Ascobolus

  • Bernard Decaris
  • Jacqueline Girard
  • Gérard Leblon

Abstract

The genus Ascobolus belongs to the Ascomycetes subclass Pezizomycetidae. It is entirely coprophilous, composed mainly of octosporus bipolar heterothallic species such as Ascobolus stercorarius (Bull.) Schroet. (Bulliard, 1791; Schroeter, 1893; Dowding, 1931; Green, 1931; Bistis, and Olive, 1954), Ascobolus immersus (Rizet, 1939) and Ascobolus magnificus (Dodge, 1912, 1920; Gwynne-Vaughan and Williamson, 1932; Dodge and Seaver, 1946; Yu Sun, 1954). A. stercorarius produces tetrads which are often well ordered; whereas the spores of A. immersus are placed in a haphazard manner. The latter is utilized much more frequently for genetic studies due to the fact that its large ascospores (55–65 μ) can easily be manipulated under a binocular dissecting microscope.

Keywords

Ethyl Agar Hydroxide Transportation Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baranowska, H., 1970 Intragenic recombination within 164 locus of Ascobolus immersus in the presence of outside markers. Genet. Res. 16:185–206.PubMedCrossRefGoogle Scholar
  2. Bistis, G. N., 1956a Studies on the genetics of Ascobolus stercoranus (Bull.) Schrot. Bull. Torrey Bot. Club. 83:35–61.CrossRefGoogle Scholar
  3. Bistis, G. N., 1956b Sexuality in Ascobolus stercorarius. I. Morphology of the ascogonium; plasmogamy; evidence for a sexual hormonal mechanism. Am. J. Bot. 43:389–394.CrossRefGoogle Scholar
  4. Bistis, G. N., 1957 Sexuality in Ascobolus stercorarius. II. Preliminary experiments on various aspects of the sexual process. Am. J. Bot. 44:436–443.CrossRefGoogle Scholar
  5. Bistis, G. N. and L. S. Olive, 1954 Ascomycete spore mutants and their use in genetic studies. Science Wash., B.C. 120:3107.Google Scholar
  6. Bistis, G. N. and J. R. Raper, 1963 Heterothallism and sexuality in Ascobolus stercorarius. Am. J. Bot. 50:880–891.CrossRefGoogle Scholar
  7. Bulliard, P., 1791 Histoire des Champignons de la France. I:1–368.Google Scholar
  8. Chevaugeon, J., 1959a La zonation du thalle, phénomène périodique autonome chez l’ Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 248:1381–1384.Google Scholar
  9. Chevaugeon, J., 1959b Sur le déterminisme interne du rythme de croissance chez un mutant vague de l’ Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 248:1841–1844.Google Scholar
  10. Chevaugeon, J., 1959c Influence de quelques substances sur la manifestation du rythme de croissance chez Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 249:1703–1705.Google Scholar
  11. Decaris, B., C. Lefort and G. Rizet, 1972 Etude génétique d’un mutant instable chez le champignon Ascobolus immersus. Commun. Symp. Soc. Génét. Fr. (Strasbourg) pp. 10.Google Scholar
  12. Dodge, B. O., 1912 Artificial culture of Ascobolus and Aleuria. Mycologia 4:218–222.CrossRefGoogle Scholar
  13. Dodge, B. O., 1920 The life history of Ascobolus magnificus. Mycologia 12:115–134.CrossRefGoogle Scholar
  14. Dodge, B. O. and F. J. Seaver, 1946 Species of Ascobolus for genetic study. Mycologia 38:639–651.CrossRefGoogle Scholar
  15. Dowding, E. S., 1931 The sexuality of Ascobolus stercorarius and the transportation of the oïdia by mites and flies. Ann. Bot. (Lond.) 45:621–638.Google Scholar
  16. Emerson, S., 1966 Quantitative implications of the DNA repair model of gene conversion. Genetics 53:475–485.PubMedGoogle Scholar
  17. Emerson, S. and C. C. C. Yu Sun, 1967 Gene conversion in the Pasadena strain of Ascobolus immersus. Genetics 55:39–47.PubMedGoogle Scholar
  18. Gajewski, W., A. Paszewski, A. Dawidowicz and B. Dudzinka, 1968 Postmeiotic segregation in locus “46” of Ascobolus immersus. Genet. Res. 11:311–317.PubMedCrossRefGoogle Scholar
  19. Girard, J., 1973 Etude d’un cas de suppression localisée de la conversion chez Ascobolus immersus: mise en évidence d’un nouveau type de facteur affectant la recombinaison. Thèse de Doctorat 3ème cycle. Université de Paris-Sud, Orsay, France.Google Scholar
  20. Girard, J. and J-L. Rossignol, 1974 The suppression of gene conversion and intragenic crossing-over in Ascobolus immersus: evidence for modifiers acting at the heterozygous state. Genetics 76:221–243.PubMedGoogle Scholar
  21. Green, E., 1931 Observations on certain Ascobolaceae. Trans. Br. Mycol. Soc. 15:321–332.CrossRefGoogle Scholar
