Skip to main content

In Situ Ellipsometry and FTIR Spectroscopy Applied to Electroactive Polymer-Modified Electrodes

  • Chapter
Electroactive Polymer Electrochemistry

Abstract

Characterizing films on electrode surfaces has always been a challenging problem in electrochemistry. Recent developments have lent new impetus to efforts to adapt classical spectroscopic techniques to make them suitable for studies of these films. Such studies have found considerable contemporary importance in the chemical modification of electrodes(1) and in the discovery of electronically conducting heterocyclic polymers.(2) Two techniques have especially played key roles in this area: ellipsometry and in situ Fourier transform infrared (FTIR), the first providing a measure of film thickness and overall composition and the second, data on molecular composition. Most importantly both methods can be used to study films in situ during electrochemical growth, cycling, and degradation, thus providing information of direct relevance to that obtained by other electrochemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Murray, ed., in Techniques of Chemistry, vol. 22 ( A. Weissberger, ed.) (Wiley, New York, 1992 ).

    Google Scholar 

  2. Handbook of Conducting Polymers, T. A. Skotheim, (ed.) ( Marcel Dekker, New York, 1986 ).

    Google Scholar 

  3. R. Greef, in Comprehensive Treatise of Electrochemistry (R. E. White, J. O’M. Bockris, B. E. Conway, and E. Yeager, eds.) ( Plenum Press, New York, 1984 ) p. 339.

    Google Scholar 

  4. P. A. Christensen and A. Hamnett in Comprehensive Chemical Kinetics,vol. 29 (R. G. Compton and A. Hamnett, eds.) (Elsevier, Amsterdam, 1989), chap. 1.

    Google Scholar 

  5. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarised Light ( North-Holland Publ., Amsterdam, 1987 ).

    Google Scholar 

  6. S. Gottesfeld, in Electroanalytical Chemistry: A Series of Advances, vol. 15 ( A. J. Bard, ed.) ( Marcel Dekker, New York, 1989 ), p. 143.

    Google Scholar 

  7. C. M. Carlin, L. J. Kepley, and A. J. Bard, J. Electrochem. Soc. 132, 353 (1985).

    Article  CAS  Google Scholar 

  8. B. Beden and C. Lamy in Spectroelectrochemistry (R. J. Gale, ed.) (Plenum Press, New York, 1988), chap. 5.

    Google Scholar 

  9. B. Beden, C. Lamy, A. Bewick, and K. Kunimatsu J. Electroanal. Chem. 121, 343 (1981).

    Article  CAS  Google Scholar 

  10. G. R. J. Robertson, J. L. Ord, D. J. De Smet, and M. A. Hopper, J. Electrochem. Soc. 136, 3380 (1989).

    Article  CAS  Google Scholar 

  11. A. Hamnett and S. J. Higgins, Electrochimica Acta 36, 2123 (1991).

    Article  Google Scholar 

  12. R. Greef, M. Kalaji, and L. M. Peter, Faraday Discuss. Chem. Soc. 88, 277 (1989).

    Article  CAS  Google Scholar 

  13. S. Gottesfeld, A. Redondo, and S. W. Feldberg, J. Electrochem. Soc. 134, 271 (1987).

    Article  CAS  Google Scholar 

  14. A. Redondo, E. A. Ticianelli, and S. Gottesfeld, Mol. Cryst Liq. Cryst. 160, 185 (1988).

    Google Scholar 

  15. A. Redondo, E. A. Ticianelli, and S. Gottesfeld, Synth. Met. 29, E265 (1989).

    Article  CAS  Google Scholar 

  16. I. Rubenstein, J. Rishpon, E. Sabatani, A. Redondo, and S. Gottesfeld, J. Amer. Chem. Soc. 112, 6135 (1990).

    Article  Google Scholar 

  17. C. Lee, J. Kwak, and A. J. Bard, J. Electrochem. Soc. 136, 3720 (1989).

    Article  CAS  Google Scholar 

  18. A. Hamnett, S. J. Higgins, P. R. Fisk, and W. J. Albery, J. Electroanal. Chem. 270, 479 (1989).

    Article  CAS  Google Scholar 

  19. S. J. Higgins and A. Hamnett, Electrochimica Acta 36, 2123 (1991).

    Article  CAS  Google Scholar 

  20. P. A. Christensen and A. Hamnett, Electrochimica Acta 36, 1263 (1991).

    Article  CAS  Google Scholar 

  21. Y-T. Kim, D. L. Allara, R. W. Collins, and K. Vedam, Thin Solid Films 193/194, 350 (1990).

    Google Scholar 

  22. Y-T. Kim, R. W. Collins, K. Vedam, and D. L. Allara, J. Electrochem Soc. 138, 3267 (1991).

    Google Scholar 

  23. P. Pfluger, M. Krounbi, G. B. Street, and G. Weiser, J. Chem. Phys. 78, 3212 (1983)

    Google Scholar 

  24. K. Yakushi, L. J. Lauchlan, T. C. Clarke, and G. B. Street, J. Chem. Phys. 79, 4774 (1983).

    Google Scholar 

  25. J. C. Scott, P. Pfluger, M. T. Krounbi, and G. B. Street, Phys. Rev. B. 28, 2140 (1983).

    CAS  Google Scholar 

  26. F. Genoud, M. Guglielmi, M. Nechtschein, E. Genies, and M. Salmon, Phys. Rev. Lett. 55, 118 (1985).

    Article  CAS  Google Scholar 

  27. M. Nechtschein, F. Devreux, F. Genoud, E. Vieil, J. M. Pernaud, and E. Genies, Synth. Met. 15, 59 (1986).

    Article  CAS  Google Scholar 

  28. F. Devreux, F. Genoud, M. Nechtschein, and B. Villeret, Synth. Met. 18, 89 (1987).

    Article  CAS  Google Scholar 

  29. W. J. Albery, Farad. Disc. Royal Society Chem. 88, 247 (1989).

    Article  Google Scholar 

  30. A. M. Waller and R. G. Compton, J. Chem. Soc. Farad. Trans. 185, 977 (1989).

    CAS  Google Scholar 

  31. F. Moraes, H. E. Schaffer, M. Kobayashi, A. J. Heeger, and F. Wudl, Phys. Rev. B. 30, 2948 (1984).

    Article  CAS  Google Scholar 

  32. W. Hayes, F. L. Pratt, K. S. Wong, K. Kaneto, and K. Yoshino, J. Physics C, Sol. State Physics 18, L555 (1985).

    Article  CAS  Google Scholar 

  33. Y. H. Kim, S. Hotta, and A. J. Heeger, Phys. Rev. B36, 7486 (1987).

    Article  CAS  Google Scholar 

  34. K. Kaneto, F. Uesugi, and K. Yoshino, J. Phys. Soc. Jap. 56, 3703 (1987).

    Article  CAS  Google Scholar 

  35. E. W. Tsai, G. W. Jong, and K. Rajeshwar, J. Chem. Soc. Chem. Comm. 1776, (1987).

    Google Scholar 

  36. J. Heinze, M. Storzbach, and J. Mortensen, Ber. Bunsenges. Phys. Chem. 91, 960 (1987).

    CAS  Google Scholar 

  37. P. A. Christensen, A. Hamnett, A. R. Hillman, M. J. Swann and S. J. Higgins, J. Chem. Soc. Far. Trans. 89, 921 (1993).

    Article  CAS  Google Scholar 

  38. A. Hamnett and A. R. Hillman, Ber. Bunsenges. Phys. Chem. 91, 329 (1987).

    CAS  Google Scholar 

  39. A. Hamnett and A. R. Hillman, J. Electrochem. Soc. 135, 2517 (1988).

    Article  CAS  Google Scholar 

  40. P. Lang, F. Chao, M. Costa, E. Lheritier, and F. Gamier, Ber. Bunsenges. Phys. Chem. 92, 1528 (1988).

    CAS  Google Scholar 

  41. J. Zerbino, W. J. Plieth, C. Ullmann, and G. Kossmehl, J. Electroanal. Chem. 274, 213 (1989).

    Article  Google Scholar 

  42. J. Zerbino, W. J. Plieth, and G. Kossmehl, J Electroanal. Chem. 260, 361 (1989).

    Article  CAS  Google Scholar 

  43. R. Jansson, H. Arwin, G. Gustafsson, and O. Inganaas, Synthetic Metals 28, C371 (1989).

    Article  CAS  Google Scholar 

  44. J. L. Brédas, R. Thémans, J. M. André, A. J. Heeger, and F. Wudl, Synthetic Metals 11, 343 (1985).

    Article  Google Scholar 

  45. M. Kobayashi, C. Colaneri, M. Boysel, E. Wudl, and A. J. Heeger, J. Chem. Phys. 82, 5717 (1985).

    Article  CAS  Google Scholar 

  46. P. A. Christensen, J. C. H. Kerr, S. J. Higgins, and A. Hamnett, Faraday Disc. Chem. Soc. 88, 261 (1989).

    Article  CAS  Google Scholar 

  47. H. Neugebauer, G. Nauer, A. Neckel, G. Tourillon, F. Gamier, and P. Lang, J. Phys. Chem. 88, 652 (1984).

    Article  CAS  Google Scholar 

  48. S. I. Yaniger and D. W. Vidrine, Appl. Spectr. 40, 174 (1986).

    Article  CAS  Google Scholar 

  49. P. A. Christensen, A. Hamnett, A. R. Hillman, M. J. Swann, and S. J. Higgins, J. Chem. Soc. Farad. Trans. 88, 595 (1992).

    Article  CAS  Google Scholar 

  50. P. A. Christensen, A. Hamnett, A. R. Hillman, M. J. Swann, and S. J. Higgins, J. Chem. Soc. Farad. Trans. 89, 921 (1993).

    Article  CAS  Google Scholar 

  51. P. A. Christensen, A. Hamnett, and D. C. Read, Electrochimica Acta 39, 187 (1994).

    Article  CAS  Google Scholar 

  52. Z. Vardeny, J. Tanaka, H. Fujimoto, and M. Tanaka, Solid State Commun. 50, 937 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Higgins, S.J., Christensen, P.A., Hamnett, A. (1996). In Situ Ellipsometry and FTIR Spectroscopy Applied to Electroactive Polymer-Modified Electrodes. In: Lyons, M.E.G. (eds) Electroactive Polymer Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1715-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1715-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1717-1

  • Online ISBN: 978-1-4899-1715-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics