J., Clark, A. D., Jr., Zhang, A., Ferris, A. L., Clark, P., Hizi, A., and Hughes, S. H., 1992, Structure of HIV-1 reverse transcriptase/DNA complex at 7 Å resolution showing active site locations, Nature 357:85–89.PubMedGoogle Scholar
  3. Atabekov, K. J., Tyulkina, L. G., Karpova, O. V., Metelev, V. G., Rodionova, N. P., Shabarova, Z. A., and Atabekov, J. G., 1988, Site-specific enzymatic cleavage of TMV RNA directed by deoxyribo-and chimeric(deoxyribo-ribo)oligonucleotides, FEBS Lett. 232:96–98.PubMedGoogle Scholar
  4. Becerra, S. P., Clore, G. M., Gronenborn, A. M., Karlstrom, A. R., Stahl, S. J., Wilson, S. H., and Wingfield, P. T., 1990, Purification and characterization of the RNase H domain of HIV-1 reverse transcriptase expressed in recombinant E. coli, FEBS Lett. 270:76–80.PubMedGoogle Scholar
  5. Beese, L. S., and Steitz, T. A., 1989, Structure of E. coli DNA polymerase I, large fragment, and its functional implications, in Nucleic Acids and Molecular Biology (F. Eckstein and D. M. J. Lilley, eds.). Vol. 3, pp. 28–43, Springer-Verlag, Berlin Heidelberg.Google Scholar
  6. Beese, L. S., and Steitz, T. A., 1991, Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism, EMBO J. 10:25–33.PubMedGoogle Scholar
  7. Berkower, I., Leis, J., and Hurwitz, J., 1973, Isolation and characterization of an endonuclease from Escherichia coli specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structure, J. Biol. Chem. 248:5914–5921.PubMedGoogle Scholar
  8. Blundeil, T., Jenkins, J., Pearl, L., Sewell, T., and Pedersen, V., 1985, The high resolution structure of endothiapepsin, in Aspartic Proteinases and Their Inhibitors (V. Kostka, ed.), pp. 151–161, Walter de Gruyter, Berlin.Google Scholar
  9. Bockrath, R., Wolff, L., Farr, A., and Crouch, R. J., 1987, Amplified RNase H activity in Escherichia coli B/r increases sensitivity to ultraviolet radiation, Genetics 115:33–40.PubMedGoogle Scholar
  10. Boyer, P. L., Ferris, A. L., and Hughes, S. H., 1992, Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1, J. Virol. 66:1031–1039.PubMedGoogle Scholar
  11. Busen, W., 1980, Purification, subunit structure and serological analysis of calf thymus ribonuclease HI, J. Biol. Chem. 255:9434–9443.PubMedGoogle Scholar
  12. Busen, W., 1982, The subunit structure of calf thymus ribonuclease HI as revealed by immunological analysis, J. Biol. Chem. 257:7106–7108.PubMedGoogle Scholar
  13. Busen, W., Peters, J. H., and Hausen, P., 1977, Ribonuclease H levels during the response of bovine lymphocytes to concanavalin A, Eur. J. Biochem. 74:203–208.PubMedGoogle Scholar
  14. Campbell, A. G., and Ray, D. S., 1993, Functional complementation of an Escherichia coli ribonuclease H mutation by a cloned genomic fragment from trypanosomatid Crithidia fasciculata, Proc. Natl. Acad. Sci. USA 90:9350–9354.PubMedGoogle Scholar
  15. Carl, P. L., Bloom, L., and Crouch, R. J., 1980, Isolation and mapping of a mutation in Escherichia coli with altered levels of ribonuclease H, J. Bacteriol. 144:28–35.PubMedGoogle Scholar
  16. Carter, B. J., DeVroom, E., Long, E. C., Van Der Marel, G. A., Van Boom, J. H., and Hecht, S. M., 1990, Site-specific cleavage of RNA by Fe(II)-bleomycin, Proc. Natl. Acad. Sci. USA 87:9373–9377.PubMedGoogle Scholar
  17. Casaregola, S., Khidhir, M., and Holland, I. B., 1987, Effects of modulation on RNase H production on the recovery of DNA synthesis following UV-irradiation in Escherichia coli, Mol. Gen. Genet. 209:494–498.PubMedGoogle Scholar
  18. Cathala, G., Rech, J., Huet, J., and Jeanteur, R., 1979, Isolation and characterization of two types of ribonucleases H in Krebs II ascites cells, J. Biol. Chem. 254:7353–7361.PubMedGoogle Scholar
  19. Cerritelli, S. M., Shin, D. Y., Chen, H. C., Gonzales, M., and Crouch, R. J., 1993, Proteolysis of Saccharomyces cerevisiae RNase HI, in E. coli. Biochimie 75:107–111.Google Scholar
  20. Cirino, N. M., Kalayjian, R. C., Jentoft, J. E., and LeGrice, S. F. J., 1993, Fluorimetric analysis of recombinant p15 HIV-1 RNase H, J. Biol. Chem. 268:14743–14749.PubMedGoogle Scholar
  21. Cox, E. C, and Homer, D. L., 1986, DNA sequence and coding properties of mutD (dnaQ) a dominant Escherichia coli mutator gene, J. Mol. Biol. 190:113–117.PubMedGoogle Scholar
  22. Crouch, R. J., 1981, Analysis of nucleic acid structure by RNase H, in Gene Amplification and Analyses (J. G. Chirikjian and T. S. Papas, eds.), Vol. 2, pp. 218–228, Elsevier/North-Holland, New York.Google Scholar
  23. Crouch, R. J., 1990, Ribonuclease H: From discovery to 3D structure, New Biol. 2:771–777.PubMedGoogle Scholar
  24. Crouch, R. J., and Dirksen, M.-L., 1982, Ribonuclease H, in Nuclease (S. M. Linn and R. J. Roberts, eds.), pp. 211–241, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  25. Darlix, J., 1975, Simultaneous purification of Escherichia coli termination factor rho, RNase III and RNAse H, Eur. J. Biochem. 51:369–376.PubMedGoogle Scholar
  26. Dasgupta, S., Masukata, H., and Tomizawa, J., 1987, Multiple mechanisms for initiation of ColE1 DNA replication: DNA synthesis in the presence and absence of ribonuclease H, Cell 51:1113–1122.PubMedGoogle Scholar
  27. Dash, P., Lotan, I., Knapp, M., Kandel, E. R., and Goelet, P., 1987, Selective elimination of mRNAs in vivo: Complementary oligodeoxynucleotides promote RNA degradation by an RNase H-like activity, Proc. Natl. Acad. Sci. USA 84:7896–7900.PubMedGoogle Scholar