  22. Gwynne-Vaughan, H. C. I. and H. S. Williamson, 1932 The cytology and development of Ascobolus magnificus. Ann. Bot. (Lond.) 46:653–670.Google Scholar
  23. Holliday, R., 1964 A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.CrossRefGoogle Scholar
  24. Jupin, H., 1966 Etude préliminaire des phénomènes de sexualité chez l’Ascomycète Ascobolus immersus. Diplôme d’études supérieures de sciences naturelles, Université de Paris.Google Scholar
  25. Kruszewska, A. and W. Gajewski, 1967 Recombination within the F locus in Ascobolus immersus. Genet. Res. 9:159–177.CrossRefGoogle Scholar
  26. Leblon, G., 1970 Sur l’existence d’une corrélation entre l’agent mutagène et le spectre de conversions des mutants induits chez Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 271:196–199.Google Scholar
  27. Leblon, G., 1972a Mechanism of gene conversion in Ascobolus immersus. I. Existence of a correlation between the origin of mutants induced by differents mutagens and their conversion spectrum. Mol. Gen. Genet. 115:36–48.CrossRefGoogle Scholar
  28. Leblon, G., 1972b Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b1 or b2 mutants and their conversion spectrum. Mol. Gen. Genet. 116:322–335.PubMedCrossRefGoogle Scholar
  29. Leblon, G. and J-L. Rossignol, 1973 Mechanism of gene conversion in Ascobolus immersus. III. The interaction of heteroalleles in the conversion process. Mol. Gen. Genet. 122:165–182.PubMedCrossRefGoogle Scholar
  30. Lewis, L. A., and B. Decaris, 1974 The induction of apothecial formation in Ascobolus immersus by a spermatization technique, in manuscriptGoogle Scholar
  31. Lissouba, P., 1961 Mise en evidence d’une unite génétique polarisée et essai d’analyse d’un cas d’interférence négative. Thèse d’Etat, Université de Paris, et Ann. Sci. Nat. Bot. Biol. Vég. 44:641–720.Google Scholar
  32. Lissouba, P. and G. Rizet, 1960 Sur l’existence d’une unité génétique polarisée ne subissant que des échanges non réciproques. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 250:3408–3410.Google Scholar
  33. Lissouba, P., J. Mousseau, G. Rizet and J-L. Rossignol, 1962 Fine structures of genes in the ascomycete Ascobolus immersus. Adv. Genet. 11:343–380.CrossRefGoogle Scholar
  34. Makarewicz, A., 1964 First results of genetic analysis in series 726 of Ascobolus immersus. Acta Soc. Bot. Pol. 33:1–8.Google Scholar
  35. Makarewicz, A., 1966 Colourless mutants in Ascobolus immersus with alternative phenotypes. Acta Soc. Bot. Pol. 35:175–179.Google Scholar
  36. Mousseau, J., 1963 On the possibility of carrying out the functionnal test for allelism in the Ascomycete Ascobolus immersus. Proc. XI Int. Congr. Genet. 1:36.Google Scholar
  37. Mousseau, J., 1967 Analyse de la structure fine d’un gène chez Ascobolus immersus. Contribution à l’étude de la recombinaison méiotique. Thèse de Doctorat d’Etat, Université de Paris.Google Scholar
  38. Paquette, N., 1972 Cartographie préliminaire des mutants morphologiques de la souche S2 d’Ascobolus immersus et mise en évidence d’un nouveau système génétique pour l’étude de la recombinaison intragénique avec marqueurs externes chez ce champignon. Mém. Univ. Montréal. Google Scholar
  39. Paszewksi, A., 1967 A study on simultaneous conversion in linked genes in Ascobolus immersus. Genet. Res. 10:121–126.CrossRefGoogle Scholar
  40. Paszewski, A. and W. Prazmo, 1969 The bearing of mutant and cross specificity on the pattern of intragenic recombination. Genet. Res. 14:33–43.PubMedCrossRefGoogle Scholar
  41. Paszewski, A. and S. Surzycki, 1964 “Selfers” and high mutation rate during meiosis in Ascobolus immersus. Nature (Lond.) 204:809.CrossRefGoogle Scholar
  42. Paszewski, A., S. Surzycki and M. Mankowska, 1966 Chromosome maps in Ascobolus immersus (Rizet’s strain). Acta Soc. Bot. Pol. 35:181–188.Google Scholar
  43. Paszewski, A., W. Prazmo and E. Jaszczuk, 1971 Multiple recombinational events within the 84W locus of Ascobolus immersus. Genet. Res. 18:199–214.PubMedCrossRefGoogle Scholar
  44. Rizet, G., 1939 Sur les spores dimorphes et l’hérédité de leurs caractères chez un nouvel Ascobolus hétérothallique. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 208:1669.Google Scholar
