Skip to main content

Role of Allosteric Changes in Cyclic AMP Receptor Protein Function

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 24))

Abstract

The idea that conformational changes may be controlled by a ligand binding was first pointed out in explaining the hornotropic cooperative binding of O2 to hemoglobin which has four O2 binding sites (Wyman, 1948; Wyman and Allen, 1951). The term reversible allosteric transition, which is an expression of such ligand-induced conformational changes, was introduced later (Monod and Jacob, 1961; Monod et al., 1963). An ideal system to study allostery is the interaction of cyclic AMP (cAMP) and its receptor protein (CRP). cAMP and CRP are two “master elements” of a vast global regulatory network in Escherichia coli (reviewed in Kolb et al., 1993). The level of cAMP dramatically changes in response to the nature of energy sources for cell growth. The CRP level also varies in the cell depending on the energy sources. When present in effective concentrations, cAMP binds to CRP, and the resulting complex regulates transcription of many genes. The most studied role of the cAMP-CRP complex is its role as an activator of transcription initiation. The protein is a homodimer of a 209 amino acid subunit. Two molecules of cAMP can bind to CRP, one to each subunit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiba, H., and Krakow, J. S., 1981, Isolation and characterization of the amino and carboxyl proximal fragments of the adenosine cyclic 3′,5′-phosphate receptor protein of Escherichia coli, Biochemistry 20:4774–4780.

    Article  PubMed  CAS  Google Scholar 

  • Aiba, H., Nakumura, T., Mitani, H., and Mori, H., 1985, Mutations that alter the allosteric nature of cAMP receptor protein of Escherichia coli, EMBO J. 4:3329–3332.

    PubMed  CAS  Google Scholar 

  • Barber, A. M., and Zhurkin, V. B., 1990, CAP binding sites reveal pyrimidine-purine pattern characteristic of DNA bending. J. Biomol. Struct. Dyn. 8:213–232.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A., Gaston, K., Williams, R., Chapman, K., and Kolb, A., 1990, Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to active transcription, Nucleic Acids Res. 18:7243–7250.

    Article  PubMed  CAS  Google Scholar 

  • DeGrazia, H., Harman, J. G., Tan, G. S., and Wartell, R., 1990, Investigation of the cAMP receptor protein secondary structure by Raman spectroscopy, Biochemistry 29:3557–3562.

    Article  PubMed  CAS  Google Scholar 

  • Ebright, R. H., 1993, Transcription activation at Class I CAP-dependent promoters, Mol. Microbiol. 8:792–802.

    Article  Google Scholar 

  • Ebright, R. H., LeGrice, S. R., Miller, J. P., and Krakow, J. S., 1985, Analysis of cyclic AMP analogues that elicit the biochemically defined conformational change in catabolite gene activator protein (CAP) but do not stimulate binding to DNA, J. Mol. Biol. 182:91–107.

    Article  PubMed  CAS  Google Scholar 

  • Ebright, R. H., Kolb, A., Buc, H., Kunkel, T. A., Krakow, J. S., and Beckwith, J., 1987, Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: Altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP, Proc. Natl. Acad. Sci. USA 84:6083–6087.

    Article  PubMed  CAS  Google Scholar 

  • Ebright, R. H., Gunasekera, A., Zhang, X., Kunkel, T. A., and Krakow, J. S., 1990, Lysine 188 of the catabolite gene activator protein (CAP) plays a role in specificity at base pair 7 of the DNA half site, Nucleic Acids Res. 18:1457–1464.

    Article  PubMed  CAS  Google Scholar 

  • Eilen, E., and Krakow, J. S., 1977, Cyclic AMP-mediated intersubunit disulfide crosslinking of the cyclic AMP receptor protein of Escherichia coli, J. Mol. Biochem. 114:47–60.

    CAS  Google Scholar 

  • Eilen, E., Pampeno, C., and Krakow, J. S., 1978, Production and properties of the a core derived from the cyclic adenosine monophosphate receptor protein of Escherichia coli, Biochemistry 17:2469–2473.

    Article  PubMed  CAS  Google Scholar 

  • Emmer, M., deCrombrugghe, B., Pastan, I., and Perlman, R., 1970, Cyclic AMP receptor protein of E. coli: Its role in the synthesis of inducible enzymes, Proc. Natl. Acad. Sci. USA 66:80–487.

    Article  Google Scholar 

  • Eschenlauer, A. C, and Reznikoff, W. S., 1991, Escherichia coli catabolite gene activator protein mutants defective in positive control of lac operon transcription, J. Bacteriol. 173:5024–5029.

    PubMed  CAS  Google Scholar 

  • Fried, M. G., and Crothers, D. M., 1983, CAP and RNA polymerase interactions with the lac promoter: Binding stoichiometry and long range effects, Nucleic Acids Res. 11:141–158.

    Article  PubMed  CAS  Google Scholar 

  • Fried, M. G., and Crothers, D. M., 1984, Equilibrium studies of the cyclic AMP receptor protein-DNA interaction, J. Mol. Biol. 172:241–262.

    Article  PubMed  CAS  Google Scholar 

  • Garges, S., and Adhya, S., 1985, Sites of allosteric shift in the structure of the cyclic AMP receptor protein, Cell 41:745–751.

    Article  PubMed  CAS  Google Scholar 

  • Garges, S., and Adhya, S., 1988, Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): Intragenic suppressors of cyclic AMP-independent CRP mutations, J. Bacteriol. 170:1417–1422.

    PubMed  CAS  Google Scholar 

  • Gaston, K., Bell, A., Kolb, A., Buc, H., and Busby, S., 1990, Stringent spacing requirements for transcription activation by CRP, Cell 62:733–743.

    Article  PubMed  CAS  Google Scholar 

  • Gronenborn, A., and Clore, G. M., 1982, Proton nuclear magnetic resonance studies on cyclic nucleotide binding to the Escherichia coli adenosine cyclic 3′,5′-phosphate receptor protein, Biochemistry 21:4040–4048.

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera, A., Ebright, Y. W., and Ebright, R. H., 1992, DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein, J. Biol. Chem. 267:14713–14720.

    PubMed  CAS  Google Scholar 

  • Harman, J. G., McKenney, K., and Peterkofsky, A., 1986, Structure-function analysis of three cAMP-independent forms of the cAMP receptor protein, J. Biol. Chem. 261:16332–16339.

    PubMed  CAS  Google Scholar 

  • Heyduk, T., and Lee, J. C., 1989, Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities, Biochemistry 28:6914–6924.

    Article  PubMed  CAS  Google Scholar 

  • Heyduk, T., and Lee, J. C, 1990, Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and lac promoter interaction, Proc. Natl. Acad. Sci. USA 87:1744–1748.

    Article  PubMed  CAS  Google Scholar 

  • Heyduk, T., and Lee, J. C., 1992, Global conformational changes in allosteric proteins, J. Biol. Chem. 267:3200–3204.

    PubMed  CAS  Google Scholar 

  • Heyduk, T., Lee, J. C., Ebright, Y. W., Blatter, E. E., Zhou, Y., and Ebright, R. H., 1993, CAP interacts with polymerase in solution in the absence of promoter DNA, Nature 364:548–549.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, J. M., Crowe, L. G., and Fried, M. G., 1990, A new DNA binding mode for CAP, J. Biol. Chem. 265:3219–3224.

    PubMed  CAS  Google Scholar 

  • Hyde, C., Ahmed, S., Padlan, E., Miles, E. W., and Davies, D., 1988, Three-dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium, J. Biol. Chem. 263:17857–17871.