  28. Davies, J. F., Hostomska, Z., Hostomsky, Z., Jordan, S. R., and Matthews, D. A., 1991, Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase, Science 252:88–95.PubMedGoogle Scholar
  29. DeMassy, B., and Fayet, O., 1984, Multiple origin usage for DNA replication in sdrA(rnh) mutations of Escherichia coli K-12. J. Mol. Biol. 178:227–236.Google Scholar
  30. DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Myers, T. W., Bambara, R. A., and Fay, P. J., 1991a, Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled, J. BioL Chem. 266:7423–7431.PubMedGoogle Scholar
  31. DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Bambara, R. A., and Fay, P. J., 1991b, Human immunodeficiency virus reverse transcriptase displays a partially processive 3′ to 5′ endonuclease activity, J. BioL Chem. 266:24295–24301.PubMedGoogle Scholar
  32. DiFrancesco, R. A., and Lehman, I. R., 1985, Interaction of ribonuclease H from Drosophila melanogaster embryos with DNA polymerase-primase, J. BioL Chem. 260:14764–14770.PubMedGoogle Scholar
  33. Dirksen, M.-L., and Crouch, R. J., 1981, Selective inhibition of RNase H by dextran, J. Biol. Chem. 256:11569–11573.PubMedGoogle Scholar
  34. Donis-Keller, H., 1979, Site specific enzymatic cleavage of RNA, Nucleic Acids Res. 7:179–192.PubMedGoogle Scholar
  35. Doolittle, R., Feng, D. F., Johnson, M. S., and McClure, M. A., 1989, Origins and evolutionary relationships of retroviruses, Q. Rev. Biol. 64:1–30.PubMedGoogle Scholar
  36. Dudding, L. R., Nkabinde, N. C., and Mizrahi, V., 1991, Analysis of the RNA-and DNA-dependent DNA polymerase activities of point mutants of HIV-1 reverse transcriptase lacking ribonuclease H activity, Biochemistry 30:10498–10506.PubMedGoogle Scholar
  37. Eder, P. S., and Walder, J. A., 1991, Ribonuclease H from K562 human erythroleukemia cells: Purification, characterization, and substrate specificity, J. Biol. Chem. 266:6472–6479.PubMedGoogle Scholar
  38. Evans, D. B., Brawn, K., Deibel, M. R., Tarpley, Jr. W. G., and Sharma, S. K., 1991, A recombinant ribonuclease H domain of HIV-1 reverse transcriptase that is enzymatically active, J. BioL Chem. 266:20583–20585.PubMedGoogle Scholar
  39. Fedoroff, O.-Y., Salazar, M., and Reid, B. R., 1993, Structure of a DNA:RNA hybrid duplex: Why RNase H does not cleave pure RNA, J. Mol. Biol. 233:509–523.PubMedGoogle Scholar
  40. Fersht, A., 1985, Enzyme Structure and Mechanism, 2nd ed., W. H. Freeman, New York.Google Scholar
  41. Furfine, E. S., and Reardon, J. E., 1991a, Reverse transcriptase RNase H from the human immunodeficiency virus: Relationship of the DNA polymerase and RNA hydrolysis activities, J. Biol. Chem. 266:406–412.PubMedGoogle Scholar
  42. Furfine, E. S., and Reardon, J. E., 1991b, Human immunodeficiency virus reverse transcriptase RNase H: Specificity of tRNALys3-primer excision, Biochemistry 30:7041–7046.PubMedGoogle Scholar
  43. Garces, J., and Wittek, R., 1991, Reverse-transcriptase-associated RNase H activity mediates template switching during reverse transcription in vitro, Proc. R. Soc. Lond. B 243:235–239.Google Scholar
  44. Goff, S. P., 1990, Retroviral reverse transcriptase: Synthesis, structure, and function, J. Acquired Immune Defic. Syndr. 3:817–831.Google Scholar
  45. Goodwin, T. W., and Morton, R. A., 1946, The spectrophotometric determination of tyrosine and tryptophan in proteins, Biochem. J. 40:628–632.PubMedGoogle Scholar
  46. Grosshans, C. A., and Cech, T. R., 1989, Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme, Biochemistry 28:6888–6894.PubMedGoogle Scholar
  47. Gubler, U., and Hoffman, B. J., 1983, Simple and very efficient method for generating cDNA libraries, Gene 25:263–269.PubMedGoogle Scholar
  48. Guerrier-Takada, C, Haydock, K., Allen, L., and Altman, S., 1986, Metal ion requirements and other aspects of the reaction catalyzed by Ml RNA, the RNA subunit of ribonuclease P from Escherichia coli, Biochemistry 25:1509–151PubMedGoogle Scholar
  49. Hafkemeyer, P., Ferrari, E., Brecher, J., and Hubscher, U., 1991, The p15 carboxyl-terminal proteolysis product of the human immunodeficiency virus type 1 reverse transcriptase P66 has DNA polymerase activity, Proc. Natl. Acad. Sci. USA 88:5262–5266.PubMedGoogle Scholar
  50. Hagemeier, A., and Grosse, F., 1989, A distinct form of ribonuclease H from calf thymus simulates its homologous DNA-polymerase-α-primase complex, Eur. J. Biochem. 185:621–628.PubMedGoogle Scholar
  51. Hansen, J., Schulze, T., Meliert, W., and Moelling, K., 1988, Identification and characterization of HIV-specific RNase H by monoclonal antibody, EMBO J. 7:239–243.PubMedGoogle Scholar
  52. Haruki, M., Noguchi, E., Nakai, C, Liu, Y. Y., Oobatake, M., Itaya, M., and Kanaya, S., 1994, Investigating the role of conserved residue Asp 134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis, Eur. J. Biochem. 220:623–631.PubMedGoogle Scholar
  53. Haseloff, J., and Gerlach, W. L., 1988, Simple RNA enzymes with new and highly specific endo-ribonuclease activity, Nature 334:585–591.PubMedGoogle Scholar
  54. Hausen, P., and Stein, H., 1970, Ribonuclease H, an enzyme degrading the RNA moiety of DNA-RNA hybrids, Eur. J. Biochem. 14:278–283.PubMedGoogle Scholar
  55. Hayase, Y., Inoue, H., and Ohtsuka, E., 1990, Secondary structure in formylmethionine tRNA influences the site-directed cleavage of ribonuclease H using chimeric 2′-O-methyl oligodeoxyribonucleotides, Biochemistry 29:8793–8797.PubMedGoogle Scholar
  56. Henry, C. M., Ferdinand, F.-J., and Knippers, R., 1973, A hybridase from Escherichia coli, Biochem. Biophys. Res. Commun. 50:603–611.PubMedGoogle Scholar
  57. Higuchi, R., 1990, Recombinant PCR, in PCR Protocols; A Guide to Methods and Applications (M. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds.), pp. 177–183, Academic Press, New York.Google Scholar
  58. Hizi, A., Hughes, S. H., and Shaharabany, M., 1990, Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase, Virology 175:575–580.PubMedGoogle Scholar
  59. Hizi, A., Tal, R., and Hughes, S. H., 1991, Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli, Virology 180:339–346.PubMedGoogle Scholar
  60. Hizi, A., Shaharabany, M., Tal, R., and Hughes, S. H., 1992, The effects of cysteine mutations on the reverse transcriptases of human immunodeficiency virus types 1 and 2, J. Biol. Chem. 267:1293–1297.PubMedGoogle Scholar
  61. Hogrefe, H. H., Hogrefe, R. I., Walder, R. Y, and Walder, J. A., 1990, Kinetic analysis of Escherichia coli RNase H using DNA-RNA-DNA/DNA substrates, J. Biol. Chem. 265:5561–5566.PubMedGoogle Scholar
  62. Hollingsworth, H. C., and Nossal, N. G., 1991, Bacteriophage T4 encodes an RNase H which removes RNA made by the T4 DNA replication system in vitro, J. Biol. Chem. 266:1888–1897.PubMedGoogle Scholar
  63. Hong, X., and Kogoma, T., 1993, Absence of a direct role for RNase HI in initiation of DNA replication at the oriC site on the Escherichia coli chromosome, J. Bacteriol. 175:6731–6734.PubMedGoogle Scholar
  64. Horiuchi, T., Maki, H., Maruyama, M., and Sekiguchi, M., 1981, Identification of the dnaQ gene product and location of the structural gene for RNase H of Escherichia coli by cloning of the genes, Proc. Natl. Acad. Sci. USA 78:3770–3774.PubMedGoogle Scholar
  65. Horiuchi, T., Maki, H., and Sekiguchi, M., 1985, RNase H-defective mutants of Escherichia coli: A possible discriminatory role of RNase H in initiation of DNA replication, Mol. Gen. Genet. 195:17–22.Google Scholar
  66. Hostomska, Z., Matthews, D. A., Davies, J. F., Nodes, B. R., and Hostomsky, Z., 1991, Proteolytic release and crystallization of the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase, J. Biol. Chem. 266:14697–14702.PubMedGoogle Scholar
  67. Hostomsky, Z., Hostomska, Z., Hudson, G. O., Moomaw, E. W., and Nodes, B. R., 1991, Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase, Proc. Natl. Acad. Sci. USA 88:1148–1152.PubMedGoogle Scholar
  68. Hostomsky, Z., Hostomska, Z., and Matthews, D. A., 1993, Ribonuclease H, in Nuclease, 2nd ed. (S. M. Linn and R. J. Roberts, eds.), pp. 341–376, Cold Spring Harbor Laboratory, Cold Spring, New York.Google Scholar
  69. Hsu, I-N., Delbaere, L. T. J., James, M. N. G., and Hofmann, T, 1977, Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 Å and sequence homology with porcine pepsin. Nature 266:140–145.PubMedGoogle Scholar
  70. Huang, H.-W., and Cowan, J. A., 1994, Metallobiochemistry of the magnesium ion: Characterization of the essential metal-binding site in Escherichia coli ribonuclease H, Eur. J. Biochem. 219:253–260.PubMedGoogle Scholar
  71. Huet, J., Wyers, F., Buhler, J.-M., Sentenac, A., and Fromageot, P., 1976, Association of RNase H activity with yeast RNA polymerase A, Nature 261:431–433.PubMedGoogle Scholar
  72. Huet, J., Buhler, J.-M., Sentenac, A., and Fromageot, P., 1977, Characterization of ribonuclease H activity associated with yeast RNA polymerase A, J. Biol. Chem. 252:8848–8855.PubMedGoogle Scholar
  73. Inoue, H., Hayase, Y., Iwai, S., and Ohtsuka, E., 1987, Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H, FEBS Lett. 215:327–330.PubMedGoogle Scholar
  74. Ishikawa, K., Kimura, S., Kanaya, S., Morikawa, K., & Nakamura, H., 1993a, Structural study of mutants of Escherichia coli ribonuclease HI with enhanced thermostability, Protein Eng. 6:85–91.PubMedGoogle Scholar
  75. Ishikawa, K., Okumura, M., Katayanagi, K., Kimura, S., Kanaya, S., Nakamura, H., and Morikawa, K., 1993b, Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 Å resolution, J. Mol. Biol. 230:529–542.PubMedGoogle Scholar
  76. Ishikawa, K., Nakamura, H., Morikawa, K., and Kanaya, S., 1993c, Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core, Biochemistry 32:6171–6178.PubMedGoogle Scholar
  77. Ishikawa, K., Nakamura, H., Morikawa, K., Kimura, S., and Kanaya, S., 1993d, Cooperative stabilization of Escherichia coli ribonuclease HI by insertion of Gly-80b and Gly-77 → Ala substitution, Biochemistry 32:7136–7142.PubMedGoogle Scholar
  78. Itaya, M., 1990, Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene, Proc. Natl. Acad. Sci. USA 87:8587–8591.PubMedGoogle Scholar
  79. Itaya, M., and Crouch, R. J., 1991a, A combination of RNase H (rnh) and recBCD or sbcB mutations in Escherichia coli K12 adversely affects growth, Mol. Gen. Genet. 227:424–432.PubMedGoogle Scholar
  80. Itaya, M., and Crouch, R. J., 1991b, Correlation of activity with phenotypes of Escherichia coli partial function mutants of rnh, the gene encoding RNase H, Mol. Gen. Genet. 227:433–437.PubMedGoogle Scholar
  81. Itaya, M., and Kondo, K., 1991, Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme thermophile Thermus thermophilus HB8: A thermostable RNase H can functionally replace the Escherichia coli enzyme in vivo, Nucleic Acids Res. 19:4443–4449.PubMedGoogle Scholar
  82. Itaya, M., McKelvin, D., Chatterjie, S. K., and Crouch, R. J., 1991, Selective cloning of genes encoding RNase H from Salmonella typhimurium, Sacchromyces cerevisiae and Escherichia coli rnh mutants, Mol. Gen. Genet. 227:438–445.PubMedGoogle Scholar
  83. Itoh, T., and Tomizawa, J., 1980, Formation of an RNA primer for initiation of replication of ColE! DNA by ribonuclease H, Proc. Natl. Acad. Sci. USA 77:2450–2454.PubMedGoogle Scholar
  84. Itoh, T., and Tomizawa, J., 1982, Purification of ribonuclease H as a factor for initiation of in vitro ColEI DNA replication, Nucleic Acids Res. 10:5949–5965.PubMedGoogle Scholar
  85. Jacobo-Molina, A., Ding, J., Nanni, R. G., Clark, A. D. Jr., Lu, X., Tantillo, C., Williams, R. L., Kamer, G., Ferris, A. L., Clark, P., Hizi, A., Hughes, S. H., and Arnold, E., 1993, Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 Å resolution shows bent DNA, Proc. Natl. Acad. Sci. USA 90:6320–6324.PubMedGoogle Scholar
  86. Johnson, M. S., McClure, M. A., Feng, D. F., Gray, J., and Doolittle, R. F., 1986, Computer analysis of rctroviral pol genes: Assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes, Proc. Natl. Acad. Sci. USA 83:7648–7652.PubMedGoogle Scholar
  87. Kanaya, S., and Crouch, R. J., 1983a, DNA sequence of the gene coding for Escherichia coli ribonuclease H, J. Biol. Chem. 258:1276–1281.PubMedGoogle Scholar
  88. Kanaya, S., and Crouch, R. J., 1983b, Low levels of RNase H activity in Escherichia coli FB2 rnh result from a single-base change in the structural gene of RNase H, J. Bacteriol. 154:1021–1026.PubMedGoogle Scholar
  89. Kanaya, S., and Crouch, R. J., 1984, The rnh gene is essential for growth of Escherichia coli, Proc. Natl. Acad. Sci. USA 81:3447–3451.PubMedGoogle Scholar
  90. Kanaya, S., and Ikehara, M., 1993, Structure and function of ribonuclease H from Escherichia coli. in Nucleic Acids and Molecular Biology (F. Eckstein and D. M. J. Lilley, eds.). Vol. 7, pp. 285–302, Springer-Verlag, Berlin Heidelberg.Google Scholar
  91. Kanaya, S., and Itaya, M., 1992, Expression, purification, and characterization of a recombinant ribonuclease H from Thermus thermophilus HB8, J. Biol. Chem. 267:10184–10192.PubMedGoogle Scholar
  92. Kanaya, S., Kohara, A., Miyagawa, M., Matsuzaki, T., Morikawa, K., and Ikehara, M., 1989, Overproduction and preliminary crystallographic study of ribonuclease H from Escherichia coli, J. Biol. Chem. 264:11546–11549.PubMedGoogle Scholar
  93. Kanaya, S., Kohara, A., Miura, Y., Sekiguchi, A., Iwai, S., Inoue, H., Ohtsuka, E., and Ikehara, M., 1990a, Identifications of amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis, J. Biol. Chem. 265:4615–4621.PubMedGoogle Scholar
  94. Kanaya, S., Kimura, S., Katsuda, C, and Ikehara, M., 1990b, Role of cysteine residues in ribonuclease H from Escherichia coli: Site-directed mutagenesis and chemical modification, Biochem. J. 271:59–66.PubMedGoogle Scholar
  95. Kanaya, S., Katsuda, C., Kimura, S., Nakai, T., Kitakuni, E., Nakamura, H., Katayanagi, K., Morikawa, K., and Ikehara, M., 1991a, Stabilization of Escherichia coli ribonuclease H by introduction of an artificial disulfide bond, J. Biol. Chem. 266:6038–6044.PubMedGoogle Scholar
  96. Kanaya, S., Katayanagi, K., Morikawa, K., Inoue, H., Ohtsuka, E., and Ikehara, M., 1991b, Effect of mutagenesis at each of five histidine residues on enzymatic activity and stability of ribonuclease H from Escherichia coli, Eur. J. Biochem. 198:437–440.PubMedGoogle Scholar
  97. Kanaya, S., Katsuda-Nakai, C., and Ikehara, M., 1991c, Importance of the positive charge cluster in Escherichia coli ribonuclease H for the effective binding of the substrate, J. Biol. Chem. 266:11621–11627.PubMedGoogle Scholar
  98. Kanaya, S., Nakai, C., Konishi, A., Inoue, H., Ohtsuka, E., and Ikehara, M., 1992, A hybrid ribonuclease H: A novel RNA cleaving enzyme with sequence-specific recognition, J. Biol. Chem. 267:8492–8498.PubMedGoogle Scholar
  99. Kanaya, S., Oobataka, M., Nakamura, H., and Ikehara, M., 1993, pH-dependent thermostabilization of Escherichia coli ribonuclease HI by histidine to alanine substitutions, J. Biotech. 28:117–136.Google Scholar
  100. Kane, C. M., 1988, Renaturase and ribonuclease H: A novel mechanism that influences transcript displacement by RNA polymerase II in vitro, Biochemistry 27:3187–3196.PubMedGoogle Scholar
  101. Karwan, R., and Kindas-Mugge, I., 1989, Identification of a yeast ribonuclease H as an Am antigen, Eur. J. Biochem. 179:549–555.PubMedGoogle Scholar
  102. Karwan, R., and Wintersberger, U., 1986, Yeast ribonuclease H(70) cleaves RNA-DNA junctions, FEBS Lett. 206:189–192.PubMedGoogle Scholar
  103. Karwan, R., and Wintersberger, U., 1988, In addition to RNase H(70) two other proteins of Saccharomyces cerevisiae exhibit ribonuclease H activity, J. Biol. Chem. 263:14970–14977.PubMedGoogle Scholar
  104. Karwan, R., Blutsch, H., and Wintersberger, U., 1983, Physical association of a DNA polymerase stimulating activity with ribonuclease H purified from yeast, Biochemistry 22:5500–5507.Google Scholar
  105. Karwan, R., Kuhne, C., and Wintersberger, U., 1986, Ribonuclease H(70) from Saccharomyces cerevisiae possesses cryptic reverse transcriptase activity, Proc. Natl. Acad. Sci. USA 83:5919–5923.PubMedGoogle Scholar
  106. Katayanagi, K., Miyagawa, M., Matsushima, M., Kanaya, S., Ikehara, M., Matsuzaki, T., and Morikawa, K., 1990, Three-dimensional structure of ribonuclease H from Escherichia coli, Nature 347:306–309.PubMedGoogle Scholar
  107. Katayanagi, K., Miyagawa, M., Matsushima, M., Ishikawa, M., Kanaya, S., Nakamura, H., Ikehara, M., Matsuzaki, T., and Morikawa, K., 1992, Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution, J. Mol. Biol. 223:1029–1052.PubMedGoogle Scholar
  108. Katayanagi, K., Ishikawa, M., Okumura, M., Ariyoshi, M., Kanaya, S., Kawano, Y., Suzuki, M., Tanaka, I., and Morikawa, K., 1993a, Crystal structures of ribonuclease HI active site mutants from Escherichia coli, J. Biol. Chem. 268:22092–22099.PubMedGoogle Scholar
  109. Katayanagi, K., Okumura, M., and Morikawa, K., 1993b, Crystal structure of Escherichia coli RNase HI in complex with Mg2+ at 2.8 Å resolution: Proof for a single Mg2+-binding site, Proteins 17:337–346.PubMedGoogle Scholar
  110. Kimura, S., Oda, Y, Nakai, T., Katayanagi, K., Kiyakuni, E., Katsuda-Nakai, C, Nakamura, H., Ikehara, M., and Kanaya, S., 1992a, Effect of cavity-modulating mutations on the stability of Escherichia coli ribonuclease H, Eur. J. Biochem. 206:337–343.PubMedGoogle Scholar
  111. Kimura, S., Nakamura, H., Hashimoto, T., Oobatake, M., and Kanaya, S., 1992b, Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart, J. Biol. Chem. 267:21535–21542.PubMedGoogle Scholar
  112. Kimura, S., Kanaya, S., and Nakamura, H., 1992c, Thermostabilization of Escherichia coli ribonuclease HI by replacing left-handed helical Lys95 with Gly or Asn, J. Biol. Chem. 267:22014–22017.PubMedGoogle Scholar
  113. Kitahara, N., Sawai, Y., and Tsukada, K., 1982, Purification and properties of magnesium-and manganese-dependent ribonuclease H from chick embryo, J. Biochem. 92:855–864.PubMedGoogle Scholar
  114. Kogoma, T., 1984, Absence of RNase H allows replication of pBR322 in Escherichia coli mutants lacking DNA polymerase I, Proc. Natl. Acad. Sci. USA 81:7845–7849.PubMedGoogle Scholar
  115. Kogoma, T., Subia, N. L., and Meyenberg, K., 1985, Function of ribonuclease H in initiation of DNA replication in Escherichia coli K-12, Mol. Gen. Genet. 200:103–109.PubMedGoogle Scholar
  116. Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A., and Steitz, T. A., 1992, Crystal structure at 3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor, Science 256:1783–1790.PubMedGoogle Scholar
  117. Koizumi, M., and Ohtsuka, E., 1991, Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding, Biochemistry 30:5145–5150.PubMedGoogle Scholar
  118. Krug, M. S., and Berger, S. L., 1989, Ribonuclease H activities associated with viral reverse transcriptases are endonucleases, Proc. Natl. Acad. Sci. USA 86:3539–3543.PubMedGoogle Scholar
  119. Lahm, A., Weston, S. A., and Suck, D., 1991, Structure of DNase I, in Nucleic Acids and Molecular Biology (F. Eckstein and D. M. J. Lilley, eds.), Vol. 5, pp. 171–186, Springer-Verlag, Berlin Heidelberg.Google Scholar
  120. Lederer, H., Schatz, O., May, R., Crespi, H., Darlix, J-L., LeGrice, S. F. J., and Heumann, H., 1992, Domain structure of the human immunodeficiency virus reverse transcriptase, EMBO J. 11:1131–1139.PubMedGoogle Scholar
  121. Loya, S., and Hizi, A., 1993, The interaction of illimaquinone, a selective inhibitor of the RNase H activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses, J. Biol. Chem. 268:9323–9238.PubMedGoogle Scholar
  122. Loya, S., Tal, R., Hughes, S. H., and Hizi, A., 1992, The effects of cysteine mutations on the catalytic activities of the reverse transcriptase of human immunodeficiency virus type-1, J. Biol. Chem. 267:13879–13883.PubMedGoogle Scholar
  123. Maki, H., Horiuchi, T., and Sekiguchi, M., 1983, Structure and expression of the dnaQ mutator and the RNase H genes of Escherichia coli: Overlap of the promoter regions, Proc. Natl. Acad. Sci. USA 80:7137–7141.PubMedGoogle Scholar
  124. Masutani, C., Enomoto, T, Suzuki, M., Hanaoka, F., and Ui, M., 1990, DNA primase stimulatory factor from mouse FM3A cells has an RNase H activity: Purification of the factor and analysis of the stimulation, J. Biol. Chem. 265:10210–10216.PubMedGoogle Scholar
  125. Matouschek, A., Kellis, J. T., Serrano, L., Bycroft, M., and Fersht, A. R., 1990, Transient folding intermediates characterized by protein engineeringm, Nature 346:440–445.PubMedGoogle Scholar
  126. Metelev, V. G., Zayakina, G. V., Ryabushenko, I. L., Krynetskaya, N. F., Romanova, E. A., Oretskaya, T. S., and Shabarova, Z. A., 1988, Influence of probe structure on unique (regiospecific) cleavage of RNA by RNase H, FEBS Lett. 226:232–234.PubMedGoogle Scholar
  127. Meyenburg, K. von, Boye, E., Skarstad, K., Koppes, L., & Kogoma, T., 1987, Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of Escherichia coli K12, J. Bacteriol. 169:2650–2658.Google Scholar
  128. Miller, H. L., Riggs, A. D., and Gill, G. N., 1973, Ribonuclease H (hybrid) in Escherichia coli: Identification and characterization, J. Biol. Chem. 248:2621–2624.PubMedGoogle Scholar
  129. Minshull, J., and Hunt, T., 1986, The use of single-stranded DNa and RNase H to promote quantitative “hybrid arrect of translation” of mRNA/DNA hybrids in reticulocyte lysate cell-free translations, Nucleic Acids Res. 14:6433–64514.PubMedGoogle Scholar
  130. Miranker, A., Radford, S. E., Karplus, M., and Dobson, C. M., 1991, Demonstration by NMR of folding domains in lysozyme, Nature 349:633–636.PubMedGoogle Scholar
  131. Mizrahi, V., 1989, Analysis of the ribonuclease H activity of HIV-1 reverse transcriptase using RNA-DNA hybrid substrates derived from the gag region of HIV-1, Biochemistry 28:9088–9094.PubMedGoogle Scholar
  132. Mizrahi, V., Usdin, M. Y., Harington, A., and Dudding, L. R., 1990, Site-directed mutagenesis of the conserved Asp-443 and Asp-498 carboxy-terminal residues of HIV-1 reverse transcriptase, Nucleic Acids Res. 18:5359–5363.PubMedGoogle Scholar
  133. Moelling, K., Bolognesi, D. P., Bauer, H., Busen, W., Plassmann, H. W., and Hausen, P., 1971, Association of viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids, Nature New Biol. 234:240–243.Google Scholar
  134. Nagayama, K., Yamazaki, T., Yoshida, M., Kanaya, S., and Nakamura, H., 1990, Combination of heteronuclear 1H-15N and 1H-13C three-dimensional nuclear magnetic resonance experiments for amide-directed sequential assignment in larger proteins, J. Biochem. 108:149–152.PubMedGoogle Scholar
  135. Naito, S., and Uchida, H., 1986, RNase H and replication of ColEl DNa in Escherichia coli, J. Bacteriol. 166:143–147.PubMedGoogle Scholar
  136. Naito, S., Kitani, T., Ogawa, T., Okazaki, T., and Uchida, H., 1984, Escherichia coli mutants suppressing replication-defective mutations of the ColEl plasmid, Proc. Natl. Acad. Sci. USA 81:550–554.PubMedGoogle Scholar
  137. Nakai, C, Konishi, A., Komatsu, Y., Inoue, H., Ohtsuka, E., and Kanaya, S., 1994, Sequence-specific cleavage of RNA by a hybrid ribonuclease H, FEBS Lett. 339:67–72.PubMedGoogle Scholar
  138. Nakamura, H., Katayanagi, K., Morikawa, K., and Ikehara, M., 1991a, Structural models of ribonuclease H domains in reverse transcriptases from retroviruses, Nucleic Acids Res. 19:1817–1823.PubMedGoogle Scholar
  139. Nakamura, H., Oda, Y., Iwai, S., Inoue, H., Ohtsuka, E., Kanaya, S., Kimura, S., Katsuda, C., Katayanagi, K., Morikawa, K., Miyashiro, H., and Ikehara, M., 1991b, How does RNase H recognize a DNARNA hybrid? Proc. Natl. Acad. Sci. USA 88:11535-11539.Google Scholar
  140. Nanni, R. G., Ding, J., Jacobo-Molina, A., Hughes, S. H., and Arnold, E., 1993, Review of HIV-1 reverse transcriptase three-dimensional structure: Implications for drug design, Perspect. Drug Discov. Design 1:129–150.Google Scholar
  141. Neri, D., Wider, G., and Wuthrich, K., 1992a, Complete 15N and 1H NMR assignments for the amino-terminal domain of the phage 434 repressor in the urea-unfolded form, Proc. Natl. Acsd. Sci. USA 89:4397–4401.Google Scholar
  142. Neri, D., Billeter, M., Wider, G., and Wuthrich, K., 1992b, NMR determination of residual structure in a urea-denatured protein, the 434-repressor, Science 257:1559–1563.PubMedGoogle Scholar
  143. Nomura, T., Aiba, H., and Ishihama, A., 1985, Transcriptional organization of the convergent overlapping dnaQ-rnh genes of Escherichia coli, J. Biol. Chem. 260:7122–7125.PubMedGoogle Scholar
  144. Oda, Y., Nakamura, H., Kanaya, S., and Ikehara, M., 1991, Binding of metal ions to E. coli RNase HI observed by 1H-15N heteronuclear 2D NMR, J. Biomol. NMR 1:247–255.PubMedGoogle Scholar
  145. Oda, Y., Nakamura, H., Yamazaki, T., Nagayama, K., Yoshida, M., Kanaya, S., and Ikehara, M., 1992, 1H NMR studies of deuterated ribonuclease HI selectively labeled with protonated amino acids, J. Biomol. NMR 2:137–147.PubMedGoogle Scholar
  146. Oda, Y., Yoshida, M., and Kanaya, S., 1993a, Role of His124 in the catalytic function of ribonuclease HI from Escherichia coli, J. Biol. Chem. 268:88–92.PubMedGoogle Scholar
  147. Oda, Y., Iwai, S., Ohtsuka, E., Ishikawa, M., Ikehara, M., and Nakamura, H., 1993b, Binding of nucleic acids to E. coli RNase HI observed by NMR and CD spectroscopy, Nucleic Acids Res., 21:4690–4695.PubMedGoogle Scholar
  148. Oda, Y., Yamazaki, T., Nagayama, K., Kanaya, S., Kuroda, Y., and Nakamura, H., 1994, Individual ionization constants of all the carboxyl groups in ribonuclease HI from Escherichia coli determined by NMR, Biochemistry 33:5275–5284.PubMedGoogle Scholar
  149. Ogawa, T., and Okazaki, T., 1984, Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli, Mol. Gen. Genet. 193:231–237.PubMedGoogle Scholar
  150. Ogawa, T., Pickett, G. G., Kogoma, T., and Kornberg, A., 1984, RNase H confers specificity in the dnaA-dependent initiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro, Proc. Natl. Acad. Sci. USA 81:1040–1044.PubMedGoogle Scholar
  151. Ohmori, H., Murakami, Y., and Nagata, T., 1987, Nucleotides sequences required for a ColEl-type plasmid to replicate in Escherichia coli cells with or without RNase H, J. Mol. Biol. 198:223–234.PubMedGoogle Scholar
  152. Okayama, H., and Berg, P., 1982, High-efficiency cloning of full-length cDNA, Mol. Cell. Biol. 2:161–170.PubMedGoogle Scholar
  153. Oyama, F., Kikuchi, R., Crouch, R. J., and Uchida, T., 1989, Intrinsic properties of reverse transcriptase in reverse transcription: Associated RNase H is essentially regarded as an endonuclease, J. Biol. Chem. 264:18808–18817.PubMedGoogle Scholar
  154. Parsons, S. M., and Raftery, M. A., 1972, Ionization behavior of the catalytic carboxyls of lysozyme. Effects of ionic strength, Biochemistry 11:1623–1629.PubMedGoogle Scholar
  155. Peliska, J. A., and Benkovic, S. J., 1992, Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase, Science 258:1112–1118.PubMedGoogle Scholar
  156. Post, K., Guo, J., Kaiman, E., Uchida, T., Crouch, R. J., and Levin, J. G., 1993, A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities, Biochemistry 32:5508–5517.PubMedGoogle Scholar
  157. Powers, R., Clore, G. M., Stahl, S. J., Wingfield, P. T., and Gronenborn, A., 1992, Analysis of the backbone dynamics of the ribonuclease H domain of the human immunodeficiency virus reverse transcriptase using 15N relaxation measurements, Biochemistry 31:9150–9157.PubMedGoogle Scholar
  158. Prasad, V. R., and Goff, S. P., 1989, Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: Definition of the minimal polymerase domain, Proc. Natl. Acad. Sci. USA 86:3104–3108.PubMedGoogle Scholar
  159. Quinones, A., Kucherer, C, Piechocki, R., and Messer, W., 1987, Reduced transcription of the rnh gene in Escherichia coli mutants expressing the SOS regulon constitutively, Mol. Gen. Genet. 206:95–100.PubMedGoogle Scholar
  160. Ratner, L., Haseltine, W., Patarca, R., Livak, K. J., Starcich, B., Josephs, S. F., Doran, E. R., Rafalski, J. A., Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway, S. R., Jr., Pearson, M. L., Lautenberger, J. A., Papas, T. S., Ghrayeb, J., Chang, N. T., Gallo, R. C, and Wong-Staal, F., 1985, Complete nucleotide sequence of the AIDS virus, HTLV-III, Nature 313:277–283.PubMedGoogle Scholar
  161. Reinstein, J., Brune, M., and Wittinghofer, A., 1988, Mutations in the nucleotide binding loop of adcnylate kinasc of Escherichia coli, Biochemistry 27:4712–4720.PubMedGoogle Scholar
  162. Repaske, R., Hartley, J. W., Kavlick, M. F., O’Neill, R. R., and Austin, J. B., 1989, Inhibition of RNase H activity and viral replication by single mutations in the 3′ region of Moloney murine leukemia virus reverse transcriptase, J. Virol. 63:1460–1464.PubMedGoogle Scholar
  163. Restle, T., Muller, B., and Goody, R. S., 1992, RNase H activity of HIV reverse transcriptases is confined exclusively to the dimeric forms, FEBS Lett 300:97–100.PubMedGoogle Scholar
  164. Robertson, H. D., and Dunn, J. J., 1975, Ribonucleic acid processing activity of Escherichia coli by ribonuclease III, J. Biol. Chem. 250:3050–3056.PubMedGoogle Scholar
  165. Rong, Y. W., and Carl, P. L., 1990, On the molecular weight and subunit composition of calf thymus ribonuclease HI, Biochemistry 29:383–389.PubMedGoogle Scholar
  166. Saison-Behmoaras, T., Tocque, B., Rey, I., Chassignol, M., Thuong, N. T., and Helene, C., 1991, Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation, EMBO J. 10:1111–1118.PubMedGoogle Scholar
  167. Schatz, O., Cromme, F. V., Gruninger-Leitch, R., and Le Grice, S. F. J., 1989, Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function, FEBS Lett. 257:311–314.PubMedGoogle Scholar
  168. Schatz, O., Mous, J., and Le Grice, S. F. J., 1990, HIV-1 RT-associated ribonuclease H displays both endonuclease and 3′→5′ exonuclease activity, EMBO J. 9:1171–1176.PubMedGoogle Scholar
  169. Schulze, T., Nawrath, M., and Moelling, K., 1991, Cleavage of the HIV-1 p66 reverse transcriptase/RNase H by the p9 protease in vitro generates active p15 RNase H, Arch. Virol. 118:179–188.PubMedGoogle Scholar
  170. Shibahara, S., Mukai, S., Nishihara, T., Inoue, H., Ohtsuka, E., and Morisawa, H., 1987, Site-directed cleavage of RNA, Nucleic Acids Res. 15:4403–4415.PubMedGoogle Scholar
  171. Shinnick, T. M., Lerner, R. A., and Sutcliffe, J. G., 1981, Nucleotide sequence of Moloney murine leukemia virus, Nature 293:543–548.PubMedGoogle Scholar
  172. Smith, J. S., and Roth, M. J., 1993, Purification and characterization of an active human immunodeficiency virus type 1 RNase H domain, J. Virol. 67:4037–4049.PubMedGoogle Scholar
  173. Starnes, M. C., and Cheng, Y-C., 1989, Human immunodeficiency virus reverse transcriptase-associated RNase H activity, J. Biol. Chem. 264:1013–1017.Google Scholar
  174. Stein, H., and Hausen, P., 1969, Enzyme from calf thymus degrading the RNA moiety of DNA-RNA hybrids: Effect on DNA-dependent RNA polymerase, Science 166:393–395.PubMedGoogle Scholar
  175. Stockman, B. J., Euvrard, A., and Scahill, T. A., 1993, Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: The A-state of human ubiquitin, J. Biomol. NMR 3:285–296.PubMedGoogle Scholar
  176. Suck, D., and Oefner, C, 1986, Structure of DNase I at 2.0 Å resolution suggests a mechanism for binding to and cutting DNA, Nature 321:620–625.PubMedGoogle Scholar
  177. Tagaya, M., Yagami, T., Noumi, T., Futai, M., Kishi, F., Nakazawa, A., and Fukui, T., 1989, Site-directed mutagenesis of Pro-17 located in the glycine-rich region of adenylate kinase, J. Biol. Chem. 264:990–994.PubMedGoogle Scholar
  178. Tan, C-K., Zhang, J., Li, Z-Y., Tarpley, W. G., Downey, K. M., and So, A. G., 1991, Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase, Biochemistry 30:2651–2655.PubMedGoogle Scholar
  179. Tanese, N., and Goff, S. P., 1988, Domain structure of the Moloney murine leukemia virus reverse transcriptase: Mutational analysis and separate expression of the DNA polymerase and RNase H activities, Proc. Natl. Acad. Sci. USA 85:1777–1781.PubMedGoogle Scholar
  180. Tanese, N., Telesnitsky, A., and Goff, S. P., 1991, Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function, J. Virol. 65:4387–4397.PubMedGoogle Scholar
  181. Tashiro, F., and Ueno, Y., 1978a, Ribonuclease H from rat liver: I. Partial purification and characterization of nuclear ribonuclease H, J. Biochem. 84:385–393.PubMedGoogle Scholar
  182. Tashiro, F., and Ueno, Y., 1978b, Ribonuclease H from rat liver: II. Partial purification and characterization of cytosol ribonuclease H, J. Biochem. 84:395–402.PubMedGoogle Scholar
  183. Taylor, J. W., Ott, J., and Eckstein, F., 1985, The rapid generation of oligonucleotide-directed mutations at high frequence using phosphorothioate-modified DNA, Nucleic Acids Res. 13:8764–8785.Google Scholar
  184. Telesnitsky, A., and Goff, S. P., 1993, RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template, Proc. Natl. Acad. Sci. USA 90:1276–1280.PubMedGoogle Scholar
  185. Telesnitsky, A., Blain, S. W., and Goff, S. P., 1992, Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H, J. Virol. 66:615–622.PubMedGoogle Scholar
  186. Tisdale, M., Schulze, T., Larder, B. A., and Moelling, K., 1991, Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity, J. Gen. Virol. 72:59–66.PubMedGoogle Scholar
  187. Varmus, H., 1988, Retroviruses, Science 240:1427–1435.PubMedGoogle Scholar
  188. Volkmann, S., Wohrl, B. M., Tisdale, M., and Moelling, K., 1993, Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxyl-terminal amino acid residues conserved among retroviral ribonucleases H, J. Biol. Chem. 268:2674–2683.PubMedGoogle Scholar
  189. Vonwirth, H., Frank, P., and Busen, W., 1989, Serological analysis and characterization of calf thymus ribonuclease HIIb, Eur. J. Biochem. 184:321–329.PubMedGoogle Scholar
  190. Walder, R. Y., and Walder, J. A., 1988, Role of RNase H in hybrid-arrested translation by antisense oligonucleotides, Proc. Natl. Acad. Sci. USA 85:5011–5015.PubMedGoogle Scholar
  191. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982, Distantly related sequences in the α-and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1:945–951.PubMedGoogle Scholar
  192. Wang, A. H.-J., Fujii, S., van Boom, J. H., van der Marel, G. A., van Bœckei, S. A., and Rich, A., 1982, Molecular structure of r(GCG)d(TATACGC): A DNA-RNA hybrid helix joined to double helical DNA, Nature 299:601–604.PubMedGoogle Scholar
  193. Wintersberger, U., 1990, Ribonucleases H of retroviral and cellular origin, Pharmacol. Ther. 48:259–280.PubMedGoogle Scholar
  194. Wohrl, B. M., and Moelling, K., 1990, Interaction of HIV-1 ribonuclease H with polypurine tract containing RNA-DNA hybrids, Biochemistry 29:10141–10147.PubMedGoogle Scholar
  195. Wohrl, B. M., Volkmann, S., and Moelling, K., 1991, Mutations of a conserved residue within HIV-1 ribonuclease H affect its exo-and endonuclease activities, J. Mol. Biol. 220:801–818.PubMedGoogle Scholar
  196. Wyers, F., Sentenac, A., and Fromageot, P., 1973, Role of DNA-RNA hybrids in eukaryotes: Ribonuclease H in yeast, Eur. J. Biochem. 35:270–281.PubMedGoogle Scholar
  197. Wyers, F., Sentenac, A., and Fromageot, P., 1976a, Role of DNA-RNA hybrids in eukaryotes: Purification of two ribonucleases H from yeast cells, Eur. J. Biochem. 69:377–383.Google Scholar
  198. Wyers, F., Fuet, J., Sentenac, A., and Fromageot, P., 1976b, Role of DNA-RNA hybrids in eukaryotes: Characterization of yeast ribonucleases H1 and H2, Eur. J. Biochem. 69:385–395.Google Scholar
  199. Yamazaki, T., Yoshida, M., Kanaya, S., Nakamura, H., and Nagayama, K., 1991, Assignments of backbone 1H, 13C, and 15N resonance and secondary structure of ribonuclease H from Escherichia coli by heteronuclear three-dimensional NMR spectroscopy, Biochemistry 30:6036–6047.PubMedGoogle Scholar
  200. Yamazaki, T., Yoshida, M., and Nagayama, K., 1993, Complete assignments of magnetic resonances of ribonuclease H from Escherichia coli by double-and triple-resonance 2D and 3D NMR spectroscopies, Biochemistry 32:5656–5669.PubMedGoogle Scholar
  201. Yang, W., Hendrickson, W. A., Kaiman, E. T., and Crouch, R. J., 1990a, Expression, purification, and crystallization of natural and selenomethionyl recombinant ribonuclease H from Escherichia coli, J. Biol. Chem. 265:13553–1355PubMedGoogle Scholar
  202. Yang, W., Hendrickson, W. A., Crouch, R. J., and Satow, Y., 1990b, Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein. Science 249:1398–1405.PubMedGoogle Scholar
  203. Yoneya, T., Tagaya, M., Kishi, F., Nakazawa, A., and Fukui, T., 1989, Site-directed mutagenesis of Gly-15 and Gly-20 in the glycine-rich region of adenylate kinase, J. Biochem. 105:158–160.PubMedGoogle Scholar
  204. Zuckermann, R. N., and Schultz, P. G., 1988, H hybrid sequence-selective ribonuclease S, J. Am. Chem. Soc. 110:6592–6594.Google Scholar
  205. Zuckermann, R. N., and Schultz, P. G., 1989, Site-selective cleavage of structural RNA by a staphylococcal nuclease-DNA hybrid, Proc. Natl. Acad. Sci. USA 86:1766–1770.PubMedGoogle Scholar
  206. Zuckermann, R. N., Corey, D. R., and Schultz, P. G., 1988, Site-selective cleavage of RNA by a hybrid enzyme, J. Am. Chem. Soc. 110:1614–1615.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Shigenori Kanaya
    • 1
  • Morio Ikehara
    • 1
  1. 1.Protein Engineering Research InstituteOsaka 565Japan

Personalised recommendations