  45. Rizet, G. and J-L. Rossignol, 1963 Sur la dissymétrie de certaines conversions et sur la dimension de l’erreur de copie chez Ascobolus immersus. Rev. Biol. Lisb. 3:261–268.Google Scholar
  46. Rizet, G. and J-L. Rossignol, 1966 Sur la dimension probable des échanges réciproques au sein d’un locus complexe d’ Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 262:1250–1253.Google Scholar
  47. Rizet, G., N. Engelman, C. Lefort, P. Lissouba and J. Mousseau, 1960a Sur un Ascomycète intéressant pour l’étude de certains aspects du problème de la structure du gène. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 250:2050–2052.Google Scholar
  48. Rizet, G., P. Lissouba and J. Mousseau, 1960b Les mutations d’ascospores chez l’ascomycète Ascobolus immersus et l’analyse fine de la structure des gènes. Bull. Soc. Fr. Physiol. Veg. 6:175–193.Google Scholar
  49. Rizet, G., J-L. Rossignol and C. Lefort, 1969 Sur la variété et la spécificité des spectres d’anomalies de ségrégation chez Ascobolus immersus. C.R. Hebd. Seances Acad. Sci. Ser. D. Sci. Nat. 269:1427–1430.Google Scholar
  50. Rossignol, J-L., 1964 Phénomènes de recombinaison intragénique et unité fonctionnelle d’un locus chez l’Ascobolus immersus. Thèse de Doctorat 3è cycle, Université de Paris.Google Scholar
  51. Rossignol, J-L., 1967 Contribution à l’étude des phénomènes de recombinaison intragénique. Thèse de Doctorat d’Etat, Université de Paris.Google Scholar
  52. Rossignol, J-L., 1969 Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 of Ascobolus immersus. Genetics 63:795–805.PubMedGoogle Scholar
  53. Schroeter, J., 1893 Die Pilze Schlesiens II. Jahresber. Schles. Gesellsch. Vaterl. Cultur. 1-256.Google Scholar
  54. Stadler, D. R. and A. Towe, 1971 Evidence for meiotic recombination involving only one member of a tetrad. Genetics 68:401–413.PubMedGoogle Scholar
  55. Stadler, D. R., A. Towe and J-L. Rossignol, 1970 Intragenic recombination of ascospore colour and its relationship to the segregation of outside markers. Genetics 66:429–447.PubMedGoogle Scholar
  56. Whitehouse, H. L. K., 1963 A theory of crossing-over by means of hybrid deoxyribonucleic acid. Nature (Lond.) 199:1034–1040.CrossRefGoogle Scholar
  57. Yu Sun, C. C. C., 1954 The culture and spore germination of Ascobolus with emphasis on Ascobolus magnificus. Am. J. Bot. 41:21.CrossRefGoogle Scholar
  58. Yu Sun, C. C. C., 1964a Biochemical and morphological mutants of Ascobolus immersus. Genetics 50:987–998.PubMedGoogle Scholar
  59. Yu Sun, C. C. C., 1964b Nutritional studies of Ascobolus immersus. Am. J. Bot. 51:231–237.CrossRefGoogle Scholar
  60. Yu Sun, C. C. C., 1966 Linkage groups in Ascobolus immersus. Genetics 37:569–580.Google Scholar
  61. Yu Sun, C. C. C., 1969 Temperature-sensitive mutants of Ascobolus immersus. Am. J. Bot. 56:341–343.CrossRefGoogle Scholar
  62. Zickler, D., 1967 Analyse de la méiose du champignon Discomycète Ascobolus immersus. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 265:198–201.Google Scholar
  63. Zickler, D., 1969 Sur l’appareil cinétique de quelques Ascomycètes. C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 268:3040–3042.Google Scholar
  64. Zickler, D., 1970 Division spindle and centrosomal plaques during mitosis and meiosis in some Ascomycetes. Chromosoma 30:287–304.CrossRefGoogle Scholar
  65. Zickler, D., 1971 Déroulement des mitoses dans les filaments en croissance de quelques Ascomycètes. C.R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 273:1687–1689.Google Scholar
  66. Zickler, D., 1973a Fine structure of chromosome pairing in ten Ascomycetes: Meiotic and Premeiotic (mitotic) synaptonemal complexes. Chromosoma 40:401–416.PubMedCrossRefGoogle Scholar
  67. Zickler, D., 1973b Evidence for the presence of DNA in the centrosomal plaques of Ascobolus. Histochemie 34:227–238.PubMedCrossRefGoogle Scholar
  68. Zickler D., 1973c La méiose et les mitoses au cours du cycle de quelques ascomycètes. Thèse de Doctorat d’Etat, Université de Paris-Sud, Centre d’Orsay, Orsay, France.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Bernard Decaris
    • 1
  • Jacqueline Girard
    • 1
  • Gérard Leblon
    • 1
  1. 1.Laboratoire de GénétiqueUniversité de Paris-SudCentre d’Orsay, OrsayFrance

Personalised recommendations