    PubMed  CAS  Google Scholar 

  • Igarashi, K., and Ishihama, A., 1991, Bipartite functional map of the E. coli RNA polymerase α subunit: Involvement of the C-terminal region in transcriptional activity by cAMP-CRP, Cell 65:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • Ishihama, A., 1993, Protein-protein communication within the transcription apparatus, J. Bacteriol. 175:2483–2489.

    PubMed  CAS  Google Scholar 

  • Ivanov, V. I., Minchenkova, L. E., Chernov, B. K., McPhie, P., Ryu, S., Garges, S., Barber, A. M., Zhurkin, V. B., and Adhya, S., 1993, CRP-DNA complexes: Inducing the A-like form in the binding sites with an extended central spacer. J. Mol. Biol. (submitted).

    Google Scholar 

  • Jansen, C., Gronenbom, A., and Clore, G. M., 1987, The binding of cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA, Biochem. J. 246:227–232.

    PubMed  CAS  Google Scholar 

  • Kim, J., Zwieb, C., Wu, C., and Adhya, S., 1989, Binding of DNA by gene regulatory proteins: Construction and use of a DNA bending vector, Gene 85:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Adhya, S., and Garges, S., 1992, Allosteric changes in the cAMP receptor protein of Escherichia coli: Hinge reorientation, Proc. Natl. Acad. Sci. USA 89:9700–9704.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, A., Spassky, A., Chapon, C, Blazy, B., and Buc, H., 1983, On the different binding affinities of CRP at the lac, gal and malT promoter regions, Nucleic Acids Res. 11:7833–7852.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, A., Busby, S., Buc, H., Garges, S., and Adhya, S., 1993, Transcriptional regulation by cAMP and its receptor protein, Anna. Rev. Biochem. 62:749–795.

    Article  CAS  Google Scholar 

  • Koshland Jr., D. E., Nemethy, G., and Filmer, D., 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5:365–385.

    Article  PubMed  CAS  Google Scholar 

  • Krakow, J. S., and Pastan, I., 1973, Cyclic adenosine monophosphate receptor: Loss of cAMP-dependent DNA binding activity after proteolysis in the presence of cyclic adenosine mono-phosphate, Proc. Natl. Acad. Sci. USA 70:2529–2533.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Murthy, N., and Krakow, J. S., 1980, Ligand-induced change in the radius of gyration of cAMP receptor protein from Escherichia coli, FEBS Lett. 109:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Liu-Johnson, H. N., Gartenberg, M., and Crothers, D., 1986, The DNA binding domain and bending of E. coli CAP protein, Cell 47:995–1005.

    Article  PubMed  CAS  Google Scholar 

  • Luisi, B., and Sigler, P., 1990, The stereochemistry and biochemistry of the trp repressor-operator complex, Biochem. Biophys. Acta 1048:113–126.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, B. W., 1987, Genetic and structural analysis of the protein stability problem, Biochemistry 26:6885–6888.

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., and Jacob, F., 1961, Cold Spring Harbor Symp. Quant. Biol. 26:389–401.

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., Changeux, J. P., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol. Biol. 6:306–329.

    Article  PubMed  CAS  Google Scholar 

  • Murgola, E., and Yanofsky, C., 1974, Selection of new amino acids at position 211 of the tryptophan synthetase a chain of Escherichia coli, J. Mol. Biol. 86:775–784.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S., Hyde, C, and Miles, E., 1989, The alpha subunit of tryptophan synthase. Evidence that aspartic acid 60 is a catalytic residue and that the double alteration of residues 175 and 211 in a second-site revenant restores the proper geometry of the substrate binding site, J. Biol. Chem. 264:6288–6296.

    PubMed  CAS  Google Scholar 

  • Ren, Y. L., Garges, S., Adhya, S., and Krakow, J. S., 1988, Cooperative binding of heterologeric proteins: Evidence for contact between the cyclic AMP receptor protein and RNA polymerase, Proc. Natl. Acad. Sci. USA 85:4138–4142.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, S., Kim, J., Adhya, S., and Garges, S., 1993, Pivotal role of amino acid at position 138 in the allosteric hinge reorientation of cAMP receptor protein, Proc. Nad. Acad. Sci. USA 90:75–79.

    Article  CAS  Google Scholar 

  • Ryu, S., Garges, S., and Adhya, S., 1994, An arcane role of DNA in transcription activation, Proc. Nad. Acad. Sci. USA 91:8582–8586.

    Article  CAS  Google Scholar 

  • Saxe, S., and Revzin, A., 1979, Cooperative binding to DNA of catabolite activator protein of Escherichia coli, Biochemistry 18:255–263.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, S. C., Shields, G. C., and Steitz, T. A., 1991, Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees, Science 253:1001–1007.

    Article  PubMed  CAS  Google Scholar 

  • Shumilov, V. Y., 1987, Minor promoters of bacteriophage ϕ)X174 are controlled by CRP-cAMP, lexA, glnG, and several other global regulatory systems of the host cell. Mol. Biol. (Engl. transi.) 21:168–187.

    Google Scholar 

  • Takahashi, M., Blazy, B., and Baudras, A., 1979, Non-specific interactions of CRP from E. coli with native and denatured DNAs: Control of binding by cAMP and cGMP and by cation concentration. Nucleic Acids Res. 7:1699–1712.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Blazy, B., and Baudras, A., 1980, An equilibrium study of the cooperative binding of adenosine cyclic 3′,5′-monophosphate and guanosine cyclic 3′,5′-monophosphate to the adenosine cyclic 3′,5′-monophosphate receptor protein from Escherichia coli. Biochemistry 19:5124–5130.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Blazy, B., Baudras, S., and Hillen, W., 1983, On the origin of selectivity in recognition by cyclic adenosine 3′,5′-monophosphate receptor protein of its specific binding site of the lactose promoter, J. Mol Biol. 167:895–899.

    Article  PubMed  CAS  Google Scholar 

  • Tan, G. S., Kelly, P., Kim, J., and Wartell, R. M., 1991, Comparison of cAMP receptor protein (CRP) and a cAMP-independent form of CRP by Raman spectroscopy and DNA binding, Biochemistry 30:5076–5080.

    Article  PubMed  CAS  Google Scholar 

  • Ushida, C., and Aiba, H., 1990, Helical phase dependent action of CRP: Effect of the distance between the CRP site and the — 35 region on promoter activity, Nucleic Acids Res. 18:6325–6330.

    Article  PubMed  CAS  Google Scholar 

  • Weber, I. T., and Steitz, T. A., 1987, Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution, J. Mol. Biol. 198:311–326.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H. M., and Crothers, D. M., 1984, The locus of sequence-directed and protein-induced DNA bending, Nature 308:509–513.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, J., 1948, Adv. Protein Chem. 4:407–531.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, J., and Allen, D. W., 1951, J. Polymer Sci. 7:499–518.

    Article  CAS  Google Scholar 

  • Zhang, X. P., and Ebright, R. H., 1990, Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex, Proc. Natl. Acad. Sci. USA 87:4717–4721.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Busby, S., and Ebright, R. H., 1993a, Identification of the functional subunit of a dimeric transcription activator protein by use of oriented heterodimers, Cell 73:375–379.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Y., Zhang, X., and Ebright, R. H., 1993b, Identification of the activating region of catabolite gene activator protein (CAP): Isolation and characterization of mutants of CAP specifically defective in transcription activation, Proc. Natl. Acad. Sci. USA 90:6081–6085.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adhya, S., Ryu, S., Garges, S. (1995). Role of Allosteric Changes in Cyclic AMP Receptor Protein Function. In: Biswas, B.B., Roy, S. (eds) Proteins: Structure, Function, and Engineering. Subcellular Biochemistry, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1727-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1727-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1729-4

  • Online ISBN: 978-1-4899-1727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics